首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of short-term diet change from high fat (F) to high carbohydrate (C) (or vice versa) on the storage and utilization of glycogen and triacylglycerol (TG) in muscle and liver were studied in untrained rats. Rats were fed on an F or C diet for 28 days. For an additional 3 days, half of the rats in both F and C groups were fed the same diets as before (F-F and C-C) and the other half of the rats were switched to the counterpart diets (F-C and C-F). On the final day of the experiment, half of the rats in each diet group were exercised by swimming for 1.5 h and the other half were rested. Short-term diet change from F to C diets increased, but the change from C to F diets decreased, glycogen stores of soleus and plantaris muscles and liver, resulting in no difference in glycogen stores between F-C and C-C, and between F-F and C-F. The dietary change also had an affect on TG stores of red gastrocnemius muscle and liver - however, muscle TG stores were still higher in F-C than in C-C and C-F, and there were no differences in liver TG stores between F-C and C-F. Exercise decreased muscle glycogen contents markedly in F-C and C-C, whereas, it decreased muscle TG concentrations in F-F and C-F. Liver glycogen depletion was lower in F-C than in other groups. Lipolytic activities of epididymal adipose tissue at rest and postexercise were no differences between F-F and F-C, and were higher in F-C than in C-C and C-F. -adrenergic receptor binding was determined with [125I] iodocyanopindolol, and maximal numbers of -adrenergic receptor of plasma membrane from perirenal adipose tissue were approximately 170%–200% higher in F-C than in other groups at rest and postexercise. These results suggested that short-term C diet fed rats adapted to F diet enhanced not only glycogen stores of muscle and liver but also did not decrease lipolytic activity of adipose tissue with increased -adrenergic receptor density, resulting in the preservation of energy reserves (glycogen and TG) of muscle at rest, and liver glycogen sparing during exercise.  相似文献   

2.
Summary It is thought that exercise training in both man and the rat results in a protective effect against the depletion of carbohydrate stores during exercise (glycogen-sparing). However there has been no comprehensive study of the effects of training on glycogen anabolic and catabolic enzymes with liver or muscle. The aim of this study was to examine whether changes in these enzymes occur and whether these changes may provide an explanation for the glycogen-sparing which results from exercise training.Male rats were trained by a treadmill running program at three different workloads. In addition, there were three control groups: free eating (SF), food restricted (SR), and one SF with a single bout of exercise prior to sacrifice.Exercise training was associated with a 60–150% increase in glycogen synthase and phosphorylase and a 50–70% increase in glycogen content in soleus, an intermediate muscle, but not in extensor digitorum longus (EDL), a white muscle nor in liver. The increase in glycogen synthase and phosphorylase in intermediate muscle was proportional to the degree of training and there was a significant correlation between glycogen content, glycogen synthase, and phosphorylase activity in intermediate muscle. Cytochrome c oxidase activity, an indicator of respiratory capacity, increased 50% in gastrocnemius of trained rats and was significantly correlated with glycogen synthase and phosphorylase in soleus.These results indicate a significant effect of exercise training on glycogen anabolic and catabolic enzymes in intermediate muscle, with no significant effects in white muscle or liver. The changes do not provide an explanation for glycogen-sparing, but are consistent with improved capacity of intermediate muscle for rapid glycogen mobilisation and repletion.  相似文献   

