首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of rises in external K(+) (K(ext)) on I(h) were investigated in CA1 pyramidal cells of rat hippocampal slices using the whole-cell patch clamp technique. At the basal K(ext) level (2.5 mM), hyperpolarization-activated cation current (I(h)) had a maximal amplitude of -350+/-60 pA which was enhanced by approximately 60 and approximately 95% at 5 and 7.5 mM K(ext), respectively. The midpoint activation voltage was significantly shifted from -80 mV in the negative direction to about -87 mV at both 5 and 7.5 mM K(ext), without appreciable alterations of the current kinetics. The maximal conductance was approximately 2.4 nS under control conditions and significantly increased to approximately 3.3 and approximately 5.6 nS at 5 and 7.5 mM K(ext), respectively. The reversal potential was shifted in the positive direction, from a control value of approximately -30 mV by approximately 6 and approximately 14 mV at 5 and 7.5 mM K(ext), respectively. Our data demonstrate that even moderate changes in K(ext) have a substantial effect on the properties of I(h).  相似文献   

2.
Starodub AM  Wood JD 《Neuroscience》2000,99(2):389-396
Biophysical properties of A-type K(+) currents (I(A)) in myenteric neurons from guinea-pig small intestine were studied. I(A) was present in both AH- and S-type myenteric neurons. Reduction of external Ca(2+) did not affect the current. Current density was 13.5+/-10.2 pA/pF in 68 AH-type neurons and 23.4+/-8.2 pA/pF in 31 S-type neurons. S-type neurons appeared to be a homogeneous group based on density of I(A). AH-type neurons were subdivided into two groups with current densities of 9.4+/-4.3 and 25.4+/-4.3 pA/pF. All other biophysical properties of the current were not statistically different for AH- and S-type neurons. Steady-state activation and inactivation curves showed half-activation potentials at -7 mV (k=15. 0 mV) and -86 mV (k=11.5 mV). The curves overlapped at potentials near the resting potential of approximately -55 mV. Time constants for activation ranged from 3.6 to 0.52 ms at test potentials between -20 and 50 mV. Inactivation time constants fell between 41.5 and 11 ms at test potentials between -20 and 50 mV. Time constants for recovery from inactivation fit a double-exponential curve with fast and slow recovery times of 11 and 550 ms. 4-Aminopyridine suppressed I(A) when it was activated at -20 mV following a pre-pulse to -110 mV. Addition of Zn(2+) in the external solution resulted in a concentration-dependent shift of the activation and inactivation curves in the depolarized direction. Zn(2+) slowed the activation and inactivation kinetics of I(A) by factors of 3.3- and 1.2-fold over a wide range of potentials. Elevation of external H(+) suppressed the effect of Zn(2+) with a pK of 7.3-7.4. The effects of Zn(2+) were interpreted as not being due to surface charge screening, because the affinity of Zn(2+) for its binding site on the A-channel was estimated to be between 170 and 312 microM, while the background concentration of Mg(2+) was 10 mM.The enteric nervous system is perceived as an independent integrative nervous system (brain-in-the-gut) that is responsible for local organizational control of motility and secretory patterns of gut behavior. AH- and S-type neurons are synaptically interconnected to form the microcircuits of the enteric nervous system. The results suggest that I(A) is a significant determinant of neuronal excitability for both the firing of nerve impulses and the various synaptic events in the two types of neurons.  相似文献   

3.
Various subsets of brain neurons express a hyperpolarization-activated inward current (I(h)) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na(+)-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I(h) because it was resistant to extracellular Ba(2+), sensitive to Cs(+), completely and selectively abolished by ZD7288, and carried by both Na(+) and K(+) ions. I(h) in the SCs had an activation threshold and reversal potential at approximately -45 and -20 mV, respectively. Its half-activation voltage was -77 mV. Importantly, bath perfusion with ZD7288, but not Ba(2+), gradually and completely abolished the subthreshold oscillations, thus directly implicating I(h) in their generation. Using experimentally derived biophysical parameters for I(h) and the low-threshold persistent Na(+) current (I(NaP)) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I(NaP) and I(h) can sustain persistent subthreshold oscillations in SCs. I(NaP) and I(h) operate in a "push-pull" fashion where the delay in the activation/deactivation of I(h) gives rise to the oscillatory process.  相似文献   

