首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prefrontal cortex is considered essential for learning to perform cognitive tasks though little is known about how the representation of stimulus properties is altered by learning. To address this issue, we recorded neuronal activity in monkeys before and after training on a task that required visual working memory. After the subjects learned to perform the task, we observed activation of more prefrontal neurons and increased activity during working memory maintenance. The working memory-related increase in firing rate was due mostly to regular-spiking putative pyramidal neurons. Unexpectedly, the selectivity of neurons for stimulus properties and the ability of neurons to discriminate between stimuli decreased as the information about stimulus properties was apparently present in neural firing prior to training and neuronal selectivity degraded after training in the task. The effect was robust and could not be accounted for by differences in sampling sites, selection of neurons, level of performance, or merely the elapse of time. The results indicate that, in contrast to the effects of perceptual learning, mastery of a cognitive task degrades the apparent stimulus selectivity as neurons represent more abstract information related to the task. This effect is countered by the recruitment of more neurons after training.  相似文献   

2.
It is controversial whether the effects of aging on various cognitive functions have the same common cause or several different causes. To investigate this issue, we scanned younger and older adults with functional magnetic resonance imaging (fMRI) while performing three different tasks: working memory, visual attention and episodic retrieval. There were three main results. First, in all three tasks, older adults showed weaker occipital activity and stronger prefrontal and parietal activity than younger adults. The occipital reduction is consistent with the view that sensory processing decline is a common cause in cognitive aging, and the prefrontal increase may reflect functional compensation. Secondly, older adults showed more bilateral patterns of prefrontal activity than younger adults during working memory and visual attention tasks. These findings are consistent with the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) model. Finally, compared to younger adults, older adults showed weaker hippocampal formation activity in all three tasks but stronger parahippocampal activity in the episodic retrieval task. The former finding suggests that age-related hippocampal deficits may have a global effect in cognition, and the latter is consistent with an age-related increase in familiarity-based recognition. Taken together, the results indicate that both common and specific factors play an important role in cognitive aging.  相似文献   

3.
We used functional magnetic resonance imaging and a 1-back task to assess working memory (WM) for spatial (sound location) and nonspatial (sound category) auditory information in younger and older adults. A mixed block-event-related design was used to measure sustained activity during each task block and transient activity to targets (repetitions of location or category). In both groups, there was increased sustained activity for category WM in left anterior temporal cortex and inferior prefrontal cortex (PFC) and increased activity for location WM in right inferior parietal cortex and dorsal PFC. There were no reliable age differences in this pattern of activity. Older adults had more sustained activity than younger adults in left PFC during both tasks, suggesting that additional PFC recruitment in older adults reflects nonspecific engagement of frontally mediated task-monitoring processes. Both groups showed lower transient than sustained activity in auditory cortex bilaterally; however, older adults showed smaller target-related reductions of activity during the category task. A greater reduction of activity to category targets in left auditory cortex was associated with better performance on this task in older adults, suggesting that a failure to modulate activity appropriately when a stimulus is repeated, or when a particular feature of the stimulus is repeated, could lead to reduced ability to detect this repetition.  相似文献   

4.
Neuroimaging studies commonly show widespread activations in the prefrontal cortex during various forms of working memory and long-term memory tasks. However, the anterior prefrontal cortex (aPFC, Brodmann area 10) has been mainly associated with retrieval in episodic memory, and its role in working memory is less clear. We conducted an event-related functional magnetic resonance imaging study to examine brain activations in relation to recognition in a spatial delayed-recognition task. Similar to the results from previous findings, several frontal areas were strongly activated during the recognition phase of the task, including the aPFC, the lateral PFC and the anterior cingulate cortex. Although the aPFC was more active during the recognition phase, it was also active during the delay phase of the spatial working memory task. In addition, the aPFC showed greater activity in response to negative probes (non-targets) than to positive probes (targets). While our analyses focused on examining signal changes in the aPFC, other prefrontal regions showed similar effects and none of the areas were more active in response to the positive probes than to the negative probes. Our findings support the conclusion that the aPFC is involved in working memory and particularly in processes that distinguish target and non-target stimuli during recognition.  相似文献   

