首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
beta 1-3-Adrenoreceptor (AR)-deficient mice are unable to regulate energy expenditure and develop diet-induced obesity on a high-fat diet. We determined previously that beta2-AR agonist treatment activated expression of the mRNA encoding the orphan nuclear receptor, NOR-1, in muscle cells and plantaris muscle. Here we show that beta2-AR agonist treatment significantly and transiently activated the expression of NOR-1 (and the other members of the NR4A subgroup) in slow-twitch oxidative soleus muscle and fast-twitch glycolytic tibialis anterior muscle. The activation induced by beta-adrenergic signaling is consistent with the involvement of protein kinase A, MAPK, and phosphorylation of cAMP response element-binding protein. Stable cell lines transfected with a silent interfering RNA targeting NOR-1 displayed decreased palmitate oxidation and lactate accumulation. In concordance with these observations, ATP production in the NOR-1 silent interfering RNA (but not control)-transfected cells was resistant to (azide-mediated) inhibition of oxidative metabolism and expressed significantly higher levels of hypoxia inducible factor-1alpha. In addition, we observed the repression of genes that promote fatty acid oxidation (peroxisomal proliferator-activated receptor-gamma coactivator-1alpha/beta and lipin-1alpha) and trichloroacetic acid cycle-mediated carbohydrate (pyruvate) oxidation [pyruvate dehydrogenase phosphatase 1 regulatory and catalytic subunits (pyruvate dehydrogenase phosphatases-1r and -c)]. Furthermore, we observed that beta2-AR agonist administration in mouse skeletal muscle induced the expression of genes that activate fatty acid oxidation and modulate pyruvate use, including PGC-1alpha, lipin-1alpha, FOXO1, and PDK4. Finally, we demonstrate that NOR-1 is recruited to the lipin-1alpha and PDK-4 promoters, and this is consistent with NOR-1-mediated regulation of these genes. In conclusion, NOR-1 is necessary for oxidative metabolism in skeletal muscle.  相似文献   

3.
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is considered to play a pivotal role in the exercise-induced metabolic adaptation of skeletal muscle. Although the oxidized form of nicotinamide adenine dinucloetide (NAD(+))-dependent histone deacetylase SIRT1 has been shown to mediate PGC-1alpha-induced metabolic adaptation, the effect of endurance exercise on the SIRT1 protein remains to be elucidated. The purposes of this study were (1) to investigate the distribution of SIRT1 and PGC-1alpha proteins in skeletal muscle and (2) to examine the effects of acute endurance exercise and low- or high-intensity exercise training on SIRT1 and PGC-1alpha protein expressions and on the metabolic components in rat skeletal muscle. Both the SIRT1 and PGC-1alpha proteins preferentially accumulate in red oxidative muscles. Acute endurance exercise on a motor-driven treadmill (20 m/min, 18.5% incline, 45 minutes) increases the PGC-1alpha protein expression at 18 hours after exercise and the SIRT1 protein expression at 2 hours after exercise in the soleus muscle. In the training experiment, the rats were divided into control, low-intensity (20 m/min, 18.5% incline, 90 min/d), and high-intensity (30 m/min, 18.5% incline, 60 min/d) training groups. After 14 days of training, the SIRT1 and PGC-1alpha proteins, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 protein in the soleus muscle were increased by both trainings. In the plantaris muscle, SIRT1, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 were increased by high-intensity training whereas the PGC-1alpha was not. These results suggest that endurance exercise increases the skeletal muscle SIRT1 protein content. In addition, the findings also raise the possibility that the SIRT1 protein expression may play a potentially important role in such adaptations, whereas an increase in the PGC-1alpha protein expression is not necessary for such adaptations.  相似文献   

