首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
PURPOSE: In the present study, we sought to determine the potential of sustained transgene expression by a single i.m. administration of recombinant adeno-associated virus 2 (rAAV) encoding angiostatin and endostatin in inhibiting i.p. ovarian cancer growth and dissemination in a preclinical mouse model. EXPERIMENTAL DESIGN: Cohorts of female athymic nude mice received either no virus or 1.2 x 10(11) particles of rAAV encoding green fluorescence protein or endostatin plus angiostatin, i.m. Three weeks later, the mice were i.p. injected with 10(6) human epithelial ovarian cancer cell line SKOV3.ip1. As a measure of effectiveness of the therapy, tumor weight, abdominal distension, ascites volume and vascular endothelial growth factor level, and tumor weight were determined. Immunohistochemistry was done to determine tumor cell apoptosis and endothelial cell proliferation following the therapy. Tumor-free survival was recorded as the end point. RESULTS: Results indicated a significant tumor-free survival (P < 0.003) following therapy with rAAV encoding endostatin and angiostatin compared with untreated or rAAV-green fluorescence protein-treated mice. Ascites volume in rAAV endostatin and angiostatin-treated mice was significantly lower than naive mice and contained less hemorrhage and tumor conglomerates. The level of vascular endothelial growth factor in the ascites of antiangiogenic vector treated mice was also significantly less compared with the untreated mice. Immunohistochemical analyses indicated increased tumor cell apoptosis and decreased blood vasculature following rAAV endostatin and angiostatin treatment. CONCLUSION: The results indicate that antiangiogenic genetic prevention from stable systemic levels of angiostatin and endostatin by i.m. administration of rAAV can be used for the treatment of i.p. ovarian cancer growth and dissemination.  相似文献   

2.
The success of surgery to remove primary tumors can be compromised by the subsequent outgrowth of metastases. It is recognized that primary tumors secrete antiangiogenic factors that suppress the outgrowth of their daughter metastases. In accord we show here that surgical removal of primary EL-4 lymphomas led to a marked decrease in the levels of circulating angiostatin and endostatin, and promoted the growth of distant nodular tumors. Expression vectors encoding angiostatin and endostatin, formulated with poly-N-vinyl pyrrolidone (PVP), were injected into the tibialis and gastrocnemia muscles, leading to expression of angiostatin and endostatin in muscle fibers. High levels of biologically active exogenous proteins were secreted into the circulation. Intramuscular gene therapy with angiostatin and endostatin plasmids significantly inhibited tumor vascularity and induced tumor cell apoptosis, and thereby suppressed the growth of secondary subcutaneous and disseminated metastatic tumors in the lung and liver. Simultaneous intramuscular delivery of both angiostatin and endostatin plasmids significantly prolonged the survival of mice after removal of primary tumors. These results suggest that intramuscular gene transfer of angiostatin and endostatin might serve as a prophylactic cancer-prevention strategy to combat the recurrence of cancer after surgical resection of primary tumors.  相似文献   

3.
In vivo expression of angiostatin and endostatin, two different types of endothelial cell growth inhibitor, have been reported to inhibit vascularization in tumor tissues, resulting in tumor growth inhibition. Recently, in vivo expression of saxatilin, a novel disintegrin purified from snake (Gloydius saxatilis) venom, was able to strongly inhibit endothelial cell proliferation and smooth muscle cell migration, resulting in tumor growth inhibition. However, the antitumor efficacy of the individual antiangiogenic molecules expressed in vivo was not sufficiently potent to induce tumor regression in animal models. Therefore, in this study, we have systemically examined how combinational transfer of angiostatin, endostatin, and saxatilin genes affects neovascularization in tumor tissues and tumor progression in a mouse model. In Matrigel-implanted mice, cotransfection with plasmids encoding angiostatin K1-3 (pFLAG-Angio K1/3), endostatin (pFLAG-Endo), and saxatilin (pFLAG-Sax) resulted in the most effective inhibition of angiogenesis. In addition, hydrodynamic cotransfection of the three genes induced more inhibition of B16BL6 melanoma growth and pulmonary metastasis than other combinations of transfected genes. Compared with the empty vector-treated control group, cotreatment with the three plasmids reduced B16BL6 tumor growth by 89% and pulmonary metastasis by 90%. These results provide additional evidence supporting the combined systemic expression of antiangiogenic factors, such as angiostatin K1-3, endostatin, and saxatilin, as an alternative procedure for antiangiogenic cancer therapy.  相似文献   