4.
Voltage-dependent K+ currents in rat cardiac dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
We have assessed the expression and kinetics of voltage-gated K(+) currents in cardiac dorsal root ganglion (DRG) neurons in rats. The neurons were labelled by prior injection of a fluorescent tracer into the pericardial sack. Ninety-nine neurons were labelled: 24% small (diameter<30 microm), 66% medium-sized (diameter 30 microm>.48 microm) and 10% large (>48 microm) neurons. Current recordings were performed in small and medium-sized neurons. The kinetic and pharmacological properties of K(+) currents recorded in these two groups of neurons were identical and the results obtained from these neurons were pooled. Three types of K(+) currents were identified:a) I(As), slowly activating and slowly time-dependently inactivating current, with V(1/2) of activation -18 mV and current density at +30 mV equal to 164 pA/pF, V(1/2) of inactivation at -84 mV. b) I(Af) current, fast activating and fast time-dependently inactivating current, with V(1/2) of activation at two mV and current density at +30 mV equal to 180 pA/pF, V(1/2) of inactivation at -26 mV. At resting membrane potential I(As) was inactivated, whilst I(Af), available for activation. The I(As) currents recovered faster from inactivation than I(Af) current. 4-Aminopiridyne (4-AP) (10 mM) and tetraethylammonium (TEA) (100 mM) produced 98% and 92% reductions of I(Af) current, respectively and 27% and 66% of I(As) current, respectively. c) The I(K) current that did not inactivate over time. Its V(1/2) of activation was -11 mV and its current density equaled 67 pA/pF. This current was inhibited by 95% (100 mM) TEA, whilst 4-AP (10 mM) produced its 23% reduction. All three K(+) current components (I(As), I(Af) and I(K)) were present in every small and medium-sized cardiac DRG neuron.We suggest that at hyperpolarized membrane potentials the fast reactivating I(As) current limits the action potential firing rate of cardiac DRG neurons. At depolarised membrane potentials the I(Af) K(+) current, the reactivation of which is very slow, does not oppose the firing rate of cardiac DRG neurons.  相似文献   

5.
Rapid exposure of cardiac muscle to high concentrations of caffeine releases Ca(2+) from the sarcoplasmic reticulum (SR). This Ca(2+) is then extruded from the cell by the Na(+)/Ca(2+) exchanger. Measurement of the current carried by the exchanger (I(Na/Ca)) can therefore be used to estimate of the Ca(2+) content of the SR. Previous studies have shown that caffeine, however, can also inhibit K(+) currents. We therefore investigated whether the inhibitory effects of caffeine on these currents could contaminate measurements of I(Na/Ca). Caffeine caused partial inhibition of the inward rectifier K(+) current (I(K1)): the outward current at -40 mV was 1.15+/-0.24 pA/pF in control and decreased to 0.34+/-0.15 pA/pF in the presence of 10 mmol/l caffeine (P<0.05, n=15). This was similar to the effect of caffeine on the holding current observed at -40 mV in the absence of K(+) channel block and could therefore account for the contaminating effects of caffeine observed during measurements of I(Na/Ca). Moreover, caffeine also partially inhibited the transient outward ( I(to)) and the delayed rectifier (I(K)) K(+) currents.  相似文献   

6.
Lentiviral vectors were constructed to express the weakly rectifying kidney K(+) channel ROMK1 (Kir1.1), either fused to enhanced green fluorescent protein (EGFP) or as a bicistronic message (ROMK1-CITE-EGFP). The channel was stably expressed in cultured rat hippocampal neurons. Infected cells were maintained for 2-4 wk without decrease in expression level or evidence of viral toxicity, although 15.4 mM external KCl was required to prevent apoptosis of neurons expressing functional ROMK1. No other trophic agents tested could prevent cell death, which was probably caused by K(+) loss. This cell death did not occur in glia, which were able to support ROMK1 expression indefinitely. Functional ROMK1, quantified as the nonnative inward current at -144 mV in 5.4 mM external K(+) blockable by 500 microM Ba(2+), ranged from 1 to 40 pA/pF. Infected neurons exhibited a Ba(2+)-induced depolarization of 7 +/- 2 mV relative to matched EGFP-infected controls, as well as a 30% decrease in input resistance and a shift in action potential threshold of 2.6 +/- 0.5 mV. This led to a shift in the relation between injected current and firing frequency, without changes in spike shape, size, or timing. This shift, which quantifies silencing as a function of ROMK1 expression, was predicted from Hodgkin-Huxley models. No cellular compensatory mechanisms in response to expression of ROMK1 were identified, making ROMK1 potentially useful for transgenic studies of silencing and neurodegeneration, although its lethality in normal K(+) has implications for the use of K(+) channels in gene therapy.  相似文献   

