首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vaccines that elicit robust CD8+ T cell responses are desirable for protection against infectious diseases and cancers. However, most vaccine adjuvants fail to elicit robust CD8+ T cell responses without inflammation and associated toxicity. We recently reported that self-assembling peptides that form nanofibers in physiological buffers elicited strong adjuvant-free and antigen-specific antibody responses in mice. However, whether or not such nanofibers likewise can elicit strong CD8+ T cell responses is unknown. Here, we demonstrate that the self-assembling peptide Q11 conjugated to a CD8+ T cell epitope of ovalbumin (Q11-OVA), elicits strong antigen-specific primary and recall responses, and in a vaccination regimen protects against subsequent infection. Importantly, we show that these antigenic peptide nanofibers do not persist as an inflammatory antigen depot at the injection site. Our results demonstrate for the first time that self-assembling peptides may be useful as carriers for vaccines where CD8+ T cell-mediated protection is needed.  相似文献   

2.
《Vaccine》2015,33(4):500-506
Since inactivated influenza vaccines mainly confer protective immunity by inducing strain-specific antibodies to the viral hemagglutinin, these vaccines only afford protection against infection with antigenically matching influenza virus strains. Due to the continuous emergence of antigenic drift variants of seasonal influenza viruses and the inevitable future emergence of pandemic influenza viruses, there is considerable interest in the development of influenza vaccines that induce broader protective immunity. It has long been recognized that influenza virus-specific CD8+ T cells directed to epitopes located in the relatively conserved internal proteins can cross-react with various subtypes of influenza A virus. This implies that these CD8+ T cells, induced by prior influenza virus infections or vaccinations, could afford heterosubtypic immunity. Furthermore, influenza virus-specific CD4+ T cells have been shown to be important in protection from infection, either via direct cytotoxic effects or indirectly by providing help to B cells and CD8+ T cells. In the present paper, we review the induction of virus-specific T cell responses by influenza virus infection and the role of virus-specific CD4+ and CD8+ T cells in viral clearance and conferring protection from subsequent infections with homologous or heterologous influenza virus strains. Furthermore, we discuss vector-based vaccination strategies that aim at the induction of a cross-reactive virus-specific T cell response.  相似文献   

3.
《Vaccine》2015,33(10):1256-1266
Hepatocellular carcinoma (HCC) has a poor prognosis due to high recurrence rate. Aspartate-β-hydroxylase (ASPH) is a highly conserved transmembrane protein, which is over expressed in HCC and promotes a malignant phenotype. The capability of ASPH protein-derived HLA class I and II peptides to generate antigen specific CD4+ and CD8+ immune responses is unknown. Therefore, these studies aim to define the epitope specific components required for a peptide based candidate vaccine. Monocyte-derived dendritic cells (DCs) generated from the peripheral blood mononuclear cells (PBMCs) of HCC patients were loaded with ASPH protein. Helper CD4+ T cells and CD8+ cytotoxic T lymphocytes (CTLs) were co-incubated with the DCs; T cell activation was evaluated by flow cytometric analysis. Immunoinformatics tools were used to predict HLA class I- and class II-restricted ASPH sequences, and the corresponding peptides were synthesized. The immunogenicity of each peptide in cultures of human PBMCs was determined by IFN-γ ELISpot assay. ASPH protein-loaded DCs activated both CD4+ and CD8+ T cells contained within the PBMC population derived from HCC patients. Furthermore, the predicted HLA class I- and class II-restricted ASPH peptides were significantly immunogenic. Both HLA class I- and class II-restricted peptides derived from ASPH induce T cell activation in HCC. We observed that ASPH protein and related peptides were highly immunogenic in patients with HCC and produce the type of cellular immune responses required for generation of anti-tumor activity.  相似文献   

