首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies about the association between CD14 −159C/T polymorphisms and the risks of tuberculosis (TB) have yielded conflicting results, and thus a meta-analysis was performed in order to provide a more accurate estimation. A computerized literature search with additional manual search was conducted for the relevant available studies. Pooled odds ratio (ORs) and 95% confidence intervals (95%CIs) were calculated by either fixed-effects model or random-effects model based on heterogeneity test. A total of 8 eligible studies (1729 cases and 1803 controls) were included in the meta-analyses. Overall, a significant association between CD14 −159C/T polymorphism and TB risks was detected in the recessive model (TT vs. TC/CC, OR = 1.48, 95%CI 1.06–2.07). Significant associations were also detected in Asians (T vs. C, OR = 1.49, 95%CI 1.33–1.67; TT vs. CC, OR = 1.94, 95%CI 1.54–2.45; TT vs. TC/CC: OR = 1.86, 95%CI 1.57–2.20). In contrast, no significant association was detected in Caucasians in each genetic model. The subgroup analysis stratified by TB types showed a significant association between CD14 −159C/T polymorphism and pulmonary TB risks (T vs. C, OR = 1.51, 95%CI 1.01–2.26; TT vs. TC/CC, OR = 1.84, 95%CI 1.03–3.29), which did not reach statistically significance when the P values were Bonferroni adjusted to 0.025. No publication bias was detected in any comparisons. Collectively, the results of this meta-analysis suggest a possible association between CD14 −159C/T polymorphism and TB risks in Asians, but not in Caucasians. Well-designed case-control studies with larger sample size are needed to confirm these results.  相似文献   

2.
Currently available live oral rotavirus vaccines, Rotarix® and RotaTeq®, are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4+ T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4+ T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or preferably in bivalent formulation to provide antigenic coverage of most of the G types of global importance.  相似文献   

3.
The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8+ T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8+ T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4+ T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8+ T cells against subdominant epitopes and CD4+ T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01+ animals with five Mamu-A*01-restricted subdominant SIV-specific CD8+ T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8+ T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4+ T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4+ T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8+ T cell responses. Broadening the CD8+ T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated.  相似文献   

4.
In a Phase 2a trial of the RTS,S/AS vaccine, we described significant association between protection against infection and vaccine-induced CD4 T cells. To determine whether processing of the circumsporozoite protein as a component of the RTS,S particulate antigen yields the same HLA-DR-restricted epitopes as those recognized by CD4 T cells from donors immunized by exposure to attenuated or infectious sporozoites we mapped the specificities of the RTS,S primed CD4 T cells by measuring IFN-γ cultured Elispot responses to pairs of overlapping 15 a.a. peptides that span the protein's C-terminus. Peptide pairs representing the previously described TH2R, T* and CS.T3 epitopes, were immunoprevalent and immunodominant. There was no response to the peptides corresponding to the human thrombospondin homology region. Responses to the CD4 T cell epitopes were restricted by multiple HLA-DR haplotypes. Of note, HLA-DR4 and HLA-DR11 restricted epitopes in the T* region and in the location on the CS protein defined by peptide pair 4, respectively. We conclude that processing of the CS protein derived from the RTS,S antigen leads to the generation of HLA-DR-restricted epitopes that are similar to those identified previously using CD4 T cells from subjects immunized with and protected by attenuated sporozoites or exposed to infectious sporozoites. This may in part account for the protective efficacy of the RTS,S/AS vaccine.  相似文献   

5.
In a vaccine trial, assays for vaccine immunogenicity if performed locally will strengthen local site, can save costs and avoid hurdles associated with specimen transport. Here we report the optimization and validation of an Intracellular Cytokine Staining (ICS) assay which was undertaken in preparation for a phase I HIV vaccine trial conducted in Thailand. Intra-, and inter-operator variability were easily established. However, while attempting to set population cut offs for a positive response we found 4/36 (11%) high background responses of IFNγ+ and/or IL-2+ CD8+ T cells (>1%) in normal healthy volunteers. The determinates of these unexpected responses were explored and minimized.  相似文献   

6.

Background

Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy.

Methodology

We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen. The efficacy of this vaccination regimen in a murine and hamster model of visceral leishmaniasis caused by both antimony resistant (Sb-R) and sensitive (Sb-S) Leishmania (L.) donovani is examined.