7.
Effects of methylphenidate (MPH), a therapeutic agent used in children presenting the attention deficit hyperactivity disorder (ADHD), on the membrane potential and current in neurons of the rat locus coeruleus (LC) were examined using intracellular and whole cell patch-clamp recording techniques. Application of MPH (30 microM) to artificial cerebrospinal fluid (ACSF) produced a hyperpolarizing response with amplitude of 12 +/- 1 mV (n = 29). Spontaneous firing of LC neurons was blocked during the MPH-induced hyperpolarization. Superfusion of LC neurons with ACSF containing 0 mM Ca(2+) and 11 mM Mg(2+) (Ca(2+)-free ACSF) produced a depolarizing response associated with an increase in spontaneous firing of the action potential. The MPH-induced hyperpolarization was blocked in Ca(2+)-free ACSF. Yohimbine (1 microM) and prazosin (10 microM), antagonists for alpha(2) and alpha(2B/2C) receptors, respectively, blocked the MPH-induced hyperpolarization in LC neurons. Tetrodotoxin (TTX, 1 microM) produced a partial depression of the MPH-induced hyperpolarization in LC neurons. Under the whole cell patch-clamp condition, MPH (30-300 microM) produced an outward current (I(MPH)) with amplitude of 110 +/- 6 pA (n = 17) in LC neurons. The I(MPH) was blocked by Co(2+) (1 mM). During prolonged application of MPH (300 microM for 45 min), the hyperpolarization gradually decreased in the amplitude and eventually disappeared, possibly because of depression of norepinephrine (NE) release from noradrenergic nerve terminals. At a low concentration (1 microM), MPH produced no outward current but consistently enhanced the outward current induced by NE. These results suggest that the MPH-induced response is mediated by NE via alpha(2B/2C)-adrenoceptors in LC neurons. I(MPH) was associated with an increase in the membrane conductance of LC neurons. The I(MPH) reversed its polarity at -102 +/- 6 mV (n = 8) in the ACSF. The reversal potential of I(MPH) was changed by 54 mV per decade change in the external K(+) concentration. Current-voltage relationship showed that the I(MPH) exhibited inward rectification. Ba(2+) (100 microM) suppressed the amplitude and the inward rectification of the I(MPH.) These results suggest that the I(MPH) is produced by activation of inward rectifier K(+) channels in LC neurons.  相似文献   

8.
9.
The properties of hyperpolarization-activated current in pregnant rat uterus (17-19 days gestation) were investigated using microelectrode and patch-clamp techniques, and isometric tension recording. The resting membrane potentials were -58.4 mV and -48.5 mV in longitudinal and circular muscle cells, respectively. Application of hyperpolarizing current pulses produced a time-dependent anomalous inward rectification of membrane potential only in circular muscle cells. Under voltage-clamp conditions, inward currents (Ih) were activated by long hyperpolarizing pulses below -60 mV in circular but not in longitudinal muscle cells. Application of extracellular but not intracellular Cs+ reduced the amplitude of I(h) in a concentration-dependent manner (an IC50( of 0.15 mM). The reversal potential for Ih was -26.2 mV and the slope conductance was 5 nS/pF. Changes in [K+]o and [Na+]o shifted the reversal potential, and Ih amplitude increased with excess [K+]o and decreased with low [Na+]o. The steady-state activation of Ih was well fitted by a Boltzmann equation with a half-activation potential of -84.3 mV and a slope factor of 9.6 mV. Time courses of activation and deactivation of the current strongly depended on membrane potential, and were well fitted by a single exponential function. The activation time constant of Ih was dependent on temperature. In isometric tension recording, application of extracellular Cs+ to the circular muscles reduced the frequency, but not the amplitude, of spontaneous contractions in a concentration-dependent manner. It is concluded that in pregnant rat uterus Ih channels are predominantly distributed in smooth muscle cells from the circular layer. Since Ih is activated at the resting membrane potential, it is likely that this current contributes to the maintenance of resting membrane potential and spontaneous activity in circular smooth muscle cells of late pregnant rats.  相似文献   