4.
Differentiation marker, multifunctionality and magnitude analyses of specific-CD8+ memory T cells are crucial to improve development of HIV vaccines designed to generate cell-mediated immunity. Therefore, we fully characterized the HIV-specific CD8+ T cell responses induced in volunteers vaccinated with HIV lipopeptide vaccines for phenotypic markers, tetramer staining, cytokine secretion, and cytotoxic activities. The frequency of ex vivo CD8+ T cells elicited by lipopeptide vaccines is very rare and central-memory phenotype and functions of these cells were been shown to be important in AIDS immunity. So, we expanded them using specific peptides to compare the memory T cell responses induced in volunteers by HIV vaccines with responses to influenza (FLU) or Epstein Barr virus (EBV). By analyzing the differentiation state of IFN-γ-secreting CD8+ T cells, we found a CCR7CD45RACD28+int/CD28 profile (>85%) belonging to a subset of intermediate-differentiated effector T cells for HIV, FLU, and EBV. We then assessed the quality of the response by measuring various T cell functions. The percentage of single IFN-γ T cell producers in response to HIV was 62% of the total of secreting T cells compared with 35% for FLU and EBV, dual and triple (IFN-γ/IL-2/CD107a) T cell producers could also be detected but at lower levels (8% compared with 37%). Finally, HIV-specific T cells secreted IFN-γ and TNF-α, but not the dual combination like FLU- and EBV-specific T cells. Thus, we found that the functional profile and magnitude of expanded HIV-specific CD8+ T precursors were more limited than those of to FLU- and EBV-specific CD8+ T cells. These data show that CD8+ T cells induced by these HIV vaccines have a similar differentiation profile to FLU and EBV CD8+ T cells, but that the vaccine potency to induce multifunctional T cells needs to be increased in order to improve vaccination strategies.  相似文献   

5.
Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8+ T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8+ T cells recognized Dd-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8+ T cells recognized Dd-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8+ T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.  相似文献   

6.
The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8+ T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8+ and/or CD4+ T cell responses was tested using compounds that contained two or four copies of OVA257–264 and/or OVA323–339 peptides conjugated to LCP, which are recognised by OTI (CD8+ specific) and OTII (CD4+ specific) T cells, respectively. The LCP–ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100 μM concentrations). Promising in vivo data in mice suggested that this LCP–ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8+ T cell responses.  相似文献   

7.
《Vaccine》2023,41(34):4978-4985
BackgroundA limited amount of information is available about the immunogenicity of the quadrivalent inactivated influenza vaccine among human immunodeficiency virus (HIV)-infected individuals, especially in low and middle-income countries (LMICs).MethodsHIV-infected adults and HIV-uninfected adults received a dose of quadrivalent inactivated influenza vaccine including strains of H1N1, H3N2, BV and BY. Enzyme-linked immunosorbent assay (ELISA) and hemagglutination-inhibition assay (HAI) were used to determine IgA, IgG antibody concentration and geometric mean titers (GMT) at day 0 and day 28, respectively. Associated factors contributing to seroconversion or GMT changes were analyzed using simple logistic regression model.ResultsA total of 131 HIV-infected and 55 HIV-uninfected subjects were included in the study. In both HIV-infected and uninfected arms, IgG and IgA against influenza A and B all increased significantly at day 28 after receiving QIV (P < 0.001). GMTs of post-vaccination at day 28 showed that HIV-infected persons with CD4 + T cell counts ≤ 350 cells/mm3 were statistically less immunogenic to all strains of QIV than HIV-uninfected ones (P < 0.05). HIV-infected participants with CD4 + T cell counts ≤ 350 cells/mm3 were less likely to achieve seroconversion to QIV (H1N1, BY and BV) than HIV-uninfected individuals at day 28 after vaccination (P < 0.05). Compared with HIV-infected patients with baseline CD4 + T cell counts ≤ 350 cells/mm3, individuals with baseline CD4 + T cell counts > 350 cell/mm3 seemed more likely to generate antibody responses to H1N1 (OR:2.65, 95 %CI: 1.07–6.56) and BY (OR: 3.43, 95 %CI: 1.37–8.63), and showed a higher probability of seroconversion to BY (OR: 3.59, 95 %CI: 1.03–12.48). Compared with nadir CD4 + T cell count ≤ 350 cell/mm3, individuals with nadir CD4 + T cell count > 350 cell/mm3 showed a higher probability of seroconversion to H1N1(OR: 3.15, 95 %CI: 1.14–8.73).ConclusionInfluenza vaccination of HIV-infected adults might be effective despite variable antibody responses. HIV-positive populations with CD4 + T cell counts ≤ 350 are less likely to achieve seroconversion. Further vaccination strategies could be developed for those with low CD4 T cell counts.  相似文献   