Result

Heterologous prime-boost (KMP-11 DNA/rVV) vaccination was able to protect mice and hamsters from experimental VL induced by both Sb-S and Sb-R-L. (L.) donovani isolates. Parasite burden is kept significantly low in the vaccinated groups even after 60 days post-infection in hamsters, which are extremely susceptible to VL. Protection in mice is correlated with strong cellular and humoral immune responses. Generation of polyfunctional CD8+ T cell was observed in vaccinated groups, which is one of the most important prerequisite for successful vaccination against VL. Protection was accompanied with generation of antigen specific CD4+ and CD8+ cells that produced effector cytokines such as IFN-γ, IL-2 and TNF-α. KMP-11-DNA/rVV vaccination also developed strong cytotoxic response and reversed T-cell impairment to induce antigen specific T cell proliferation.

Conclusion

KMP-11 is a unique antigen with high epitope density. Heterologous prime boost vaccination activates CD4+ and CD8+ T-cell mediated immunity to confer resistance to VL. This immunization method also produces high quality T-cells secreting multiple effector cytokines thus enhancing durability of the immune response. Thus the vaccination regime as described in the present study could provide a potent strategy for future anti-leishmanial vaccine development.  相似文献   

7.
8.
《Vaccine》2017,35(1):132-141
BackgroundControl of the tuberculosis epidemic requires a novel vaccine that is effective in preventing tuberculosis in adolescents, a key target population for vaccination against TB.MethodsHealthy adolescents, stratified by M. tuberculosis-infection status, were enrolled into this observer-blinded phase II clinical trial of the protein-subunit vaccine candidate, H1:IC31, comprising a fusion protein (H1) of Ag85B and ESAT-6, formulated with the IC31 adjuvant. Local and systemic adverse events and induced T cell responses were measured after one or two administrations of either 15 μg or 50 μg of the H1 protein.ResultsTwo hundred and forty participants were recruited and followed up for 224 days. No notable safety events were observed regardless of H1 dose or vaccination schedule. H1:IC31 vaccination induced antigen-specific CD4 T cells, co-expressing IFN-γ, TNF-α and/or IL-2. H1:IC31 vaccination of M.tb-uninfected individuals preferentially drove the emergence of Ag85B and ESAT-6 specific TNF-α+IL-2+CD4 T cells, while H1:IC31 vaccination of M.tb-infected individuals resulted in the expansion of Ag85B-specific but not ESAT-6–specific TNF-α+IL-2+CD4 T cells.ConclusionsH1:IC31 was safe and immunogenic in uninfected and M.tb-infected adolescents. Two administrations of the 15 μg H1:IC31 dose induced the greatest magnitude immune response, and was considered optimal (South African National Clinical Trials Register, DoH-27-0612-3947; Pan African Clinical Trial Registry, PACTR201403000464306).  相似文献   

9.
Dasgupta G  BenMohamed L 《Vaccine》2011,29(35):5824-5836
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8+ T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8+ T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8+ T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel “humanized” HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8+ T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.  相似文献   

10.
Rift Valley fever (RVF) causes serious health and economic losses to the livestock industry as well as a significant cause of human disease. The prevention of RVF in Africa is a global priority, however, available vaccines have only been partially effective. Therefore, the objective of this study was to evaluate the safety and immunogenicity of a live, attenuated recombinant RVFV arMP-12ΔNSm21/384 nucleotide deletion vaccine candidate in domestic ruminants. Evaluation involved testing to determine the infectivity titer of the vaccine virus in Vero cells for industrial scale up vaccine production. Safety experiments were conducted to determine the potential of the vaccine virus to revert to virulence by serial passages in sheep, the possibility of virus spread from vaccinated sheep and calves to unvaccinated animals, and the potential health effects of administering overdoses of the vaccine to sheep, goats and calves. The immunogenicity of 3 doses of 104, 105 and 106 Tissue Culture Infectious Doses50% (TCID50) of the vaccine was assessed in 3 groups of 10 sheep and 3 groups of 10 goats, and doses of 105, 106 and 107 TCID50 was evaluated in 3 groups of 10 calves subcutaenous vaccintation. The results showed that the infectivity titer of the vaccine virus was 108.4 TCID50/ml, that the vaccine did not spread from vaccinated to un-vaccinated animals, there was no evidence of reversion to virulence in sheep and the vaccine overdoses did not cause any adverse effects. The immunogenicity among sheep, goats and calves indicated that doses of 104–106 TCID50 elicited detectable antibody by day 7 post-vaccination (PV) with antibody titers ranging from 0.6 log to 2.1 log on day 14 PV with sustained titers through day 28 PV. Overall, these findings indicated that the RVFV arMP-12ΔNSm21/384 vaccine is a promising candidate for the prevention of RVF among domestic ruminants.  相似文献   