10.
1. Single cone photoreceptors were dissociated from the retina of a lizard with the aid of papain. The majority of the cells lost their outer segments but had well-preserved, large synaptic pedicles. Electrical properties of the cells were studied with tight-seal electrodes in the whole cell configuration. On the average, cone inner segments had a resting potential of -55 mV, and at this potential their input resistance was 2.6 G omega and their capacitance was 8 pF. 2. Under current clamp the cones exhibited a pronounced anomalous voltage rectification in response to hyperpolarizing currents. The voltage rectification was eliminated by external Cs+. 3. The Cs(+)-sensitive current underlying voltage rectification was isolated by blocking other currents present in the cone. Co2+ blocked a voltage-dependent Ca2+ current and a Ca2(+)-dependent Cl- current, and tetraethylammonium (TEA)+ blocked a delayed-rectifier K+ current. 4. The Cs(+)-sensitive current was activated by hyperpolarization to potentials more negative than -50 mV, and its current-voltage (I-V) relationship exhibited inward rectification. 5. The inward-rectifying current was selective for K+, but not exclusively. Increasing external K+ concentration 10-fold shifted the reversal potential by 13 mV. If Na ions also permeate through the inward-rectifying channels, the ratio of permeabilities (PK+/PNa+) in normal solution is approximately 3.9. 6. The kinetics of the inward-rectifying current were described by the sum of two exponentials, the amplitudes and time constants of which were voltage dependent. 7. The voltage dependence of the inward-rectifying current was described by Boltzmann's function, with half-maximum activation at -79 mV and a steepness parameter of 7.5 mV. 8. The voltage dependence and kinetics of the inward-rectifying current suggest that it is inactive in a cone photoreceptor in the dark. However, it becomes activated in the course of large hyperpolarizations generated by bright-light illumination. This activity will modify the waveform of the photovoltage--the current will generate a depolarizing component that opposes the light-generated hyperpolarization.  相似文献   

11.
Cajal-Retzius cells are among the first neurons appearing during corticogenesis and play an important role in the establishment of cortical lamination. To characterize the hyperpolarization-activated inward current (I(h)) and to investigate whether I(h) contributes to the relatively positive resting membrane potential (RMP) of these cells, we analyzed the properties of I(h) in visually identified Cajal-Retzius cells in cortical slices from neonatal rats using the whole cell patch-clamp technique. Membrane hyperpolarization to -90 mV activated a prominent inward current that was inhibited by 1 mM Cs(+) and was insensitive to 1 mM Ba(2+). The activation time constant for I(h) was strongly voltage dependent. In Na(+)-free solution, I(h) was reduced, indicating a contribution of Na(+). An analysis of the tail currents revealed a reversal potential of -45.2 mV, corresponding to a permeability coefficient (pNa(+)/pK(+)) of 0. 13. While an increase in the extracellular K(+) concentration ([K(+)](e)) enhances I(h), it was reduced by a [K(+)](e) decrease. This [K(+)](e) dependence could not be explained by an effect on the electromotive force on K(+) but suggested an additional extracellular binding site for K(+) with an apparent dissociation constant of 7.2 mM. Complete Cl(-) substitution by Br(-), I(-), or NO(3)(-) had no significant effect on I(h), whereas a complete Cl(-) substitution by the organic compounds methylsulfate, isethionate, or gluconate reduced I(h) by approximately 40%. The I(h) reduction observed in gluconate could be abolished by the addition of Cl(-). The analysis of the [Cl(-)](e) dependence of I(h) revealed a dissociation constant of 9.8 mM and a Hill-coefficient of 2.5, while the assumption of a gluconate-dependent I(h) reduction required an unreasonably high Hill-coefficient >20. An internal perfusion with the lidocaine derivative lidocaine N-ethyl bromide blocks I(h) within 1 min after establishment of the whole cell configuration. An inhibition of I(h) by 1 mM Cs(+) was without an effect on RMP, action potential amplitude, threshold, width, or afterhyperpolarization. We conclude from these results that Cajal-Retzius cells express a prominent I(h) with characteristic properties that does not contribute to the RMP.  相似文献   

