首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A feature of animal models of temporal lobe epilepsy and the human disorder is hippocampal sclerosis and Timm stain in the inner molecular layer (IML) of the dentate gyrus, which represents synaptic reorganization and may be important in epileptogenesis. We reassessed the hypothesis that pre-treatment with cycloheximide (CHX) prevents Timm staining in the IML following pilocarpine (PILO)-induced status epilepticus (a multifocal model of temporal lobe epilepsy), but allows epileptogenesis (i.e., chronic spontaneous seizures) after a latent period. Hippocampal slices from PILO-treated rats without Timm stain in the IML after CHX treatment were hypothesized to lack the electrophysiological abnormalities suggestive of recurrent excitation. The primary experimental groups were as follows: 1) CHX (1 mg/kg) 30-45 min prior to administration of PILO (320 mg/kg ip, 2) only PILO, and 3) only saline (0.5 ml, IP). The CHX pre-treatment significantly decreased the number of rats that responded to PILO with status epilepticus compared to rats that received only PILO. Pre-treatment with CHX did not significantly alter the spontaneous motor seizure rate post-treatment compared to treatment with PILO alone in those animals from each group that developed status epilepticus during PILO treatment. Timm stain in the IML was not significantly different between the PILO- and PILO+CHX-treated rats. Using quantitative methods, CHX did not prevent hilar, CA1, or CA3 neuronal loss compared to the PILO-treated rats. Extracellular responses to hilar stimulation in 30 microM bicuculline and 6 mM [K(+)](o) demonstrated all-or-none bursting in both the CHX+PILO- and PILO-treated rats but not in control rats. Whole cell recordings from granule cells, using glutamate flash photolysis to activate other granule cells, showed that both the CHX+PILO- and PILO-treated rats had excitatory synaptic interactions in the granule cell layer, which were not found after saline treatment. Some rats responded to PILO (with or without CHX pre-treatment) with only one or a few seizures at treatment, and some of these animals (n = 4) demonstrated spontaneous motor seizures within 2 mo after treatment. Timm staining and neuron loss in this group were not clearly different from saline-treated rats. These results suggest that in the PILO model, pre-treatment with CHX does not affect mossy fiber sprouting in the IML of epileptic rats and does not prevent the formation of recurrent excitatory circuits. However, the develoment of spontaneous motor seizures, in a small number of rats, could occur without detectable hippocampal neuron loss or mossy fiber sprouting, as assessed by the Timm stain method.  相似文献   

2.
Following neurological injury early in life numerous events, including excitotoxicity, neural degeneration, gliosis, neosynaptogenesis, and circuitry reorganization, may alone or in concert contribute to hyperexcitability and recurrent seizures in temporal lobe epilepsy. Our studies provide new evidence regarding the temporal sequence of key elements of hippocampal reorganization, mossy fiber sprouting and glutamate receptor subunit up-regulation, in a subset of young temporal lobe epileptic patients. Without evidence of mossy fiber sprouting, the youngest age group (3-10 years old) of mesial temporal lobe epileptic patients demonstrated enhanced glutamate receptor subunit profiles, suggesting that the dendritic change precedes axonal sprouting. However, sclerotic hippocampal specimens from epileptic patients ages 12-15 years old had the characteristic features of glutamate receptor up-regulation and mossy fiber sprouting first identified in the adult, indicating that reconstructed circuits appear early in the course of the disease. Non-sclerotic hippocampal specimens from lesion associated temporal lobe epileptic patients of all age groups showed minimal cell loss, sparse staining of glutamate receptor subunits in the dentate gyrus, and little or no mossy fiber sprouting. These compelling findings suggest a progressive sequence of events in the reorganization of the dentate gyrus of sclerotic hippocampal specimens. We suggest that cell loss and up-regulation of glutamate receptor subunits appear early in temporal lobe epilepsy and contribute to the synaptic plasticity that may facilitate the subsequent sprouting of mossy fiber collaterals which compound an already precipitous state of decline. The combination of pre-synaptic and post-synaptic changes serves as a potential substrate for hyperexcitability.  相似文献   