11.
This phase I clinical trial was designed to determine the feasibility of using rBCG as a live bacterial vaccine vector for the outer surface protein A (OspA) of Borrelia burgdorferi and as model for other vaccines based on a rBCG vector. To construct the vaccine, a signal peptide derived from a mycobacterial lipoprotein was used to direct the export, and membrane-associated surface expression, of OspA in a standard strain of BCG (Connaught). The rBCG OspA vaccine was safe and immunogenic in several animal species, and protective in a mouse model of Lyme borreliosis. An intradermal injection (0.1 ml) of rBCG OspA was administered to 24 healthy adult volunteers sequentially at one of four dose levels, ranging from 2.0 x 10(4) CFU to 2 x 10(7) CFU, using a dose-escalation design. All volunteers were initially PPD-skin test and OspA antibody negative, and they were monitored for 2 years after immunization. Three volunteers had mild flu-like reactions 1-2 days after vaccination. Local ulceration and drainage at the site of injection, which occurred in 50% and 83% of volunteers in the two highest dose groups, persisted for 1-70 days before the ulcers healed. Most of the drainage samples yielded rBCG colonies that contained the OspA plasmid. Thirteen of 24 vaccinees, principally in the two highest dose groups, converted their PPD skin tests from negative to positive. None of the 24 volunteers developed OspA antibody. In conclusion, the current rBCG vaccine construct, the first such construct tested in humans, had a safety profile comparable to that of licensed BCG, but it did not elicit primary humoral responses to the vectored antigen.  相似文献   

12.
Zhao K  Wang H  Wu C 《Vaccine》2011,29(38):6670-6678
The induction of antigen specific memory CD8+ T cells in vivo is very important to new vaccines against infectious diseases. In the present study, we aimed to evaluate the immune responses of peptide-specific CD8+ T cells induced by HLA-A*0201 restricted severe acute respiratory syndrome-associated coronavirus (SARS-CoV) S epitopes plus CpG oligodeoxynucleotide (CpG ODN), PolyI:C and R848 as adjuvants. Furthermore, the generation, distribution and phenotype of long-lasting peptide-specific memory CD8+ T cells were assessed by ELISA, ELISPOT and flow cytometry. Our results showed that antigen specific CD8+ T cells were elicited by HLA-A*0201 restricted SARS-CoV S epitopes. Furthermore, the frequency of peptide-specific CD8+ T cells was dramatically increased after both prime and boost immunization with peptides plus CpG ODN, whereas slight enhancements were induced following boost vaccination with peptides plus PolyI:C or R848. SARS-CoV S peptide-specific IFN-γ+CD8+ T cells were distributed throughout the lymphoid and non-lymphoid tissues. Results also demonstrated that the HLA-A*0201 restricted peptide-specific CD8+ T cells induced by peptides plus CpG ODN carried a memory cell phenotype with CD45RB+ and CD62L and possessed long-term survival ability in vivo. Taken together, our results implied that HLA-A*0201 restricted SARS-CoV S epitopes plus CpG ODN might be the superior candidates for SARS vaccine.  相似文献   

13.
Listeria monocytogenes (Lm) holds promise as a neonatal vaccine vehicle. Here we show that Lm immunized neonatal mice reached maximal Ag-specific CD8+ T cell expansion after only a single immunization, while adults required two doses. Ag-specific CD4+ T cell expansion in both age groups required a boost to reach its peak. Neither functional avidity, sensitivity, nor the TCR-Vβ repertoire of the Ag-specific T cells differed between mice immunized as neonates or adults. Lastly, neonatal immunization did not decrease protection or preclude a booster response. Overall, our data provide further evidence in support of immunization at birth as a feasible public health strategy to combat early life infections.  相似文献   

14.
Sanchez PJ  Kedl RM 《Vaccine》2012,30(6):1154-1161
Type I IFN and IL-12 are well documented to serve as so called “signal 3” cytokines, capable of facilitating CD8+ T cell proliferation, effector function and memory formation. While their ability to serve in this capacity is well established, to date, no non-cytokine signal 3 mediators have been clearly identified. We have established a vaccine model system in which the primary CD8+ T cell response is independent of either IL-12 or type I IFN receptors, but dependent on CD27/CD70 interactions. We show here that primary and secondary CD8+ T cell responses are generated in the combined deficiency of IFN and IL-12 signaling. In contrast, antigen specific CD8+ T cell responses are compromised in the absence of the TNF receptors CD27 and OX40. These data indicate that CD27/OX40 can serve the central function as signal 3 mediators, independent of IFN or IL-12, for the generation of CD8+ T cell immune memory  相似文献   