12.
D F Reiff  E Guenther 《Neuroscience》1999,92(3):1103-1117
Ca2(+)-independent voltage-activated potassium currents were investigated during the differentiation of rat retinal ganglion cells. Whole-cell patch-clamp recordings of Ca2(+)-independent voltage-activated potassium currents and their individual current components, i.e. a sustained, tetraethylammonium-sensitive current, a transient, 4-aminopyridine-sensitive current, and a slowly decaying current that was blocked by Ba2+, revealed distinct ontogenetic modifications in current densities and in activation and inactivation parameters. All three current types were expressed simultaneously at embryonic day 17/18 and were present in all retinal ganglion cells thereafter without showing any significant changes until the end of the first postnatal week. Ca2(+)-independent voltage-activated potassium current densities then increased strongly from postnatal day 8 onwards. Tetraethylammonium-sensitive current density increased about eightfold from 74 pA/pF in embryonic stages to 586 pA/pF in adult cells, whereas the transient potassium currents blocked by 4-aminopyridine increased only about 2.5-fold from 174 pA/pF to 442 pA/pF. The Ba2(+)-sensitive current increased simultaneously from 35 pA/pF to 332 pA/pF. The much higher increase in the sustained current components during retinal ganglion cell differentiation accounted for the changes in decay kinetics of Ca2(+)-independent voltage-activated potassium current observed in later postnatal stages. Alterations in current densities were paralleled by pronounced changes in current kinetics. From postnatal day 8 onwards, activation of Ca2(+)-independent voltage-activated potassium current was right-shifted for about 10 mV owing to a shift in tetraethylammonium-sensitive current-activation, whereas activation of other K+ components remained unaltered. Tetraethylammonium-sensitive current steady-state inactivation was incomplete at all developmental stages. About 50% of the tetraethylammonium-sensitive current elicited by a depolarization to +36 mV did not inactivate after prepulse potentials positive to -10 mV. In contrast, transient potassium current blocked by 4-aminopyridine almost fully inactivated during embryonic stages, whereas in adult retinal ganglion cells about 40% of this current component did not inactivate after prepulse potentials positive to -20 mV. Parallel investigation of the resting membrane potential during retinal ganglion cells differentiation showed an exponential increase from -3 mV at embryonic day 15/16 when no voltage-activated ion currents were expressed to a final value of -58 mV at postnatal day 8. These results show that fundamental potassium current modifications occur relatively late in retinal ganglion cell development and only after the resting potential is at its final value.  相似文献   

13.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

14.
Cellular mechanisms underlying defense reactions induced by noxious heat and acids were studied in frogs (Rana pipiens) by measuring whole cell membrane currents in cultured dorsal root ganglion (DRG) neurons. Seventy-eight of 82 DRG neurons exposed to 3-s ramps of increasing temperature to 48 degrees C exhibited an inward current (I(HEAT)) of 490 +/- 70 pA at -70 mV. I(HEAT) exhibited reversal at approximately 10 mV with a pronounced outward rectification, suggesting opening of nonselective cation channels. In frogs, in contrast to mammals, I(HEAT) was not influenced by capsaicin (5 microM), capsazepine (10 microM), or ruthenium red (10 microM). In a large proportion (approximately 80%) of heat-sensitive DRG neurons, acids produced a large slowly inactivating sodium carried current (I(ACID)) with average pH(50) 5.7. I(ACID) was blocked by 1 mM amiloride (to 22%) and was absent if extracellular Na(+) was substituted by Cs(+). Elevating temperature to 38 degrees C increased I(ACID), whereas temperatures >40 degrees C profoundly inhibited it (by 82 +/- 2%; n = 42). The inhibition was long-lasting (>30 s) but fully reversible. Phorbol ester myristate acetate (PMA, 1 microM) and forskolin (1 microM) inhibited I(ACID) to 37 +/- 5% (n = 5) and 78 +/- 8% (n = 4), respectively. It is suggested that I(HEAT) in frog DRG neurons is carried through capsaicin-insensitive nonselective cation channels distinct from vanilloid receptor in mammals, whereas I(ACID) is carried through amiloride-sensitive sodium channels that are strongly inhibited by noxious heat, possibly due to activation of the intracellular messenger systems.  相似文献   