3.
In human temporal lobe epilepsy, a dispersion of dentate granule cells is frequently described in adults who had an early risk factor. To elucidate the role of glia in this phenomenon, we investigated neuronal dispersion, astrocyte organization and expression of intermediate filaments of mature and immature astrocytes (i.e. glial fibrillary acidic protein (GFAP) and vimentin, respectively) in seven subjects with early febrile seizures (F(+)) and five subjects with other etiologies than febrile seizures (F(-)). Compared to F(-) patients, a majority of F(+) subjects showed neuronal dispersion and vimentin expression in radial glia. However, in two patients with the maximal dispersion, radial processes expressed only GFAP. We suggest that granule cell migration that occurs in adult epileptic focus results from the transient occurrence of immature-like glia throughout the granular layer.  相似文献   

4.
Approximately 30% of all epilepsy cases are acquired. At present there is no effective strategy to stop epilepsy development after the precipitating insult. Recent data from experimental models pointed to the mTOR pathway, which can be potently inhibited by rapamycin. However, data on the antiepileptic and antiepileptogenic properties of rapamycin are conflicting. Therefore, we tested whether rapamycin post-treatment influences epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy in rats. Animals were treated with rapamycin (6 mg/kg) or vehicle daily for 2 wks, beginning 24 h after stimulation. Sham-operated animals were treated with rapamycin or vehicle but were not stimulated. Animals were video-EEG monitored to detect spontaneous seizures. Animals were sacrificed 4 wks later and brains were collected for Timm staining. There were no significant differences in the number of stimulated rats developing epilepsy; latency to first spontaneous seizure; number of seizures, or seizure frequency in epileptic animals. The area occupied by mossy fibers was significantly increased in stimulated vs. sham-operated animals but was not different in animals treated with rapamycin vs. vehicle. Collectively, our data suggest that the antiepileptic or antiepileptogenic action of rapamycin is not a universal phenomenon and might be limited to certain experimental models or experimental conditions.  相似文献   

5.
Jeub M  Lie A  Blümcke I  Elger CE  Beck H 《Neuroscience》1999,94(2):465-471
The endogenous kappa receptor selective opioid peptide dynorphin has been shown to inhibit glutamate receptor-mediated neurotransmission and voltage-dependent Ca2+ channels. It is thought that dynorphin can be released from hippocampal dentate granule cells in an activity-dependent manner. Since actions of dynorphin may be important in limiting excitability in human epilepsy, we have investigated its effects on voltage-dependent Ca2+ channels in dentate granule cells isolated from hippocampi removed during epilepsy surgery. One group of patients showed classical Ammon's horn sclerosis characterized by segmental neuronal cell loss and astrogliosis. Prominent dynorphin-immunoreactive axon terminals were present in the inner molecular layer of the dentate gyrus, indicating pronounced recurrent mossy fiber sprouting. A second group displayed lesions in the temporal lobe that did not involve the hippocampus proper. All except one of these specimens showed a normal pattern of dynorphin immunoreactivity confined to dentate granule cell somata and their mossy fiber terminals in the hilus and CA3 region. In patients without mossy fiber sprouting the application of the kappa receptor selective opioid agonist dynorphin A ([D-Arg6]1-13, 1 microM) caused a reversible and dose-dependent depression of voltage-dependent Ca2+ channels in most granule cells. These effects could be antagonized by the non-selective opioid antagonist naloxone (1 microM). In contrast, significantly less dentate granule cells displayed inhibition of Ca2+ channels by dynorphin A in patients with mossy fiber sprouting (Chi-square test, P < 0.0005). The lack of dynorphin A effects in patients showing mossy fiber sprouting compares well to the loss of kappa receptors on granule cells in Ammon's horn sclerosis but not lesion-associated epilepsy. Our data suggest that a protective mechanism exerted by dynorphin release and activation of kappa receptors may be lost in hippocampi with recurrent mossy fiber sprouting.  相似文献   