3.
The purpose of this study was to follow the time course of metabolic responses to hyperadrenalinemia sustained up to 3 days. Hyperadrenalinemia was produced in rats by s.c. implantation of tablets releasing adrenaline (A) at a constant rate (1.6 g x min–1). After 6, 12, 24 and 72 h of hyperadrenalinemia and 3 days after the tablet removal rats were sacrificed and liver, 3 types of muscles and blood samples were taken. Each time 14 rats were used: 7 of them were sedentary and 7 performed treadmill endurance exercise before decapitation. Sham operated animals served as controls. In preliminary experiments working ability was examined in 10 hyperadrenalinemic and 10 control rats. Duration of exercise until exhaustion was reduced in hyperadrenalinemic rats on the average by 40%. In sedentary rats, hyperglycemia, marked depletion of liver glycogen (by approx. 80%) and muscle glycogen (by 60–80%) as well as an elevation (2–4 times) of muscle lactate (LA) were found only during the first day after A-tablet implantation. At the end of the experiment these values approached the control ones. Muscle contents of ATP and creatine phosphate (CrP) were decreased by approx. 20% and 30–60%, respectively. Plasma FFA were markedly enhanced, varying in the time-course of the experiment from 0.8 to 1.4 mmol×1–1. Post-exercise values for blood glucose, liver and muscle glycogen were always lower in hyperadrenalinemic rats than in controls sacrificed after timematched exercise (30 min). Circulating FFA decreased during excercise at all time points following A-tablet implantation, but they were still above the post-exercise levels in sham-operated rats. The response of muscle adenine nucleotides to exercise was not uniform, and changes in their values in the time-course of hyperadrenalinemia paralelled those in circulating FFA.It is concluded that during sustained hyperadrenalinemia some metabolic effects of adrenaline in sedentary animals are only transient, but impaired exercise tolerance persists for the whole time, being caused, at least in part, by early exhaustion of liver and muscle glycogen.This work was supported by the Polish Programme for Basic Research 06.-02.III.  相似文献   

4.
Response of ventilatory muscles of the rat to endurance training   总被引:2,自引:0,他引:2  
The effect of endurance training on the oxidative and glycolytic potentials of the diaphragm and intercostal muscles of rats has been studied. Training consisted of treadmill running (28 m/min, 60 min/day, 5 days/wk) for periods ranging from 8–26 weeks. Exercise of similar duration and intensity produced a glycogen depletion in the diaphragm and intercostal muscles of nontrained rats. Oxidative potential was estimated from the activity of the mitochondrial marker enzyme succinate dehydrogenase (SDH). The activities of phosphorylase (PHOS), hexokinase (HK), and lactate dehydrogenase (LDH) were determined as well as the distribution of the LDH isozymes. SDH activity averaged 44 (42–51) and 17 (10–22)% (P<0.01) greater in the plantaris and diaphragm muscles, respectively, after 8–12 weeks of endurance running as compared to the sedentary animals. There was no change in the SDH activity of the intercostal muscles or in the activities of the glycolytic enzymes. There was also no change in the distribution of the isozymes of LDH. Extending the duration of the training program to 26 weeks did not produce any additional alteration in the magnitude of the adaptation observed after the initial training period. Comparative studies of different types of muscles demonstrated that the diaphragm, although having a fiber composition somewhat similar to that of a fast-twitch skeletal muscle, has a metabolic profile that is intermediate between pure slow twitch skeletal muscle and cardiac muscle.  相似文献   

5.
The effects of training and/or testosterone treatment on glycogen content and the activities of glycogen synthase, glycogen phosphorylase, and fructose-6-phosphate kinase were studied in extensor digitorum longus (EDL) and soleus muscles of intact adult female rats. One group of rats remained sedentary, whereas another group was trained for 7 weeks. Thereafter, both the sedentary and trained rats were subdivided into two control and four testosterone-treated subgroups. Testosterone was administered by a silastic implant. Training was continued for 2 weeks. On the final day of the experiment rats from one trained control and one trained testosterone-treated subgroup ran for 60 min submaximally. Upon testosterone treatment of sedentary rats the glycogen concentration was not changed. However, in the soleus, but not in the EDL, the glycogen content was increased by training (P<0.05) which could, at least partly, be explained by a decrease in activity of active glycogen phosphorylase (P < 0.05). In the EDL of trained rats testosterone treatment increased glycogen content significantly by both an increase in activity of active glycogen synthase and a decrease in activity of active glycogen phosphorylase (P<0.05). In the EDL and soleus of testosterone-treated animals from the exercised subgroup a significant sparing of glycogen was observed, which could be explained by an increase in activity of active glycogen synthase and, in the soleus, could also be explained by a concerted decrease in active glycogen phosphorylase (P<0.05). In the two muscles studied, we also found that testosterone treatment in trained animals shifted the fibre type distribution towards more oxidative fibres in both types of muscle in comparison with the control animals. We conclude that testosterone, at a pharmacological dose, potentiates the training-induced increase in glycogen content of skeletal muscle and induces a glycogen-sparing effect after submaximal exercise.An Established Investigator of the Netherlands Heart Foundation  相似文献   