15.
Properties of the 5-hydroxytryptamine (5-HT)-induced current (I(5-HT)) were examined in neurons of rat dorsolateral septal nucleus (DLSN) by using whole cell patch-clamp techniques. I(5-HT) was associated with an increase in the membrane conductance of DLSN neurons. The reversal potential of I(5-HT) was -93 +/- 6 (SE) mV (n = 7) in the artificial cerebrospinal fluid (ACSF) and was changed by 54 mV per decade change in the external K(+) concentration, indicating that I(5-HT) is carried exclusively by K(+). Voltage dependency of the K(+) conductance underlying I(5-HT) was investigated by using current-voltage relationship. I(5-HT) showed a linear I-V relation in 63%, inward rectification in 21%, and outward rectification in 16% of DLSN neurons. (+/-)-8-Hydroxy-dipropylaminotetralin hydrobromide (30 microM), a selective 5-HT(1A) receptor agonist, also produced outward currents with three types of voltage dependency. Ba(2+) (100 microM) blocked the inward rectifier I(5-HT) but not the outward rectifier I(5-HT). In I(5-HT) with linear I-V relation, blockade of the inward rectifier K(+) current by Ba(2+) (100 microM) unmasked the outward rectifier current in DLSN neurons. These results suggest that I(5-HT) with linear I-V relation is the sum of inward rectifier and outward rectifier K(+) currents in DLSN neurons. Intracellular application of guanosine-5'-O-(3-thiotriphosphate) (300 microM) and guanosine-5'-O-(2-thiodiphosphate) (5 mM), blockers of G protein, irreversibly depressed I(5-HT). Protein kinase C (PKC) 19-36 (20 microM), a specific PKC inhibitor, depressed the outward rectifier I(5-HT) but not the inward rectifier I(5-HT). I(5-HT) was depressed by N-ethylmaleimide, which uncouples the G-protein-coupled receptor from pertussis-toxin-sensitive G proteins. H-89 (10 microM) and adenosine 3',5'-cyclic monophosphothioate Rp-isomer (300 microM), protein kinase A inhibitors, did not depress I(5-HT). Phorbol 12-myristate 13-acetate (10 microM), an activator of PKC, produced an outward rectifying K(+) current. These results suggest that both 5-HT-induced inward and outward rectifying currents are mediated by a G protein and that PKC is probably involved in the transduction pathway of the outward rectifying I(5-HT) in DLSN neurons.  相似文献   

16.
Octopus cells in the posteroventral cochlear nucleus of mammals detect the coincidence of synchronous firing in populations of auditory nerve fibers and convey the timing of that coincidence with great temporal precision. Earlier recordings in current clamp have shown that two conductances contribute to the low input resistance and therefore to the ability of octopus cells to encode timing precisely, a low-threshold K(+) conductance and a hyperpolarization-activated mixed-cation conductance, g(h). The present experiments describe the properties of g(h) in octopus cells as they are revealed under voltage clamp with whole-cell, patch recordings. The hyperpolarization-activated current, I(h), was blocked by extracellular Cs(+) (5 mM) and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (50-100 nM) but not by extracellular Ba(2+) (2 mM). The reversal potential for I(h) in octopus cells under normal physiological conditions was -38 mV. Increasing the extracellular potassium concentration from 3 to 12 mM shifted the reversal potential to -26 mV; lowering extracellular sodium concentration from 138 to 10 mM shifted the reversal potential to -77 mV. These pharmacological and ion substitution experiments show that I(h) in octopus cells is a mixed-cation current that resembles I(h) in other neurons and in heart muscle cells. Under control conditions when cells were perfused intracellularly with ATP and GTP, I(h) had an activation threshold between about -35 to -40 mV and became fully activated at -110 mV. The maximum conductance associated with hyperpolarizing voltage steps to -112 mV ranged from 87 to 212 nS [150 +/- 30 (SD) nS, n = 36]. The voltage dependence of g(h) obtained from peak tail currents is fit by a Boltzmann function with a half-activation potential of -65 +/- 3 mV and a slope factor of 7. 7 +/- 0.7. This relationship reveals that g(h) was activated 41% at the mean resting potential of octopus cells, -62 mV, and that at rest I(h) contributes a steady inward current of between 0.9 and 2.1 nA. The voltage dependence of g(h) was unaffected by the extracellular application of dibutyryl cAMP but was shifted in hyperpolarizing direction, independent of the presence or absence of dibutyryl cAMP, by the removal of intracellular ATP and GTP.  相似文献   