6.
Neuropeptide Y (NPY) immunoreactivity and gene expression was investigated in the hippocampus after kainic acid-induced seizures and pentylenetetrazol kindling in the rat. Pronounced increases of NPY immunoreactivity were found in the terminal field of mossy fibers in both animal models. In kainic acid-treated rats the peptide progressively accumulated in the hilus and the stratum lucidum of CA3, 5-60 days after injection of the toxin and, at the later intervals, extended to the supragranular molecular layer of the dentate gyrus indicating sprouting of these neurons. Unilateral injection of colchicine into the hilus abolished NPY staining of the mossy fibers. Using in situ hybridization, in both animal models markedly enhanced expression of prepro-NPY mRNA was observed in the granular layer, containing the perikarya of the mossy fibers. It is suggested that sustained expression of the neuromodulatory neuropeptide NPY, in addition to the observed plastic changes, may contribute to altered excitability of hippocampal mossy fibers in epilepsy. Neither somatostatin immunoreactivity nor gene expression were enhanced in granule cells/mossy fibers.  相似文献   

7.
目的:探讨神经诱向因子蛋白质netrin-1在癫痫持续状态后海马苔藓纤维出芽(MFS)中的作用。方法:氯化锂-匹罗卡品建立大鼠颞叶癫痫(TLE)模型,采用Timm染色和免疫组化的方法分别检测MFS和netrin-1在大鼠海马组织中的表达。结果:TLE组大鼠在模型形成的第2周和第4周,海马齿状回内netrin-1的表达较正常对照组明显增加,并可见到MFS,穿越齿状回颗粒细胞层到达内分子层,并形成一条致密的层状带。结论:癫痫状态后在海马齿状回netrin-1的表达上调,证明其可能参与了癫痫后MFS过程。  相似文献   

8.
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. The simulations also indicated that the spatially restricted, lamellar distribution of the sprouted mossy fiber contacts reported in in vivo studies was an important factor in sustaining seizure-like activity in the network. In contrast to the robust hyperexcitability-inducing effects of mossy fiber sprouting, removal of mossy cells resulted in decreased granule cell responses to perforant-path activation in agreement with recent experimental data. These results indicate the crucial role of mossy fiber sprouting even in situations where there is only relatively weak mossy fiber sprouting as is the case after moderate concussive experimental head injury.  相似文献   

9.
Recently, electroacupuncture (EA) has been gaining more and more attention as a treatment for epilepsy. However, concrete evidence is needed to better understand its antiepileptic effect and the mechanism underlying this effect. The present study was designed to assess the effect of EA stimulation of hindlimb on the incidence of behavioral seizures (spontaneous recurrent seizures, [SRS]) and electroencephalogram (EEG) seizures, and the extent of supragranular mossy fiber sprouting (MFS) using the lithium-pilocarpine rat model of epilepsy. Sham EA at the same point without electrical stimulation was set as the control. EA and the sham EA were performed bilaterally (at the symmetrical Zusanli acupoints on both hind legs) 30 times every two days. The numbers of behavioral seizures and EEG seizures were then analyzed to evaluate the antiepileptic effect. After confirmation of the antiepileptic effect, MFS in the dentate gyrus (DG) supragranular layer was investigated by Timm's staining. The results showed that the EA stimulation of hindlimb significantly reduced the behavioral seizures, EEG seizures, and supragranular MFS; however, the sham EA without electrical stimulation showed no significant effect on seizures or supragranular MFS. The findings indicate that EA stimulation of hindlimb possesses an antiepileptic effect, which is probably related to its suppressive effect on aberrant MFS in DG.  相似文献   

