首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨2例先天性肌强直患者的氯离子通道蛋白-1(chloride channcl 2,CLCN1)基因突变情况和临床特点.方法 收集福建地区1个先天性肌强直家系的先证者和1例散发性先天性肌强直患者的临床资料并进行综合分析.用PCR扩增患者CLCN1基因的全部外显子,通过直接测序检测突变的情况.结果 家系1先证者的CLCN1基因第8外显子存在c.1024 G>A的杂合性错义突变,散发性患者的CLCN1基因第11外显子发现了c.1292 C>T的杂合性错义突变.结论 先天性肌强直症临床表现缺乏特异性,CLCN1基因突变检测是确诊该病的有效方法.  相似文献   

2.
3.
Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C>T) were novel while the others (IVS1+3A>T, 979G>A, F413C, A531V, and R894X) have been reported previously. The mutations F413C, A531V, and R894X predominated in our patient material. Compound heterozygosity for A531V/R894X was the predominant genotype. In two probands, three mutations cosegregated with myotonia. No CLCN1 mutations were identified in two families. Our data support the presence of genetic heterogeneity and additional modifying factors in myotonia congenita.  相似文献   

4.
Myotonia congenita is caused by mutation of the CLCN1 gene, which encodes the human skeletal muscle chloride channel (ClC-1). The ClC-1 protein is a dimer comprised of two identical subunits each incorporating its own separate pore. However, the precise pathophysiological mechanism underlying the abnormal ClC-1 channel gating in some mutants is not fully understood. We characterized a ClC-1 mutation, Pro-480-Thr (P480T) identified in dominant myotonia congenita, by using whole-cell recording. P480T ClC-1 revealed significantly slowed activation kinetics and a slight depolarizing shift in the voltage-dependence of the channel gating. Wild-type/mutant heterodimers exhibited similar kinetic properties and voltage-dependency to mutant homodimers. Simulating myotonic discharge with the voltage clamp protocol of a 50 Hz train pulse, the increment of chloride conductance was impaired in both wild-type/mutant heterodimers and mutant homodimers, clearly indicating a dominant-negative effect. Our data showed that slow activation gating of P480T ClC-1 impaired the increment of chloride conductance during repetitive depolarization, thereby accentuating the chloride conductance reduction caused by a slight depolarizing shift in the voltage-dependence of the channel gating. This pathophysiology may explain the clinical features of myotonia congenita.  相似文献   

5.
6.
Autosomal dominant myotonia congenita or Thomsen's disease and autosomal recessive myotonia congenita or Becker's are rare nondystrophic disorders due to allelic mutations of the muscle chloride channel gene, CLCN1. We have analysed all 24 exons of the CLCN1 gene, in a panel of 20 unrelated patients (9 with dominant and 11 with recessive mytotonia congenita). We have found five novel mutations including two missense (V5631, F708L), one nonsense (C481X), one splicing (IVS19+2T->A), and one frameshift (2264delC), and also detected the recurrent R894X mutation. These account for 10 of the 22 recessive alleles examined, while no mutations were found in the dominant form. We report three novel polymorphisms (-134T/G, 898C/A and 2154T/C). Our results support high molecular heterogeneity of these myotonias in Italian population and provide new insight for the diagnosis and genetic counselling of these diseases.  相似文献   

7.
8.
9.
Two novel mutations of the human CLCN1 chloride channel gene, c.592C>G (p.L198V) and c.2255A>G (p.K752R), are described, occurring coincidentally in the one myotonic patient. These individual mutations and a construct with both mutations in the one cDNA were transcribed and expressed in Xenopus oocytes where channel gating parameters were extracted from chloride currents recorded under voltage clamp. We found that the p.L198V mutation has its major effects on the common (or slow) gate of the chloride channel, as do other dominant ClC-1 mutations, and may therefore be causative of the patient's symptoms (when co-expressed with wild-type human ClC-1, the p.L198V mutation exerts a dominant negative effect on common gating) but the p.K752R mutation appears to be innocuous and may be a benign polymorphism. A third mutant, the recently described c.2795C>T (p.P932L), was expressed in HEK 293 cells. Despite the severity of the disease associated with this mutation, chloride currents in cells expressing p.P932L were not significantly different from those of cells expressing wild-type ClC-1.  相似文献   