17.
Electrophysiological and microfluorimetric techniques were used to determine whether intracellular photorelease of caged IP(3), and the consequent release of Ca(2+), could trigger a Ca(2+)-activated K(+) current (I(IP3)). Photorelease of caged IP(3) evoked an I(IP3) that averaged 2.36 +/- 0.35 (SE) pA/pF in 24 of 28 rabbit primary vagal sensory neurons (nodose ganglion neurons, NGNs) voltage-clamped at -50 mV. I(IP3) was abolished by intracellular BAPTA (2 mM), a Ca(2+) chelator. Changing the K(+) equilibrium potential by increasing extracellular K(+) ion concentration caused a predicted Nernstian shift in the reversal potential of I(IP3). These results indicated that I(IP3) was a Ca(2+)-dependent K(+) current. I(IP3) was unaffected by three common antagonists of Ca(2+)-activated K(+) currents: bath-applied iberiotoxin (50 nM) or apamin (100 nM), and intracellular 8-Br-cAMP (100 microM) included in the patch pipette. We have previously demonstrated that both IP(3)-evoked Ca(2+) release and Ca(2+)-induced Ca(2+) release (CICR) are co-expressed in NGNs and that CICR can trigger a Ca(2+)-activated K(+) current. In the present study, using caffeine, a CICR agonist, to selectively attenuate intracellular Ca(2+) stores, we showed that IP(3)-evoked Ca(2+) release occurs independently of CICR, but interestingly, that a component of I(IP3) requires CICR. These data suggest that IP(3)-evoked Ca(2+) release activates a K(+) current that is pharmacologically distinct from other Ca(2+)-activated K(+) currents in NGNs. We describe several models that explain our results based on Ca(2+) signaling microdomains in NGNs.  相似文献   

18.
Embryonic or neonatal rat neurons retain plasticity and are readily grown in tissue culture, but neurons of the adult brain were thought to be terminally differentiated and therefore difficult to culture. Recent studies, however, suggest that it may be possible to culture differentiated neurons from the hippocampus of adult rats. We modified these procedures to grow differentiated neurons from adult rat hypothalamus and brain stem. At day 7 in tissue culture and beyond, the predominant cell types in hypothalamic and brain stem cultures had a stellate morphology and could be subdivided into two distinct groups, one of which stained with antibodies to the immature neuron marker alpha-internexin, while the other stained with the astrocyte marker GFAP. The alpha-internexin positive cells were mitotic and grew to form a characteristic two-dimensional cellular network. These alpha-internexin positive cells coimmunostained for the neuronal markers MAP2, type III beta-tubulin, and tau, and also bound tetanus toxin, but were negative for the oligodendrocyte marker GalC and also for the neurofilament triplet proteins NF-L, NF-M, and NF-H, markers of more mature neurons. Patch-clamp analysis of these alpha-internexin positive cells revealed small Ca(2+) currents with a peak current of -0.5 +/- 0.1 pA/pF at a membrane potential of -20 mV (n = 5) and half-maximal activation at -30 mV (n = 5). Na(+) currents with a peak current density of -154.5 +/- 49.8 pA/pF at a membrane potential of -15 mV (n = 5) were also present. We also show that these cells can be frozen and regrown in tissue culture and that they can be efficiently infected by viral vectors. These cells therefore have the immunological and electrophysiological properties of immature mitotic neurons and should be useful in a variety of future studies of neuronal differentiation and function.  相似文献   