10.
Houser CR  Huang CS  Peng Z 《Neuroscience》2008,156(1):2707-237
Extracellular signal-regulated kinase (ERK) is highly sensitive to regulation by neuronal activity and is critically involved in several forms of synaptic plasticity. These features suggested that alterations in ERK signaling might occur in epilepsy. Previous studies have described increased ERK phosphorylation immediately after the induction of severe seizures, but patterns of ERK activation in epileptic animals during the chronic period have not been determined. Thus, the localization and abundance of phosphorylated extracellular signal-regulated kinase (pERK) were examined in a pilocarpine model of recurrent seizures in C57BL/6 mice during the seizure-free period and at short intervals after spontaneous seizures. Immunolabeling of pERK in control animals revealed an abundance of distinctly-labeled neurons within the hippocampal formation. However, in pilocarpine-treated mice during the seizure-free period, the numbers of pERK-labeled neurons were substantially decreased throughout much of the hippocampal formation. Double labeling with a general neuronal marker suggested that the decrease in pERK-labeled neurons was not due primarily to cell loss. The decreased ERK phosphorylation in seizure-prone animals was interpreted as a compensatory response to increased neuronal excitability within the network. Nevertheless, striking increases in pERK labeling occurred at the time of spontaneous seizures and were evident in large populations of neurons at very short intervals (as early as 2 min) after detection of a behavioral seizure. These findings suggest that increased pERK labeling could be one of the earliest immunohistochemical indicators of neurons that are activated at the time of a spontaneous seizure.  相似文献   

11.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

12.
The mossy fiber system in the hippocampus of amygdaloid-kindled rats was examined by using highly polysialylated neural cell adhesion molecule (PSA-NCAM) as a marker for immunohistochemical detection of immature dentate granule cells and mossy fibers in combination with bromodeoxyuridine (BrdU) labeling of newly generated granule cells. Statistically significant increases in BrdU-labeled cells and PSA-NCAM-positive cells occurred in the dentate gyrus following kindling. The increase in PSA-NCAM-immunoreactive neurites was confined to the entire stratum lucidum of CA3. Immunoelectron-microscopic examination also revealed that PSA-NCAM-positive immature synaptic terminals of the sprouting mossy fibers increased in the stratum lucidum of CA3 in the kindled rats. The increase in the numbers of PSA-NCAM-positive granule cells correlated well with the increase in the immunopositive neurites and synaptic terminals on the mossy fiber trajectory. The increase in these PSA-NCAM-immunopositive structures is thought to reflect the enhancement of sprouting and synaptogenesis of mossy fibers by a subset of granule cells newly generated during amygdaloid-kindling and suggests that the reorganization of the mossy fiber system on the normal trajectory at least in part contributes to the acquisition and maintenance of an epileptogenic state.  相似文献   

13.
Although much is known about persistent molecular, cellular, and circuit changes associated with temporal lobe epilepsy, mechanisms of seizure onset remain unclear. The dentate gyrus displays many persistent epilepsy-related abnormalities and is in the mesial temporal lobe where seizures initiate in patients. However, little is known about seizure-related activity of individual neurons in the dentate gyrus. We used tetrodes to record action potentials of multiple, single granule cells before and during spontaneous seizures in epileptic pilocarpine-treated rats. Subsets of granule cells displayed four distinct activity patterns: increased firing before seizure onset, decreased firing before seizure onset, increased firing only after seizure onset, and unchanged firing rates despite electrographic seizure activity in the immediate vicinity. No cells decreased firing rate immediately after seizure onset. During baseline periods between seizures, action potential waveforms and firing rates were similar among the four subsets of granule cells in epileptic rats and in granule cells of control rats. The mean normalized firing rate of granule cells whose firing rates increased before seizure onset deviated from baseline earliest, beginning 4 min before dentate gyrus electrographic seizure onset, and increased progressively, more than doubling by seizure onset. It is generally assumed that neuronal firing rates increase abruptly and synchronously only when electrographic seizures begin. However, these findings show heterogeneous and gradually building changes in activity of individual granule cells minutes before spontaneous seizures.  相似文献   