8.
9.
Hepatitis C virus (HCV) is a major cause of liver disease. Spontaneous resolution of infection is associated with broad, MHC class I- (CD8+) and class II-restricted (CD4+) T cell responses to multiple viral epitopes. Only 20% of patients clear infection spontaneously, however, most develop chronic disease. The response to chemotherapy varies; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success in clinical trials. Vector-mediated vaccination with multi-epitope-expressing DNA constructs provides an improved approach. Highly-conserved, HLA-A2-restricted HCV epitopes and HLA-DRB1-restricted immunogenic consensus sequences (ICS, each composed of multiple overlapping and highly conserved epitopes) were predicted using bioinformatics tools and synthesized as peptides. HLA binding activity was determined in competitive binding assays. Immunogenicity and the ability of each peptide to stimulate naïve human T cell recognition and IFN-γ production were assessed in cultures of total PBMCs and in co-cultures composed of peptide-pulsed dendritic cells (DCs) and purified T lymphocytes, cell populations derived from normal blood donors. Essentially all predicted HLA-A2-restricted epitopes and HLA-DRB1-restricted ICS exhibited HLA binding activity and the ability to elicit immune recognition and IFN-γ production by naïve human T cells. The ability of DCs pulsed with these highly-conserved HLA-A2- and -DRB1-restricted peptides to induce naïve human T cell reactivity and IFN-γ production ex vivo demonstrates the potential efficacy of a multi-epitope-based HCV vaccine targeted to dendritic cells.  相似文献   

10.
《Vaccine》2022,40(2):239-246
Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+ and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7–11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.  相似文献   

11.
Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8+ T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8+ T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8+ T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8+ T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8+ T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development.  相似文献   

12.
Wick DA  Martin SD  Nelson BH  Webb JR 《Vaccine》2011,29(5):984-993
The development of vaccines that elicit robust CD8+ T cell immunity has long been a subject of intense investigation. Although whole exogenous protein has not historically been considered as useful for eliciting CD8+ T cell immunity, we report herein that whole, protein antigen is capable of eliciting profound levels of CD8+ T cell immunity if it is administered via repeated, daily subcutaneous immunization in combination with the TLR3 agonist poly(I:C). Mice immunized for four consecutive days with 100 μg of either whole exogenous OVA or whole HPV16 E7 protein combined with 10 μg of poly(I:C) mounted remarkable antigen-specific CD8+ T cell responses as measured by tetramer staining and ELISPOT analysis of splenocytes and peripheral blood, with up to 30% of peripheral CD8+ T cells being antigen specific within 7-8 days of vaccination. CD8+ T cell immunity elicited using this vaccination approach was critically dependent upon cross presentation, as either whole protein or long synthetic peptides were highly effective immunogens whereas minimal peptide epitopes were not. Vaccine-induced CD8+ T cells were also able to regress large, established tumors in vivo. Together these data suggest that ‘cluster’ vaccination with exogenous antigen combined with TLR3 agonist may constitute a profoundly important advancement in therapeutic vaccine design.  相似文献   

13.
《Vaccine》2016,34(17):2008-2014
Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8+ T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8+ T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable.  相似文献   

14.
Human respiratory syncytial virus (HRSV) was first discovered in the 1950s, but despite decades of research, a licensed vaccine against it is not available. Epidemiological studies indicate that antibodies directed against the fusion protein (F) partially correlate with protection. In addition, an F-specific monoclonal antibody is licensed as a prophylactic treatment in children who are at high risk of developing complications following HRSV infection. Therefore, most HRSV-oriented vaccination strategies focus on inducing a humoral immune response against F. In the quest for the development of a safe HRSV vaccine, the induction of a T cell immune response has received a lot less attention. T cell immunity directed against HRSV has not been associated unequivocally with protection against HRSV and CD4+ T helper cell responses may even worsen disease due to HRSV. However, many studies support a protective role for CD8+ T cells in clearance of HRSV from the lungs. In this review we highlight the clinical and experimental evidence in favor of a CD8+ T lymphocyte-based vaccination strategy to protect against HRSV. First, we describe how T cell responses and T cell memory are induced in the lungs upon respiratory viral infection. HRSV has evolved mechanisms that hamper CD8+ T cell priming and effector functions. We appraise the information on HRSV-specific CD8+ T cell immunity gained from laboratory mouse studies, taking into account the advantages and limitations of this animal model and, where possible, the accordance with clinical evidence. Finally, we focus on recent efforts to develop T cell based vaccines against HRSV.  相似文献   

15.
Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2d-restricted CD8+ T cell-specific epitope (CS280–288) derived from the Plasmodium yoelii circumsporozoite (CS) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS280–288 peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS280–288 peptide. The results showed that CS280–288-specific cytotoxic CD8+ T cells were primed when BALB/c mice were orally inoculated with the expressing the CS280–288 epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS280–288 peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8+ T cell responses without the need of a heterologous booster immunization. The CD8+ T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c+ dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations.  相似文献   