19.
The development of multiple calcium channel activities was studied in mouse hippocampal neurons in culture, using the patch-clamp technique. A depolarizing pulse (40-50 ms duration) from the holding potential of -80 mV to levels more depolarized than -40 mV produced a low threshold T-type current. The T-type current was observed in 52% of four days in vitro neurons. The number of neurons which expressed T-type current decreased with age of culture, so that the current was detected in only 18% of neurons after 16 days in vitro. The T-type current densities varied between 1.9 pA/pF and 3.29 pA/pF in the mean values during the period studied (4-16 days in vitro). A depolarizing pulse from -80 mV to levels more depolarized than -35 mV evoked a high threshold calcium channel current. The high threshold current density increased in the mean values from 3.9 pA/pF in four days in vitro neurons to 28 pA/pF in 16 days in vitro neurons. We have then examined the effect of nifedipine, omega-Agatoxin IVA and omega-conotoxin GVIA on the high threshold current. Nifedipine (1-5 microM) sensitive current density stayed in the range of 1.9-2.1 pA/pF during 4-16 days in vitro, while omega-Agatoxin IVA (200 nM) sensitive current density increased in the mean values from 1.54 pA/pF in four days in vitro neurons to 21.5 pA/pF in 16 days in vitro neurons. The omega-conotoxin GVIA sensitive N-type channel current was maximum at eight days in vitro (5.44 pA/pF) and it reduced progressively to reach almost half (2.46 pA/pF) in 16 days in vitro neurons. These results showed that diverse subtypes of calcium channels change in density during the early period of culture. We suggest that the temporal expression of each type of channel may be linked to the development of neural activities.  相似文献   

20.
Effects of metabotropic glutamate receptor activation in auditory thalamus.   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) are expressed predominantly in dendritic regions of neurons of auditory thalamus. We studied the effects of mGluR activation in neurons of the ventral partition of medial geniculate body (MGBv) using whole cell current- and voltage-clamp recordings in brain slices. Bath application of the mGluR-agonist, 1S,3R-1-aminocyclopentan-1,3-dicarboxylic acid or 1S,3R-ACPD (5-100 microM), depolarized MGBv neurons (n = 67), changing evoked response patterns from bursts to tonic firing as well as frequency responses from resonance ( approximately 1 Hz) to low-pass filter characteristics. The depolarization was resistant to Na(+)-channel blockade with tetrodotoxin (TTX; 300 nM) and Ca(2+)-channel blockade with Cd(2+) (0.1 mM). The application of 1S, 3R-ACPD did not change input conductance and produced an inward current (I(ACPD)) with an average amplitude of 84.2 +/- 5.3 pA (at -70 mV, n = 22). The application of the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (0.5 mM), reversibly blocked the depolarization or I(ACPD). During intracellular application of guanosine 5'-O-(3-thiotriphosphate) from the recording electrode, bath application of 1S,3R-ACPD irreversibly activated a large amplitude I(ACPD). During intracellular application of guanosine 5'-O-(2-thiodiphosphate), application of 1S, 3R-ACPD evoked only a small I(ACPD). These results implicate G proteins in mediation of the 1S,3R-ACPD response. A reduction of external [Na(+)] from 150 to 26 mM decreased I(ACPD) to 32.8 +/- 10. 3% of control. Internal applications of a Ca(2+) chelator, 1, 2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), suppressed I(ACPD), implying a contribution of a Ca(2+) signal or Na(+)/Ca(2+) exchange. However, partial replacement of Na(+) with Li(+) (50 mM) did not significantly change I(ACPD). Therefore it seemed less likely that a Na(+)/Ca(2+) exchange current was a major participant in the response. A reduction of extracellular [K(+)] from 5.25 to 2.5 mM or external Ba(2+) (0.5 mM) or Cs(+) (2 mM) did not significantly change I(ACPD) between -40 and -85 mV. Below -85 mV, 1S,3R-ACPD application reversibly attenuated an inward rectification, displayed by 11 of 20 neurons. Blockade of an inwardly rectifying K(+) current with Ba(2+) (1 mM) or Cs(+) (2-3 mM) occluded the attenuation. In the range positive to -40 mV, 1S, 3R-ACPD application activated an outward current which Cs(+) blocked; this unmasked a voltage dependence of the inward I(ACPD) with a maximum amplitude at approximately -30 mV. The I(ACPD) properties are consistent with mGluR expression as a TTX-resistant, persistent Na(+) current in the dendritic periphery. We suggest that mGluR activation changes the behavior of MGBv neurons by three mechanisms: activation of a Na(+)-dependent inward current; activation of an outward current in a depolarized range; and inhibition of the inward rectifier, I(KIR). These mechanisms differ from previously reported mGluR effects in the thalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号