5.
6.
Working memory (WM), the ability to briefly retain and manipulate information in mind, is central to intelligent behavior. Here we take advantage of the high temporal resolution of electrophysiological measures to obtain a millisecond timescale view of the activity induced in distributed cortical networks by tasks that impose significant WM demands. We examined how these networks are affected by the type and amount of information to be remembered, and by the amount of task practice. Evoked potentials (EPs) were obtained from eight subjects performing spatial and verbal versions of a visual n-back WM task (n = 1, 2, 3) on each of three testing days. In well-trained subjects, WM tasks elicited transient responses reflecting different subcomponents of task processing, including transient (lasting 0.02-0.3 s) task- sensitive and load-sensitive EPs, as well as sustained responses (lasting 1-1.5 s), including the prestimulus Contingent Negative Variation (CNV), and post-stimulus frontal and parietal Slow Waves. The transient responses, with the exception of the P300, differed between the verbal and spatial task versions, and between trials with different response requirements. The P300 and the Slow Waves were not affected by task version but were affected by increased WM load. These results suggest that WM emerges from the formation of a dynamic cortical network linking task-specific processes with non-specific, capacity- limited, higher-order attentional processes. Practice effects on the EPs suggested that practice led to the development of a more effective cognitive strategy for dealing with lower-order aspects of task processing, but did not diminish demands made on higher order processes. Thus a simple WM task is shown to be composed of numerous elementary subsecond neural processes whose characteristics vary with type and amount of information being remembered, and amount of practice.   相似文献   

7.
In addition to classical visual effects, light elicits nonvisual brain responses, which profoundly influence physiology and behavior. These effects are mediated in part by melanopsin-expressing light-sensitive ganglion cells that, in contrast to the classical photopic system that is maximally sensitive to green light (550 nm), is very sensitive to blue light (470-480 nm). At present, there is no evidence that blue light exposure is effective in modulating nonvisual brain activity related to complex cognitive tasks. Using functional magnetic resonance imaging, we show that, while participants perform an auditory working memory task, a short (18 min) daytime exposure to blue (470 nm) or green (550 nm) monochromatic light (3 x 10(13) photons/cm2/s) differentially modulates regional brain responses. Blue light typically enhanced brain responses or at least prevented the decline otherwise observed following green light exposure in frontal and parietal cortices implicated in working memory, and in the thalamus involved in the modulation of cognition by arousal. Our results imply that monochromatic light can affect cognitive functions almost instantaneously and suggest that these effects are mediated by a melanopsin-based photoreceptor system.  相似文献   

8.
Population vectors were used to examine information represented by a population of prefrontal activity and its temporal change during spatial working memory processes while monkeys performed ODR and R-ODR tasks. In the ODR task, monkeys made a saccade to the cue location after the delay, whereas in the R-ODR task, they made a saccade 90 degrees clockwise from the cue location. We first constructed population vectors using cue- and response-period activity. The directions of population vectors were similar to the cue directions and the saccade target directions, respectively, indicating that population vectors correctly represented information regarding directions of visual cues and saccade targets. We then calculated population vectors during a 250 ms time-window from the cue presentation to the end of the response period. In the ODR task, all population vectors were directed toward the cue direction. However, in the R-ODR task, the population vector gradually rotated during the delay period from the cue direction to the saccade direction. These results indicate that spatial information represented by a population of prefrontal activity can be shown as the direction of the population vector and that its temporal change during spatial working memory tasks can be depicted as the temporal change of the vector's direction.  相似文献   

9.
Previous neuroimaging studies have identified brain regions that underlie verbal working memory in humans. According to these studies a phonological store is located in the left inferior parietal cortex, and a complementary subvocal rehearsal mechanism is implemented by mostly left-hemispheric speech areas. In the present functional magnetic resonance imaging study, classical interfering and non-interfering dual-task situations were used to investigate further the neural correlates of verbal working memory. Verbal working memory performance under non-interfering conditions activated Broca's area, the left premotor cortex, the cortex along the left intraparietal sulcus and the right cerebellum, thus replicating the results from previous studies. By contrast, no significant memory- related activation was found in these areas when silent articulatory suppression prevented the subjects from rehearsal. Instead, this non-articulatory maintenance of phonological information was associated with enhanced activity in several other, particularly anterior prefrontal and inferior parietal, brain areas. These results suggest that phonological storage may be a function of a complex prefronto-parietal network, and not localized in only one, parietal brain region. Further possible implications for the functional organization of human working memory are discussed.  相似文献   