16.
The ideal vaccine to protect against toxoplasmosis in humans would include antigens that elicit a protective T helper cell type 1 immune response, and generate long-lived IFN-γ-producing CD8+ T cells. Herein, we utilized a predictive algorithm to identify candidate HLA-A02 supertype epitopes from Toxoplasma gondii proteins. Thirteen peptides elicited production of IFN-γ from PBMC of HLA-A02 supertype persons seropositive for T. gondii infection but not from seronegative controls. These peptides displayed high-affinity binding to HLA-A02 proteins. Immunization of HLA-A*0201 transgenic mice with these pooled peptides, with a universal CD4+ epitope peptide called PADRE, formulated with adjuvant GLA-SE, induced CD8+ T cell IFN-γ production and protected against parasite challenge. Peptides identified in this study provide candidates for inclusion in immunosense epitope-based vaccines.  相似文献   

17.
《Vaccine》2020,38(14):2913-2924
IntroductionCD4+ T cells are essential for inducing optimal CD8+ T cell and antibody-producing B cell responses and maintaining their long-term immunological memory. Therefore, CD4+ T cells are a critical component in HIV vaccine development. Due to enormous viral gene variation and significant human host genetic diversity, HIV vaccines may need to be custom-made for different countries.MethodsPreviously, we designed a CD4+ T cell vaccine based on Chinese HIV isolates and HLA-DR alleles using bioinformatics tools and predicted that 20 epitopes could cover 98.1% of the Chinese population. In vivo testing of the poly-epitope antigen in mice only activated specific T cells for some epitopes. To elucidate the mechanism of the observed differential immunogenicity, we examined poly-epitope antigen processing and presentation using in vitro and in vivo analytical methods.ResultsEnzymatic digestion indicated that all 20 epitopes comprising the poly-epitope antigen could be liberated, but MHC II binding assays showed that neither binding affinity nor dissociation rate was associated with the magnitude of T cell immune responses elicited by each peptide epitope in vaccinated mice. Mass spectrometry analysis of MHC II-bound peptides suggested that the abundance of endogenously processed peptides bound to MHC II molecules was significantly associated with the relative immunodominance of these epitopes.ConclusionThese results provide a new rationale for improving the design and testing of poly-epitope vaccines for HIV and other diseases.  相似文献   

18.
《Vaccine》2016,34(9):1215-1224
ObjectiveThe specificity of CD8+ T cells is critical for early control of founder/transmitted and reactivated HIV-1. To tackle HIV-1 variability and escape, we designed vaccine immunogen HIVconsv assembled from 14 highly conserved regions of mainly Gag and Pol proteins. When administered to HIV-1-negative human volunteers in trial HIV-CORE 002, HIVconsv vaccines elicited CD8+ effector T cells which inhibited replication of up to 8 HIV-1 isolates in autologous CD4+ cells. This inhibition correlated with interferon-γ production in response to Gag and Pol peptide pools, but direct evidence of the inhibitory specificity was missing. Here, we aimed to define through recognition of which epitopes these effectors inhibit HIV-1 replication.DesignCD8+ T-cells from the 3 broadest HIV-1 inhibitors out of 23 vaccine recipients were expanded in culture by Gag or Pol peptide restimulation and tested in viral inhibition assay (VIA) using HIV-1 clade B and A isolates.MethodsFrozen PBMCs were expanded first using peptide pools from Gag or Pol conserved regions and tested on HIV-1-infected cells in VIA or by individual peptides for their effector functions. Single peptide specificities responsible for inhibition of HIV-1 replication were then confirmed by single-peptide expanded effectors tested on HIV-1-infected cells.ResultsWe formally demonstrated that the vaccine-elicited inhibitory human CD8+ T cells recognized conserved epitopes of both Pol and Gag proteins. We defined 7 minimum epitopes, of which 3 were novel, presumably naturally subdominant. The effectors were oligofunctional producing several cytokines and chemokines and killing peptide-pulsed target cells.ConclusionsThese results implicate the use of functionally conserved regions of Pol in addition to the widely used Gag for T-cell vaccine design. Proportion of volunteers developing these effectors and their frequency in circulating PBMC are separate issues, which can be addressed, if needed, by more efficient vector and regimen delivery of conserved immunogens.  相似文献   

19.
Dasgupta G  BenMohamed L 《Vaccine》2011,29(35):5824-5836
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8+ T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8+ T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8+ T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel “humanized” HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8+ T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.  相似文献   

20.
《Vaccine》2018,36(29):4198-4206
There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4+ T cells, whereby depletion of CD4+ T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4+ T cells were needed for early antibody production and CD8+ T cell recall responses. Furthermore, influenza-specific CD4+ T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4+ and CD8+ T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号