6.
Summary This study examined the effect on glycogen resynthesis during recovery from exercise of feeding glucose orally to physically trained rats which had been fed for 5 weeks on high-protein low fat (HP), high-protein/long-chain triglyceride (LCT) or high carbohydrate (CHO) diets. Muscle glycogen remained low and hepatic gluconeogenesis was stimulated by long-term fat or high-protein diets. The trained rats received, via a stomach tube, 3 ml of a 34% glucose solution immediately after exercise (2 h at 20 m · min–1), followed by 1ml portions at hourly intervals until the end of the experiments. When fed glucose soleus muscle glycogen overcompensation occurred rapidly in the rats fed all three diets following prolonged exercise. In LCT- and CHO-fed rats, glucose feeding appeared more effective for soleus muscle repletion than in HP-fed rats. The liver demonstrated no appreciable glycogen overcompensation. A complete restoration of liver glycogen occurred within a 2- to 4-h recovery period in the rats fed HP-diet, while the liver glycogen store had been restored by only 67% in CHO-fed rats and 84% in LCT-fed rats within a 6-h recovery period. This coincides with low gluconeogenesis efficiency in these animals.  相似文献   

7.
Summary The effects of simple-carbohydrate (CHO)- and complex-CHO-rich diets on skeletal muscle glycogen content were compared. Twenty male marathon runners were divided into four equal groups with reference to dietary consumption: depletion/simple, depletion/complex, non-depletion/simple, and nondepletion/complex. Subjects consumed either a low-CHO (15% energy [E] intake), or a mixed diet (50% CHO) for 3 days, immediately followed by a high-CHO diet (70% E intake) predominant in either simple-CHO or in complex-CHO (85% of total CHO intake) for another 3 days. Skeletal muscle biopsies and venous blood samples were obtained one day prior to the start of the low-CHO diet or mixed diet (PRE), and then again one day after the completion of the high-CHO diet (POST). The samples were analysed for skeletal muscle glycogen, serum free fatty acids (FFA), insulin, and lactate and blood glucose. Skeletal muscle glycogen content increased significantly (p<0.05) only in the nondepletion/simple group. When groups were combined, according to the type of CHO ingested and/or utilization of a depletion diet, significant increases were observed in glycogen content. Serum FFA decreased significantly (p<0.05) for the nondepletion/complex group only, while serum insulin, blood glucose, and serum lactate were not altered. It is concluded that significant increases in skeletal muscle glycogen content can be achieved with a diet high in simple-CHO or complex-CHO, with or without initial consumption of a low-CHO diet.  相似文献   

8.
Summary The aim of this work was to find by which mechanisms an increased availability of plasma free fatty acids (FFA) reduced carbohydrate utilization during exercise. Rats were fed high-protein medium-chain triglycerides (MCT), high-protein long-chain triglycerides (LCT), carbohydrate (CHO) or high-protein low-fat (HP) diets for 5 weeks, and liver and muscle glycogen, gluconeogenesis and FFA oxidation were studied in rested and trained runner rats. In the rested state the hepatic glycogen store was decreased by fat and protein feeding, whereas soleus muscle glycogen concentration was only affected by high-protein diets. The percentage decrease in liver and muscle glycogen stores, after running, was similar in fat-fed, high-protein and CHO-fed rats. The fact that plasma glucose did not drastically change during exercise could be explained by a stimulation of hepatic gluconeogenesis: the activity of phosphoenolpyruvate carboxykinase (PEPCK) and liver phosphoenolpyruvate (PEP) concentration increased as well as cyclic adenosine monophosphate (AMPc) while liver fructose 2,6-bisphosphate decreased and plasma FFA rose. In contrast, the stimulation of gluconeogenesis in rested HP-, MCT- and LCT-fed rats appears to be independent of cyclic AMP.  相似文献   