10.
Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.  相似文献   

11.
Frontal cortex controls voluntary movement through projections to striatum that continue as parallel pallido-thalamic loops. In previous studies we found evidence of a double dissociation in rat striatum between visuospatial response time (RT) and radial maze delayed non-matching (DNM) tasks. Here we compare the effects of frontal cortical lesions on these tasks. We found that lesions involving sensorimotor areas in dorsolateral cortex affect RT for responding to visuospatial stimuli without affecting other measures of response speed or producing signs of attentional or sensory impairment. These deficits were equivalent to impairments observed with lesions in sensorimotor areas of dorsolateral striatum. Dorsal prefrontal lesions produced RT deficits indicative of attentional impairment that have not been observed with striatal or thalamic lesions. This suggests contributions of prefrontal cortex to attention independent of striatum and thalamus. Prefrontal lesions had significant but circumscribed effects on DNM consistent with effects of lesions in anatomically related areas of striatum or thalamus observed in earlier studies. These results are consistent with evidence implicating prefrontal cortex in aspects of spatial memory mediated by anatomically related pathways in the basal ganglia and thalamus.  相似文献   

12.
Neurocognitive research has focused on monoaminergic influences over broad behavior patterns. For example, dopamine (DA) generally facilitates informational transfer within limbic and cortical networks to promote reward-seeking behavior. Specifically, DA activity in prefrontal cortex modulates the ability for nonhuman primates and humans to perform spatial working memory tasks. Serotonin (5HT) constrains the activity of DA, resulting in an opposing relationship between DA and 5HT with respect to emotional and motor behaviors. A role for 5HT in constraining prefrontally guided spatial working memory (WM) processes in humans has not been empirically demonstrated but is a logical avenue for study if these principles of neurotransmitter activity hold within cortical networks. In this study, normal humans completed a visuospatial WM task under pharmacological challenge with (i) bromocriptine, a DA agonist and (ii) fenfluramine, a serotonin agonist, in a double-blind, repeated-measures, placebo-controlled design. Findings indicate that bromocriptine facilitated spatial delayed, but not immediate, memory performance. Fenfluramine resulted in impaired delayed spatial memory. These effects were not due to nonspecific arousal, attentional, sensorimotor or perceptual changes. These findings suggest that monoaminergic neurotransmitters (DA and 5HT) may interact within cortical networks to modulate the expression of specific cognitive behaviors, particularly effortful processes associated with goal-directed activity.   相似文献   

13.
Working memory (WM) is known to activate the prefrontal cortex. In the present study we hypothesized that when additional contingencies are added to the instruction of a WM task, this would increase the WM load and result in the activation of additional prefrontal areas. With positron emission tomography we measured regional cerebral blood flow in nine subjects performing a control task and two delayed matching to sample tasks, in which the subjects were matching colours and patterns to a reference picture. The second of the two delayed matching tasks had a more complex instruction than the first, with additional contingencies of how to alternate between the matching of colours and patterns. This task thus required the subjects not only to remember a stimulus to match but also to perform this matching according to a specified plan. Both delayed matching tasks activated cortical fields in the middle frontal gyrus, the frontal operculum, upper cingulate gyrus, inferior parietal cortex and cortex lining the intraparietal sulcus, all in the left hemisphere. When alternated delayed matching was compared to simple delayed matching, increases were located in the right superior and middle frontal gyrus and the right anterior inferior parietal cortex. The increased demand during alternated matching thus resulted in bilateral activation of both dorsolateral prefrontal and inferior parietal cortex. The area in the inferior parietal cortex has previously been coactivated with the dorsolateral prefrontal cortex in several WM tasks, irrespective of the sensory modality of the stimuli, and during tasks involving planning.   相似文献   

14.
15.
To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex.  相似文献   

16.
Previous research suggests that target templates are stored visual working memory and used to guide attention during visual search. However, observers can search efficiently even if working memory is filled to capacity by a concurrent task. The idea that target templates are stored in working memory receives support primarily from studies of nonhuman primates in which the target varies from trial to trial, and it is possible that working memory templates are not necessary when target identity remains constant, as in most studies of visual search in humans. To test this hypothesis, we asked subjects to perform a visual search task during the delay interval of a visual working memory task. The 2 tasks were found to interfere with each other when the search targets changed from trial to trial, but not when target identity remained constant. Thus, a search template is stored in visual working memory only when the target varies from trial to trial. These findings suggest that the network of brain areas involved in shifting attention during visual search tasks may be able to operate essentially independently of the anatomical areas that perform visual working memory maintenance of objects, but only if the identity of the visual search target is stable across time.  相似文献   