14.
 Neuropeptide-Y (NPY) is expressed by granule cells and mossy fibres of the hippocampal dentate gyrus during experimental temporal lobe epilepsy (TLE). This expression may represent an endogenous damping mechanism since NPY has been shown to block seizure-like events following high-frequency stimulation in hippocampal slices. The pilocarpine (PILO) model of epilepsy is characterized by an acute period of status epilepticus followed by spontaneous recurrent seizures and related brain damage. We report peroxidase-antiperoxidase immunostaining for NPY in several brain regions in this model. PILO-injected animals exhibited NPY immunoreactivity in the region of the mossy fibre terminals, in the dentate gyrus inner molecular layer and, in a few cases, within presumed granule cells. NPY immunoreactivity was also dramatically changed in the entorhinal cortex, amygdala and sensorimotor areas. In addition, PILO injected animals exhibited a reduction in the number of NPY-immunoreactive interneurons compared with controls. The results demonstrate that changes in NPY expression, including expression in the granule cells and mossy fibres and the loss of vulnerable NPY neurons, are present in the PILO model of TLE. However, the significance of this changed synthesis of NPY remains to be determined. Received: 19 August 1996 / Accepted: 21 March 1997  相似文献   

15.
Summary The timing of developmental events may be important for the orderly formation of neuronal interconnections. In the present study, the timing of granule cell migration is compared with the arrival and maturation of mossy fiber projections. The opossum was chosen as the experimental animal because its protracted postnatal development enables the examination of developmental sequences not as easily recognized in other more commonly used mammalian species. It is shown that all areas that project to the cerebellum as mossy fibers in the adult opossum do so by postnatal day (PD) 30. Their major target, the granule cells begin inward migration from the external germinal layer (EGL) prior to PD 30, but do not form a distinct internal granular layer (IGL) until PD 35. Migrating granule cells penetrate into the IGL deep to granule cells that have begun dendritic differentiation. By PD 50, Golgi impregnations reveal that many granule cells have numerous immature processes, somal spines and dendritic growth cones. After this age these structures are rare and the vast majority of granule cells exhibit short dendrites with digiform endings. Dendritic differentiation subsequent to PD 54 involves an increase in the length of the shaft and the further maturation of terminal digits. Also from Golgi material, immature mossy fiber endings can be identified in the IGL by PD 35 and exhibit mature characteristics at PD 73. Thus, the formation and maturation of granule cell dendrites and their afferents (mossy fibers) occur over an extended period of time (PD 35–73). Moreover, granule cells exhibit a sequence of development similar to that of Purkinje cells: 1) early arrival of their primary afferent projections in the cerebellar anlage: 2) a period of exuberant dendritic growth; and 3) a protracted and overlapping period for dendritic and synaptic maturation.  相似文献   

16.
[ 目的:研究人参皂甙Rd(GsRd)对氯化锂一匹罗卡品点燃慢性白发性颞叶癫痫(TLE)大鼠空间学习记忆能力及海马苔藓纤维发芽(MFS)的干预作用。方法:建立氯化锂一匹罗卡品点燃TLE大鼠模型,将24只造模成功的TLE大鼠随机分为单纯TLE组(生理盐水10ml/kg腹腔注射)12只及加用GSRd干预组12只(GsRd2mg/kg腹腔注射),另选6只正常大鼠作为正常对照组。采用Morris水迷宫进行行为观察以了解各组大鼠空间学习记忆能力,取脑进行Timms染色作病理学观察以了解海马MFS情况。结果:与正常对照组相比,TLE组大鼠空间学习记忆功能下降,海马齿状回MFS明显增多(P〈0.05);与TLE组相比,GSRd干预组可显著提高大鼠空间学习记忆能力及减少MFS(P〈0.05)。结论:GSRd可能通过抑制MFS减轻TLE大鼠的认知功能损害,有助于阻断慢性自发性TLE的形成和发展。  相似文献   