9.
Summary Post-exercise ketosis is known to be suppressed by physical training and by a high carbohydrate diet. As a result it has often been presumed, but not proven, that the development of post-exercise ketosis is closely related to the glycogen content of the liver. We therefore studied the effect of 1 h of treadmill running on the blood 3-hydroxybutyrate and liver and muscle glycogen concentrations of carbohydrate-loaded trained (n=72) and untrained rats (n=72). Resting liver and muscle glycogen levels were 25%–30% higher in the trained than in the untrained animals. The resting 3-hydroxybutyrate concentrations of both groups of rats were very low: <0.08 mmol·1−1. Exercise did not significantly influence the blood 3-hydroxybutyrate concentrations of trained rats, but caused a marked post-exercise ketosis (1.40±0.40 mmol·1−1 1 h after exercise) in the untrained animals, the time-course of which was the approximate inverse of the changes in liver glycogen concentration. Interpreting the results in the light of similar data obtained after a normal and low carbohydrate diet it has been concluded that trained animals probably owe their relative resistance to post-exercise ketosis to their higher liver glycogen concentrations as well as to greater peripheral stores of mobilizable carbohydrate.  相似文献   

10.
Summary The rats were made to run daily to exhaustion, for 28 days at a speed of 1,200 m·h–1 on a treadmill set at a gradient of + 10°. The training increased the time of running to exhaustion [184 (SD 49) and 308 (SD 28) min on the 1st and 28th day, respectively; P<0.001]. The body mass was reduced by training [257 (SD 21) g before and 221 (SD 20) g after; P<0.001] whereas the food intake increased [9 (SD 1) g·100 g body mass before and 14 (SD 2) g after; P0.001]. The heart mass was not affected by training. Training increased the resting glycogen concentration in muscles composed of different fibre types (soleus, white and red vastus muscles) and in the liver, but had no effect on its concentration in the heart and diaphragm. During exercise lasting for 30 min glycogen mobilization in the red vastus and soleus muscles and the liver was more pronounced after than before training. A sparing effect of training on the skeletal muscles and liver glycogen was markedly apparent only after exericse to exhaustion. The trained rats, contrary to the untrained, did not develop hypoglycaemia during exercise to exhaustion. An increase in the plasma free fatty acid concentration during exercise after training was delayed and attenuated compared to that before training. The 24-h excretion of urea after exercise to exhaustion on the 28th day of training was higher than on the 1st day by 39% (P<0.001). It is concluded that metabolic adaptation to training consisting of daily bouts of exercise to exhaustion differs in many aspects from that so far described for other endurance training protocols.  相似文献   

11.
Summary Young Osborne-Mendel rats were given different diets ad libitum for 6 weeks. Food was either a purified powder with sucrose (15%) or commercial pellets, and drink was either distilled water or a sugar-containing (6%) sport-drink with or without added fluoride (F), magnesium (Mg) or both. Despite differences in the energy density of the diets, daily intakes were the same in terms of metabolisable energy and resulted in equal weight gains for all groups. Interscapular brown fat hypertrophied in response to powdered food, while both sugar-containing food and sport-drink were effective in accumulating white fat. When exposed to cold air at –20° C for 2–4 h, most of the rats were able to maintain normothermia. Only the rats fed pelleted food and given distilled water were less resistant to cold than the others. After exposure to cold, the reserves of muscle glycogen were least in those rats having the poorest performance in the cold. In contrast, the stores of liver glycogen, plasma glucose and adrenal ascorbic acid were associated with pelleted food, rather than with the exposure to cold or type of drink. It is concluded that the presence of purified, simple sugars, either in food or drink, is the most likely explanation of the results obtained. The F and Mg supplements to the sport-drink did not modify the parameters measured.  相似文献   