10.
Myotonia is characterized by hyperexcitability of the muscle cell membrane. Myotonic disorders are divided into two main categories: non-dystrophic and dystrophic myotonias. The non-dystrophic myotonias involve solely the muscle system, whereas the dystrophic myotonias are characterized by multisystem involvement and additional muscle weakness. Each category is further subdivided into different groups according to additional clinical features or/and underlying genetic defects. However, the phenotypes and the pathological mechanisms of these myotonic disorders are still not entirely understood. Currently, four genes are identified to be involved in myotonia: the muscle voltage-gated sodium and chloride channel genes SCN4A and CLCN1, the myotonic dystrophy protein kinase (DMPK) gene, and the CCHC-type zinc finger, nucleic acid binding protein gene CNBP. Additional gene(s) and/or modifying factor(s) remain to be identified. In this study, we investigated a large Norwegian family with clinically different presentations of myotonic disorders. Molecular analysis revealed CCTG repeat expansions in the CNBP gene in all affected members, confirming that they have myotonic dystrophy type 2. However, a CLCN1 mutation c.1238C>G, causing p.Phe413Cys, was also identified in several affected family members. Heterozygosity for p.Phe413Cys seems to exaggerate the severity of myotonia and thereby, to some degree, contributing to the pronounced variability in the myotonic phenotype in this family.  相似文献   

11.
12.
Non-dystrophic myotonias (NDMs) are caused by mutations in CLCN1 or SCN4A. The purpose of the present study was to optimize the genetic characterization of NDM in The Netherlands by analysing CLCN1 and SCN4A in tandem. All Dutch consultant neurologists and the Dutch Patient Association for Neuromuscular Diseases (Vereniging Spierziekten Nederland) were requested to refer patients with an initial diagnosis of NDM for clinical assessment and subsequent genetic analysis over a full year. Based on clinical criteria, sequencing of either CLCN1 or SCN4A was performed. When previously described mutations or novel mutations were identified in the first gene under study, the second gene was not sequenced. If no mutations were detected in the first gene, the second gene was subsequently also analysed. Underlying NDM mutations were explored in 54 families. In total, 20% (8 of 40) of our probands with suspected chloride channel myotonia showed no CLCN1 mutations but subsequent SCN4A screening revealed mutations in all of them. All 14 probands in whom SCN4A was primarily sequenced showed a mutation. In total, CLCN1 mutations were identified in 32 families (59%) and SCN4A in 22 (41%), resulting in a diagnostic yield of 100%. The yield of mutation detection was 93% with three recessive and three sporadic cases not yielding a second mutation. Among these mutations, 13 in CLCN1 and 3 in SCN4A were novel. In conclusion, the current results show that in tandem analysis of CLCN1 and SCN4A affords high-level mutation ascertainment in families with NDM.  相似文献   

13.
Human fetal bronchopulmonary epithelia secrete liquid, and this chloride (Cl)-dependent process is important for normal lung growth. At the time of birth there is a maturational transition from a secretory to an absorptive phenotype. The pathways for Cl exit from the apical membrane which are required for fetal lung liquid secretion are unknown but are thought to be independent of the cystic fibrosis transmembrane conductance regulator. We determined the ontogeny of expression of the CLCN family of voltage-dependent Cl channel genes (CLCN2 through 6, K(a) and K(b)) in the human lung to identify potential pathways for pulmonary liquid secretion. Only CLCN3 and CLCN6 messenger RNA were detected by Northern analysis of fetal whole lung tissue. Ribonuclease protection assays confirmed the expression of CLCN3 and also revealed expression of CLCN2. The ontogeny of expression of these two channels was similar, peaking in midgestation and declining postnatally. In situ hybridization localized the CLCN2 and CLCN3 messages to airway and distal pulmonary epithelia and to pulmonary blood vessels. We conclude that CLCN3 is expressed in human airway epithelia and expression is developmentally regulated. The contribution of these channels to pulmonary epithelial liquid transport and lung development remains to be determined.  相似文献   