4.
Previous investigations have shown that alpha 2-adrenoceptor (alpha 2-AR) stimulation blunts lipid mobilization during physiological activation of the sympathetic nervous system promoted by exercise in sc abdominal adipose tissue (SCAAT) in obese men. To investigate the effect of a low calorie diet (LCD) on the alpha 2-adrenergic responsiveness and on the expression of alpha 2-AR and beta 2-adrenoceptor (beta 2-AR) in SCAAT, 11 obese women (weight: 99.1 +/- 4.6 kg; body mass index: 34.3 +/- 1.1 kg/m(2)) received a 12-wk diet providing 500 kcal/d less than their usual diet. The exercise-induced alpha 2-adrenergic antilipolytic effect was investigated in SCAAT before and at the end of LCD. Changes in extracellular glycerol concentration and local blood flow were measured in SCAAT during a 45-min exercise bout (50% of heart rate reserve) using a control microdialysis probe and a probe supplemented with the alpha2-AR antagonist phentolamine. SCAAT biopsies were performed for determination of mRNA levels using RT-competitive PCR. Plasma catecholamine responses to exercise bout were not different before and at the end of LCD. Before LCD, the exercise-induced increase in extracellular glycerol concentration was potentiated by phentolamine supplementation, while this potentiating effect of the alpha-antagonist was not observed at the end of LCD. No changes were observed for beta 2-AR and hormone-sensitive lipase mRNA levels, while alpha 2-AR mRNA level was significantly decreased in adipose tissue during LCD. These findings show that alpha 2-AR-mediated antilipolytic action is reduced by a moderate hypocaloric diet and that down-regulation of alpha 2-AR mRNA levels may participate in the decrease of the alpha 2-adrenergic effect revealed by microdialysis.  相似文献   

5.
6.
7.
8.
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)- and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.  相似文献   

9.
10.
11.
12.
13.
14.
Adenosine monophosphate-activated protein kinase (AMPK) is activated in response to adenosine triphosphate depletion caused by the metabolic and nutritional state. Mammalian AMPK is a heterotrimeric enzyme composed of a catalytic alpha subunit and 2 regulatory subunits (beta and gamma). Although much attention has been focused on exercise-induced AMPK activation in skeletal muscle, little information is available on the role of AMPK in adipose tissue and liver. Acetyl-coenzyme A carboxylase (ACC) is a well-known downstream target of AMPK. The ACC contains serine residues that are phosphorylated by AMPK. The present study was undertaken to determine whether long-term exercise of medium intensity (60% of Vo2max for 12 weeks) may influence AMPK enzyme activity, gene/protein expression, and subsequent ACC phosphorylation in rat adipose tissue (visceral and subcutaneous) and liver. We initially demonstrated that long-term exercise induced a significant increase in phosphorylation of Thr172 in the AMPK alpha1 subunit and of Ser79 in ACC in visceral adipose tissue rather than subcutaneous tissue. We also demonstrated that the AMPK alpha1-,alpha2-subunit messenger RNA (mRNA) level as well as the corresponding protein levels were increased in response to long-term exercise, whereas the other subunits were not altered significantly. In contrast to that of visceral adipose tissue, long-term exercise did not induce any significant effect on any of the AMPK subunit mRNA levels or alpha1-,alpha2-subunit protein levels in subcutaneous adipose tissue. In addition to adipose tissue, we demonstrated that long-term exercise induced an increase in both AMPK/ACC phosphorylation and alpha1-,alpha2-subunit mRNA/protein expression in the liver. Although the precise physiologic relevance of AMPK activation in these tissues remains unknown, it is possible that it might play an important role in long-term exercise-induced adaptation mechanisms and may lead to an improvement in certain metabolic abnormalities in metabolic diseases.  相似文献   

15.
CONTEXT: Thyroid hormone regulates specific Na+-K+-ATPase isoforms in rodent skeletal muscles. No study has examined this relationship in human tissues. OBJECTIVE: This study investigated the effect of hyperthyroid status on the expression of the alpha- and beta-subunits of the Na+-K+-ATPase. DESIGN: The vastus lateralis muscles from eight hyperthyroid patients were biopsied before and after treatment. Ten age-matched euthyroid subjects served as controls. RESULTS: In hyperthyroid patients, the average T3 level was three times higher in pretreatment compared with posttreatment (262 +/- 75 vs. 86 +/- 21 ng/dl, P = 0.001). The relative mRNA expression of the alpha2, but not alpha1 or alpha3, subunit was increased approximately 3-fold in pretreatment (2.98 +/- 0.52 vs. 0.95 +/- 0.40, P < 0.01), whereas that of beta1, not beta2 or beta3, subunit was increased approximately 2.8-fold in pretreatment (2.83 +/- 0.38 vs. 1.10 +/- 0.27, P < 0.01). The relative mRNA expression of the alpha2 and beta1 subunits was positively correlated with the serum T3 (r = 0.75, P = 0.001 and r = 0.66, P = 0.003, respectively). Immunohistochemistry studies revealed an increase in protein abundance of the alpha2 and beta1, but not alpha1 or beta2, subunits in the plasma membrane of muscle fibers of hyperthyroid patients, which decreased after treatment. CONCLUSIONS: This provides the first evidence that, in human skeletal muscles, thyroid hormone up-regulates the Na+-K+-ATPase protein expression at least, in part, at mRNA level, and the alpha2 and beta1 subunits play the important role in this regulation.  相似文献   