12.
Summary Three female and three male highly trained endurance runners with mean maximal oxygen uptake (VO2max) values of 60.5 and 71.5 ml·kg–1·min–1, respectively, ran to exhaustion at 75%–80% of VO2max on two occasions after an overnight fast. One experiment was performed after a normal diet and training regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P<0.05) from 581 mmol·kg–1 dry weight, SEM 50 to 722 mmol·kg–1 dry weight, SEM 34 after Carb. Running time to exhaustion, however, was not significantly different in Carb and Norm, 77 min, SEM 13 vs 70 min, SEM 8, respectively. The average glycogen concentration following exhaustive running was 553 mmol· kg–1 dry weight, SEM 70 in Carb and 434 mmol·kg–1 dry weight, SEM 57 in Norm, indicating that in both tests muscle glycogen stores were decreased by about 25%. Periodic acid-Schiff staining for semi-quantitative glycogen determination in individual fibres confirmed that none of the fibres appeared to be glycogen-empty after exhaustive running. The steady-state respiratory exchange ratio was higher in Carb than in Norm (0.92, SEM 0.01 vs 0.89, SEM 0.01; P<0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion of the gastrocnemius muscle is unlikely to be the cause of fatigue during exhaustive running at 75%–80% of VO2max in highly trained endurance runners. Furthermore, diet- and training-induced carbohydrate supercompensation does not appear to improve endurance capacity in such individuals.  相似文献   

13.
Summary The effect of a high-carbohydrate (C) diet intake on muscle glycogen repletion during the early period of recovery from exercise was studied in rats previously fed a high-fat (F) diet. In experiment 1, 3 weekold male and in experiment 2, 3 week-old female rats were used. Rats were fed either the F or the C diet for 2–10 weeks ad libitum and then were meal-fed regularly twice a day for 25 days in experiment 1, or for 5 weeks in experiment 2. During the period of regular feeding, half of the rats in both dietary groups continued to eat as before (F-F and C-C) but the other half of the rats were switched to the counterpart diets (F-C and C-F) in experiment 1. In experiment 2, half of the F-F group were switched to the C diet (F-C) for 3, 7, and 14 days after the period of regular feeding. Pre-exercise glycogen content in soleus, red gastrocnemius, and heart muscles and liver was higher in rats fed the C diet (C-C and F-C) than in rats fed the F diet (F-F and C-F) in experiment 1. Glycogen repletion in red muscle 2 h after the ingestion of a glucose and citrate (3.0 and 0.5 g, respectively, per kg body mass) drink was also higher in the former than in the latter. There was a positive relationship in skeletal muscles between pre-exercise glycogen content and the rate of glycogen repletion. Compared with the rats maintained on the F diet (F-F), the rats switched to the C diet (F-C) for 3 and 7 days showed faster glycogen repletion in soleus and/or red gastrocnemius muscles in experiment 2. These results indicated that the poor capacity of restoration of skeletal muscle glycogen in rats previously fed the F diet was improved by the short-term dietary switch to the C diet.  相似文献   

14.
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.  相似文献   

15.
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.  相似文献   

16.
Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120 min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20 min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60 min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity.  相似文献   

17.
We have recently reported that rates of muscle glycogen repletion during the early period of recovery were increased by carbohydrate (CHO) loading in rats previously fed a high fat diet. However, the reason for this remained unanswered. The purpose of this study was to examine whether an increase of glycogen utilization due to an elevated pre-exercise glycogen store would enhance rates of glycogen repletion in muscle. Despite an equal degree of glycogen depletion, the rates of glycogen repletion of soleus, red and white gastrocnemius muscles by postexercise administration of glucose (3.0 g · kg–1 body mass) and citrate (0.5 g · kg–1 body mass) were faster in the CHO loaded (3 days) rats than in the nonloaded rats, as a result of elevated pre-exercise glycogen content and consequently the greater glycogen utilization. The higher rate of muscle glycogen repletion may in part be explained by increased postexercise glycogen synthase activity.  相似文献   