17.
Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of component processes in verbal working memory. Based on behavioral research using manipulations of verbal stimulus type to dissociate storage, rehearsal, and executive components of verbal working memory, we designed a delayed serial recall task requiring subjects to encode, maintain, and overtly recall sets of verbal items for which phonological similarity, articulatory length, and lexical status were manipulated. By using a task with temporally extended trials, we were able to exploit the temporal resolution afforded by fMRI to partially isolate neural contributions to encoding, maintenance, and retrieval stages of task performance. Several regions commonly associated with maintenance, including supplementary motor, premotor, and inferior frontal areas, were found to be active across all three trial stages. Additionally, we found that left inferior frontal and supplementary motor regions showed patterns of stimulus and temporal sensitivity implicating them in distinct aspects of articulatory rehearsal, while no regions showed a pattern of sensitivity consistent with a role in phonological storage. Regional modulation by task difficulty was further investigated as a measure of executive processing. We interpret our findings as they relate to notions about the cognitive architecture underlying verbal working memory performance.  相似文献   

18.
Single-neuron recordings from behaving primates have established a link between working memory processes and information-specific neuronal persistent activity in the prefrontal cortex. Using a network model endowed with a columnar architecture and based on the physiological properties of cortical neurons and synapses, we have examined the synaptic mechanisms of selective persistent activity underlying spatial working memory in the prefrontal cortex. Our model reproduces the phenomenology of the oculomotor delayed-response experiment of Funahashi et al. (S. Funahashi, C.J. Bruce and P.S. Goldman-Rakic, Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61:331-349, 1989). To observe stable spontaneous and persistent activity, we find that recurrent synaptic excitation should be primarily mediated by NMDA receptors, and that overall recurrent synaptic interactions should be dominated by inhibition. Isodirectional tuning of adjacent pyramidal cells and interneurons can be accounted for by a structured pyramid-to-interneuron connectivity. Robust memory storage against random drift of the tuned persistent activity and against distractors (intervening stimuli during the delay period) may be enhanced by neuromodulation of recurrent synapses. Experimentally testable predictions concerning the neural basis of working memory are discussed.  相似文献   

19.
OBJECT: The supplementary motor area (SMA) is considered critical in the planning, initiation, and execution of motor acts. Despite decades of research, including electrical stimulation mapping in patients undergoing neurosurgery, the contribution of this region to the generation of motor behavior has remained enigmatic. This is a study of single-neuron responses at various stages of a motor task during depth electrode recording in the SMA, pre-SMA, and medial temporal lobe of humans, with the goal of elucidating the disparate roles of neurons in these regions during movements. METHODS: The patients were undergoing evaluation for epilepsy surgery requiring implantation of intracranial depth electrodes. Single-unit recordings were made during both the execution and mental imagery of finger apposition sequences. Only medial frontal neurons responded selectively to specific features of the motor plan, such as which hand performed the motor activity or the complexity of the sequence. Neuron activity progressively increased before the patient was given a "go" cue for the execution of movements; this activity peaked earlier in the pre-SMA than in the SMA proper. We observed similar patterns of activation during motor imagery and actual movement, but only neurons in the SMA differentiated between imagined and real movements. CONCLUSIONS: These results provide support at the single-neuron level for the role of the medial frontal cortex in the temporal organization and planning of movements in humans.  相似文献   

20.
Unlike tasks in which practice leads to an automatic stimulus-response association, it is thought working memory (WM) tasks continue to require cognitive control processes after repeated performance. Previous studies investigating WM task repetition are in accord with this. However, it is unclear whether changes in neural activity after repetition imply alterations in general control processes common to all WM tasks or are specific to the selection, encoding and maintenance of the relevant information. In the present study, functional magnetic resonance imaging (fMRI) was used to examine changes during sample, delay and test periods during repetition of both object and spatial delayed recognition tasks. We found decreases in fMRI activation in both spatial and object-selective areas after spatial WM task repetition, independent of behavioral performance. Few areas showed changed activity after object WM task repetition. These results indicate that spatial task repetition leads to increased efficiency of maintaining task-relevant information and improved ability to filter out task-irrelevant information. The specificity of this repetition effect to the spatial task suggests a difference exists in the nature of the representation of object and spatial information and that their maintenance in WM is likely subserved by different neural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号