4.
Development of lentiviral vectors for antiangiogenic gene delivery.   总被引:5,自引:0,他引:5  
Growth and metastasis of malignant tumors requires angiogenesis. Inhibition of tumor-induced angiogenesis may represent an effective cytostatic strategy. We have constructed recombinant self-inactivating lentiviral vectors expressing angiostatin and endostatin, and have tested their antiangiogenic activities. As VSV-G-pseudotyped lentiviral vectors showed low relative transduction titers on bovine aortic and human umbilical vein endothelial cells, it was difficult to achieve significant inhibition of endothelial cell growth by lentivirus-mediated antiangiogenic gene transfer directly to endothelial cells without concomitant vector-associated cytotoxicity. However, lentivirus vectors could efficiently and stably transduce T24 human bladder cancer cells that are relatively resistant to adenovirus infection due to loss of coxsackievirus-adenovirus receptor expression. Long-term expression and secretion of angiostatin and endostatin from lentivirus-transduced T24 cells resulted in significant inhibition of cellular proliferation on coculture with endothelial cells. This report represents the first use of lentivirus-based vectors to deliver the antiangiogenic factors, angiostatin and endostatin, and suggests the potential utility of antiangiogenic gene therapy with lentiviral vectors for the treatment of cancer.  相似文献   

5.
Ovarian cancer is the leading cause of fatality among gynecological malignancies. Ovarian cancer growth is angiogenesis-dependent, and an increased production of angiogenic growth factors such as vascular endothelial growth factor is prognostically significant even during early stages of the disease. Therefore, we investigated whether antiangiogenic treatment can be used to inhibit the growth of ovarian cancer in an experimental model system. Mouse angiostatin (kringle 1-4) and endostatin were expressed in yeast. Purified angiostatin and endostatin were then used to treat established ovarian cancers in athymic mice. These studies showed that both angiostatin and endostatin inhibited tumor growth. However, angiostatin treatment was more effective in inhibiting ovarian cancer growth when compared with endostatin in parallel experiments. Residual tumors obtained from angiostatin- and endostatin-treated animals showed decreased number of blood vessels and, as a consequence, increased apoptosis of tumor cells. Subsequently, the efficacy of a combined treatment with angiostatin and endostatin was investigated. In the presence of both angiostatic proteins, endothelial cell proliferation was synergistically inhibited. Similarly, a combination regimen using equal amounts of angiostatin and endostatin showed more than additive effect in tumor growth inhibition when compared with treatment with individual angiostatic protein. These studies demonstrate synergism between two angiostatic molecules and that antiangiogenic therapy can be used to inhibit ovarian cancer growth.  相似文献   

6.
A human ovarian cancer cell line, which migrates to mouse ovaries and establishes peritoneal carcinomatosis, was used to evaluate the cooperative effect of an antiangiogenic gene therapy combined with chemotherapy. The ovarian carcinoma cell line MA148 was genetically modified by "Sleeping Beauty" transposon-mediated delivery of DsRed2 fluorescent protein. Stable, high-level expression of DsRed protein enabled in vivo imaging of peritoneal dissemination of ovarian cancer. Both external and internal imaging, along with histopathology, showed migration of i.p. injected human ovarian cancer cell line to mouse ovaries. Using this model, we evaluated the effect of adeno-associated virus (AAV)-mediated expression of a mutant endostatin either alone or in combination with carboplatin treatment. A single i.m. injection of recombinant AAV (rAAV)-mutant human endostatin with P125A substitution (P125A-endostatin) showed sustained expression of mutant endostatin. Antiangiogenic gene therapy inhibited orthotopic growth of ovarian cancer and resulted in 33% long-term tumor-free survival. A single cycle of carboplatin treatment combined with mutant endostatin gene therapy resulted in 60% of the animals remaining tumor free for >200 days, which was significantly better than rAAV-LacZ and/or carboplatin. Combination treatment delayed tumor appearance in 40% of the animals, wherein the residual tumors were smaller in size with limited or no peritoneal metastasis. These studies suggest that AAV-mediated gene therapy of P125A-endostatin in combination with carboplatin is a useful method to inhibit peritoneal dissemination of ovarian carcinoma.  相似文献   