14.
Pusch M 《Human mutation》2002,19(4):423-434
Pure non-syndromic, non-dystrophic myotonia in humans is caused by mutations in the genes coding for the skeletal muscle sodium channel (SCN5A) or the skeletal muscle chloride channel (CLCN1) with similar phenotypes. Chloride-channel myotonia can be dominant (Thomsen-type myotonia) or recessive (Becker-type myotonia). More than 60 myotonia-causing mutations in the CLCN1 gene have been identified, with only a few of them being dominant. A common phenotype of dominant mutations is a dominant negative effect of mutant subunits in mutant-WT heterodimers, causing a large shift of the steady-state open probability voltage-dependence towards more positive, unphysiological voltages. The study of the properties of disease causing mutations has helped in understanding the functional properties of the CLC-1 channel that is part of a nine-member gene family of chloride channels. The large body of knowledge obtained for CLC-1 may also help to better understand the other CLC channels, three of which are also involved in genetic diseases.  相似文献   

15.
16.
Kluyveromyces lactis is a petite-negative yeast that does not form viable mitochondrial genome-deletion mutants (petites) when treated with DNA-targeting drugs. Loss of mtDNA is lethal for this yeast but mutations at three loci termed MGI, for mitochondrial genome integrity, can suppress this lethality. The three loci encode the α-, β- and γ-subunits of mitochondrial F1-ATPase. In this study we report the isolation and characterization of the KlATPδ gene encoding the δ-subunit of F1-ATPase. The deduced protein contains 158 amino acids showing 72% identity to the protein from Saccharomyces cerevisiae and a putative mitochondrial targeting sequence of 23 amino acids. Disruption of the gene causes cells to become respiratory deficient while the introduction of ATPδ from S. cerevisiae restores growth on glycerol. Cells with a disrupted ATPδ gene, like strains with disruptions of α-, β- and γ-F1-subunits, do not produce petite mutants when treated with ethidium bromide. However, unlike strains with disruptions in the three largest F1-subunits, disruption of ATPδ in the presence of some mgi alleles does not abolish the Mgi phenotype. By contrast, elimination of ATPδ in other mgi strains removes resistance to ethidium bromide and ρ 0 mutants are not formed. Hence the ATPδ subunit of F1-ATPase, while not mandatory for a Mgi phenotype, aids some mgi alleles in suppressing ρ 0 lethality. Received: 9 June / 27 September 1997  相似文献   

17.
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome‐wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in‐house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease.  相似文献   

18.
Susceptibility to complex disease appears to be partly mediated by heritable differences in gene expression. Where cis-acting effects on a gene's expression influence disease susceptibility, other genes containing polymorphism with a trans-acting effect on expression of that gene may also be expected to modulate risk. Use of the expression of an identified disease gene as an endophenotype for quantitative linkage analysis may therefore provide a powerful method for mapping loci that modulate disease susceptibility. We performed genome-wide linkage analysis on expression of dystrobrevin binding protein 1 (DTNBP1), a well-supported susceptibility gene for schizophrenia, in large CEPH pedigrees. We observed genome-wide significant evidence for linkage at the DTNBP1 locus on chromosome 6p22, and demonstrated that this reflects variable cis-acting effects on DTNBP1 expression. In addition, we observed genome-wide suggestive evidence for linkage of DTNBP1 expression to chromosome 8p, suggesting a locus that exerts a trans-acting effect on DTNBP1 expression. The region of linkage to DTNBP1 expression on chromosome 8 is contiguous with linkage findings based upon the clinical schizophrenia phenotype, and contains another well-supported schizophrenia susceptibility gene, neuregulin-1 (NRG1). Our data provide complementary evidence for chromosome 8p as a susceptibility locus for schizophrenia, and suggest that genetic variation within this region may influence risk, at least in part, through effects on DTNBP1 expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号