16.
17.
18.
Ischemic preconditioning reduces infarct size and improves cardiac function in various species, including mice. The mechanism for ischemic preconditioning protection is not entirely clear and activation of alpha(1B)-adrenergic receptors (AR) is believed to be involved. Transgenic mice expressing constitutively active mutant alpha(1B)-AR in the heart have enhanced alpha(1B)-AR activity and therefore can be used to test the role of alpha(1B)-AR in ischemic preconditioning. Wild-type and transgenic mice were subjected to 30- or 40-min periods of left coronary artery occlusion followed by 60-min reperfusion, or ischemic preconditioning prior to sustained ischemia-reperfusion. Risk and infarct zones were determined by staining with Evans blue and triphenyltetrazolium, respectively, and quantitated digitally. Infarct zone and infarct size were not different between wild-type and transgenic mice, nor was the extent of reduction in infarct size by preconditioning ischemia (wild-type mice: 45+/-3 to 18+/-3%, transgenic mice: 46+/-3 to 19+/-2% of the left ventricle, both P<0.01). Ventricular function was similar between wild-type and transgenic mice with or without ischemia-reperfusion injury. In conclusion, enhanced alpha(1B)-AR activity by cardiac-specific expression of constitutively active mutant alpha(1B)-AR in mice does not mimic ischemic preconditioning to protect against ischemia-reperfusion injury.  相似文献   

19.
Genetically altered mouse models constitute unique systems to delineate the role of adrenergic receptor (AR) signaling mechanisms as modulators of cardiomyocyte function. The interpretation of results from these models depends on knowledge of the signaling properties of endogenous ARs in mouse cardiomyocytes. In the present study, we identify for the first time several defects in AR signaling in cardiomyocytes cultured from mouse ventricles. beta(1)-ARs induce robust increases in cAMP accumulation and the amplitude of the calcium and cell motion transients in mouse cardiomyocytes. Selective beta(2)-AR stimulation increases the amplitude of calcium and motion transients, with only a trivial rise in cAMP accumulation in comparison. beta(2)-AR responses are not influenced by pertussis toxin in cultured mouse cardiomyocytes. alpha(1)-ARs fail to activate phospholipase C, the extracellular signal-regulated protein kinase, p38-MAPK, or stimulate hypertrophy in mouse cardiomyocytes. Control experiments establish that this is not due to a lesion in distal elements in the signaling machinery, because these responses are induced by protease-activated receptor-1 agonists and phospholipase C is activated by Pasteurella multocida toxin (a G(q) alpha-subunit agonist). Surprisingly, norepinephrine activates p38-MAPK via beta-ARs in mouse cardiomyocytes, but beta-AR activation of p38-MAPK alone is not sufficient to induce cardiomyocyte hypertrophy. Collectively, these results identify a generalized defect in alpha(1)-AR signaling and a defect in beta(2)-AR linkage to cAMP (although not to an inotropic response) in cultured mouse cardiomyocytes. These naturally occurring vagaries in AR signaling in mouse cardiomyocytes provide informative insights into the requirements for hypertrophic signaling and impact on the value of mouse cardiomyocytes as a reconstitution system to investigate AR signaling in the heart.  相似文献   

20.
OBJECTIVE: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content. DESIGN: measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed. SUBJECTS: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI. METHODS: Gene expression and mitochondrial protein content of complexes I-V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic-euglycemic clamp with indirect calorimetry. RESULTS: Skeletal-muscle mRNA of PGC-1 alpha and PPAR beta/delta--but not of other genes involved in glucose, fat and oxidative metabolism--was significantly lower in diabetic patients (P<0.01). Rosiglitazone significantly increased PGC-1 alpha ( approximately 2.2-fold, P<0.01) and PPAR beta/delta ( approximately 2.6-fold, P<0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (P<0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment. CONCLUSION: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1 alpha and PPAR beta/delta, independent of mitochondrial protein content and/or changes in intramyocellular lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号