18.
Summary It has been reported that exercise training increases muscle glycogen storage in rats fed a high carbohydrate (CHO) diet in resting conditions. The purpose of this study was to examine whether a 3-week swimming training programme would increase muscle glycogen stores in rats fed a high-fat (FAT) diet in resting conditions. Rats were fed either the FAT or CHO diet for 7 days ad libitum, and then were fed regularly twice a day (between 0800 and 0830 hours and 1800 and 1830 hours) for 32 days. During this period of regular feeding, half of the rats in both dietary groups had swimming training for 3 weeks and the other half were sedentary. The rats were not exercised for 48 h before sacrifice. All rats were killed 2 h after their final meal (2030 hours). The glycogen contents in red gastrocnemius muscle, heart and liver were significantly higher in sedentary rats fed the CHO diet than in those fed the FAT diet. Exercise training clearly increased glycogen content in soleus, red gastrocnemius and heart muscle in rats fed the CHO diet. In rats fed the FAT diet, however, training did not increase glycogen content in these muscles or the heart. Exercise training resulted in an 87% increase of total glycogen synthase activity in the gastrocnemius muscle of rats fed the CHO diet. However, this was not observed in rats fed the FAT diet. The total glycogen phosphorylase activity in the gastrocnemius muscle of the rats of both dietary groups was increased approximately twofold by training. These results suggested that muscle glycogen was enhanced in rats fed the CHO diet and that the glycogen content of the muscle of rats fed the FAT diet was not increased by exercise training.  相似文献   

19.
Summary The concentration of creatine phosphate (CrP), ATP, ADP, AMP and glycogen were measured in extensor digitorum longus (EDL) and in quadriceps muscles of 3, 6, 24, and 27 months old male Wistar rats groups. Young (3 months) and old (24 months) rats were trained for 12 weeks, 3 days a week, with running exercise session. Each training session was of 2 h. In sedendary goups and for both muscles, CrP, ATP, ADP, and glycogen contents decrease with aging (between 6 and 27 months). In spit of an AMP increase, total adenosine nucleotides (TAN) decrease significantly between 6–27 months (P<0.01) from 6.11 to 5.11 (EDL) and from 5.59 to 4.65 (quadriceps) mol·g–1 wet weight muscle. After 12 weeks of physical training, the mean values of CrP, TAN, and glycogen were improved in both young and old rat groups. Moreover, the ATP/ADP ratios and the energy charge of the adenylate system were unrelated to age, but training decreases significantly the mean value of energy charge in both young and old groups. These results suggest that, as far as energy-rich phosphagen metabolism is concerned young and old muscles show the same pattern response to training.  相似文献   

20.
Carbohydrate depletion during exercise was measured in the liver, in the three different types of skeletal muscle, and in the blood of exercise-trained and untrained rats. The acute exercise test consisted of 45 min of treadmill running of progressively increasing intensity. The training program consisted of 6 hrs of swimming per day, 5 days per week for 14 weeks; the training induced an increase of approximately 35 percent in the respiratory capacity of gastrocnemius muscle, and a 14 percent incrase in heart weight. Glycogen stores in fast-twitch red, fast-twitch white, and slow-twitch red types of skeletal muscle, were depleted significantly more slowly in the trained than in the untrained animals during the treadmill exercise test. Resting glycogen stores in the liver were higher and were depleted more slowly during exercise in the trained than the untrained animals. Blood lactate concentration was significantly lower in the trained than in the untrained rats at the end of the exercise test. These results provide evidence that endurance exercise training induces adaptation which protect against the depletion of glycogen from the liver and from the tree types of skeletal muscle during prolonged exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号