17.
Exposure to the chemotherapeutic drug bleomycin leads to pulmonary fibrosis in humans and has been widely used in animal models of the disease. Using C57BL/6 bleomycin-sensitive mice, pulmonary fibrosis was induced by multiple intraperitoneal injections of the drug. An increase in the relative amounts of steady-state alpha1(I) procollagen, alpha1(III) procollagen, and fibronectin mRNA as well as histopathological evidence of fibrosis was observed. The effect of bleomycin on the expression of the enzymes responsible for extracellular matrix degradation, the matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), was selective and showed temporal differences during the development of fibrosis. Of the MMPs tested, bleomycin treatment resulted in the up-regulation of gelatinase A and macrophage metalloelastase gene expression in whole-lung homogenates, whereas gelatinase B, stromelysin-1, and interstitial collagenase gene expression was not significantly changed. Timp2 and Timp3, the murine homologues of the respective TIMP genes, were constitutively expressed, whereas Timp1 was markedly up-regulated during fibrosis. The strong correlation between enhanced extracellular matrix gene expression, differential MMP and TIMP gene expression, and histopathological evidence of fibrosis suggest that dysregulated matrix remodeling is likely to contribute to the pathology of bleomycin-induced pulmonary fibrosis.  相似文献   

18.
In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures. Neuronal damage in limbic areas, such as CA3 and dentate hilus, occurs in patients with temporal lobe epilepsy and in animal models (e.g., pilocarpine- or kainate-treated rodents) mimicking this epileptic disorder. Hence, hippocampal damage in epileptic mice may lead to decreased CA3 output function that in turn would allow EC networks to generate ictal-like events. Here we tested this hypothesis and found that CA3-driven interictal discharges induced by 4-aminopyridine (4AP, 50 microM) in hippocampus-EC slices from mice injected with pilocarpine 13-22 days earlier have a lower frequency than in age-matched control slices. Moreover, EC-driven ictal-like discharges in pilocarpine-treated slices occur throughout the experiment (< or = 6 h) and spread to the CA1/subicular area via the temporoammonic path; in contrast, they disappear in control slices within 2 h of 4AP application and propagate via the trisynaptic hippocampal circuit. Thus, different network interactions within the hippocampus-EC loop characterize control and pilocarpine-treated slices maintained in vitro. We propose that these functional changes, which are presumably caused by seizure-induced cell damage, lead to seizures in vivo. This process is facilitated by a decreased control of EC excitability by hippocampal outputs and possibly sustained by the reverberant activity between EC and CA1/subiculum networks that are excited via the temporoammonic path.  相似文献   

19.
Unilateral intrahippocampal injection of kainic acid in adult mice reproduces most of the morphological characteristics of hippocampal sclerosis (neuronal loss, gliosis, reorganization of neurotransmitter receptors, mossy fiber sprouting, granule cell dispersion) observed in patients with temporal lobe epilepsy. Whereas some neuronal loss is observed immediately after the initial status epilepticus induced by kainate treatment, most reorganization processes develop progressively over a period of several weeks. The aim of this study was to characterize the evolution of seizure activity in this model and to assess its pharmacological reactivity to classical antiepileptic drugs.Intrahippocampal electroencephalographic recordings showed three distinct phases of paroxystic activity following unilateral injection of kainic acid (1 nmol in 50 nl) into the dorsal hippocampus of adult mice: (i) a non-convulsive status epilepticus, (ii) a latent phase lasting approximately 2 weeks, during which no organized activity was recorded, and (iii) a phase of chronic seizure activity with recurrent hippocampal paroxysmal discharges characterized by high amplitude sharp wave onset. These recurrent seizures were first seen about 2 weeks post-injection. They were limited to the injected area and were not observed in the cerebral cortex, contralateral hippocampus or ipsilateral amygdala. Secondary propagation to the contralateral hippocampus and to the cerebral cortex was rare. In addition hippocampal paroxysmal discharges were not responsive to acute carbamazepine, phenytoin, or valproate treatment, but could be suppressed by diazepam.Our data further validate intrahippocampal injection of kainate in mice as a model of temporal lobe epilepsy and suggest that synaptic reorganization in the lesioned hippocampus is necessary for the development of organized recurrent seizures.  相似文献   

20.
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号