15.
The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination.  相似文献   

16.
Development of a fully effective vaccine against the pre-erythrocytic stage of malaria infection will likely require induction of both humoral and cellular immune responses. Protein based vaccines can elicit such broad-based immunity depending on the adjuvant and how the protein is formulated. Here to assess these variables, non human primates (NHP) were immunized three times with Plasmodium falciparum (Pf) circumsporozoite protein (CSP) or CSP cloned into MG38, a monoclonal antibody that targets DEC-205 (αDEC-CSP), an endocytic receptor on dendritic cells (DCs). Both vaccines were administered with or without poly(I:C) as adjuvant. Following three immunizations, the magnitude and quality of cytokine secreting CD4+ T cells were comparable between CSP + poly(I:C) and αDEC-CSP + poly(I:C) groups with both regimens eliciting multi-functional cytokine responses. However, NHP immunized with CSP + poly(I:C) had significantly higher serum titers of CSP-specific IgG antibodies and indirect immunofluorescent antibody (IFA) titers against Pf sporozoites. Furthermore, sera from both CSP or αDEC-CSP + poly(I:C) immunized animals limited sporozoite invasion of a hepatocyte cell line (HC04) in vitro. To determine whether CSP-specific responses could be enhanced, all NHP primed with CSP or αDEC-CSP + poly(I:C) were boosted with a single dose of 150,000 irradiated Pf sporozoites (PfSPZ) intravenously. Remarkably, boosting had no effect on the CSP-specific immunity. Finally, immunization with CSP + poly-ICLC reduced malaria parasite burden in the liver in an experimental mouse model. Taken together, these data showing that poly(I:C) is an effective adjuvant for inducing potent antibody and Th1 immunity with CSP based vaccines offers a potential alternative to the existing protein based pre-erythrocytic vaccines.  相似文献   

17.
Plasmodium falciparum Liver Stage Antigen 1 (LSA-1) is a pre-erythrocytic stage antigen. Our LSA-1 vaccine candidate is a recombinant protein with full-length C- and N-terminal flanking domains and two of the 17 amino acid repeats from the central repeat region termed “LSA-NRC.” We describe the first Phase I/II study of this recombinant LSA-NRC protein formulated with either the AS01 or AS02 adjuvant system. We conducted an open-label Phase I/II study. Thirty-six healthy malaria-naïve adults received one of four formulations by intra-deltoid injection on a 0 and 1 month schedule; low dose (LD) LSA-NRC/AS01:10 μg LSA-NRC/0.5 ml AS01 (n = 5), high dose (HD) LSA-NRC/AS01: 50 μg LSA-NRC/0.5 ml AS01 (n = 13); LD LSA-NRC/AS02: 10 μg LSA-NRC/0.5 ml AS02 (n = 5) and HD LSA-NRC/AS02: 50 μg LSA-NRC/0.5 ml AS02 (n = 13). Two weeks post-second immunization, the high dose vaccinees and 6 non-immunized infectivity controls underwent experimental malaria sporozoite challenge.  相似文献   

18.

Abstract  

Atherosclerosis is considered a chronic inflammatory disease in which monocytes and macrophages are critical. These cells express CD14, toll-like receptor (TLR) 2, and TLR4 on their surfaces, are activated by minimally modified low-density lipoprotein (mmLDL) and are capable of secreting pro-inflammatory cytokines. The aim of this research was thus to demonstrate that the activation of CD14, TLR2, and TLR4 by mmLDL induces the secretion of cytokines.  相似文献   

19.
20.
Adjuvant plays an important role in increasing and directing vaccine-induced immune responses. In a previous study, we found that a mucosal SIV vaccine using a combination of IL-15 and TLR agonists as adjuvant mediated partial protection against SIVmac251 rectal challenge, whereas neither IL-15 nor TLR agonists alone as an adjuvant impacted the plasma viral loads. In this study, dissociation of CD4+ T cell preservation with viral loads was observed in the animals vaccinated with adjuvants. Significantly higher levels of memory CD4+ T cell numbers were preserved after SIVmac251 infection in the colons of the animals vaccinated with vaccine containing any of these adjuvants compared to no adjuvant. When we measured the viral-specific CD8+ tetramer responses in the colon lamina propria, we found significantly higher levels of gag, tat, and pol epitope tetramer+ T cell responses in these animals compared to ones without adjuvant, even if some of the animals had similarly high viral loads. Furthermore, this CD4+ T preservation was positively correlated with increased levels of gag and Tat, but not pol tetramer+ T cell responses, and inversely correlated with beta-chemokine expression. The pre-challenged APOBEC3G expression level, which has previously been shown inversely associated with viral loads, was further found positively correlated with CD4+ T cell number preservation. Overall, these data highlight one unrecognized role of adjuvant in HIV vaccine development, and show that vaccines can produce a surprising discordance between CD4+ T cell levels and SIV viral load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号