7.
Kim KS  Park YS 《Oncology research》2005,15(7-8):343-350
Angiostatin and endostatin are potent endothelial cell growth inhibitors and have been carefully evaluated for antiangiogenic cancer therapy. Previously, we have shown that subcutaneous administration of angiostatin K1-3 and endostatin genes complexed with liposomal vectors is a more practical treatment procedure than administration of angiostatin and endostatin proteins. This study provides additional conclusive evidence supporting the effectiveness of antiangiogenic cancer gene therapy employing angiostatin K1-3 and endostatin genes. Plasmids encoding a mouse angiostatin K1-3 gene (pFLAG-AngioK1/3) and an endostatin gene (pFLAG-Endo) were introduced by the hydrodynamic transduction method into mice carrying Matrigel plugs or B16BL6 mouse melanoma tumors. A single systemic injection of the two genes exhibited potent antiangiogenic and antitumor activity in the mouse model. Hydrodynamic coadministration of the genes inhibited the B16BL6 mouse melanoma growth and pulmonary metastasis more effectively than administration of either gene alone. Compared with the untreated control group, the mice cotreated with pFLAG-AngioK1/3 and pFLAG-Endo exhibited 75% reduction of tumor growth while those treated with pFLAG-AngioK1/3 or pFLAG-Endo showed 46% and 52% reduction, respectively. The cotreatment inhibited B16BL6 pulmonary metastasis formation by 80% while the inhibition induced by individual treatment with pFLAG-AngioK1/3 or pFLAG-Endo was 68% and 71%, respectively. These results provide additional evidence that systemic expression of angiostatin K1-3 and/or endostatin genes is a viable alternative procedure for antiangiogenic cancer therapy.  相似文献   

8.
Gene transfer delivery of endogenous angiogenesis inhibitors such as angiostatin would circumvent problems associated with long-term administration of proteins. Kaposi's sarcoma (KS), a highly vascular neoplasm, is an excellent model for studying tumor angiogenesis and antiangiogenic agent efficacy. We investigated the effects of angiostatin gene transfer in in vitro and in vivo models of KS-induced neovascularization and tumor growth. A eukaryotic expression plasmid and a Moloney leukemia virus-based retroviral vector for expression of murine angiostatin were generated harboring the angiostatin cDNA with cleavable leader signals under the control of either the strong cytomegalovirus promoter/enhancer or the Moloney leukemia virus long terminal repeat. Angiostatin secretion was confirmed by radioimmunoprecipitation and Western blot analysis. Supernatants of angiostatin-transfected cells inhibited endothelial cell migration in vitro. Stable gene transfer of the angiostatin cDNA by retroviral vectors in KS-IMM cells resulted in sustained angiostatin expression and delayed tumor growth in nude mice, which was associated with reduced vascularization. These findings suggest that gene therapy with angiostatin might be useful for treatment of KS and possibly other highly angiogenic tumors.  相似文献   

9.
Antiangiogenic factors are potent endothelial cell growth inhibitors that have been shown to inhibit angiogenesis in vitro and tumor growth in mice. We have demonstrated the synergistic antitumor effect of antiangiogenic genes (mouse angiostatin: pBLAST-mAngio; and mouse endostatin: p-BLAST42-mEndo XV) delivered to tumors by low-voltage electroporation in mouse colon 26 models. A synergistic antitumor effect was strongly suggested by in vivo tumor growth kinetics, as well as in survival studies with the mice. RT-PCR confirmed that the fragments of each gene were transferred by low-voltage electroporation in the tumor. Decreased microvessel density measurements in tumors also confirmed the efficacy of the synergistic antitumor effect of both genes. Significant growth inhibition was observed in mice treated with a 1:1 proportion of angiostatin and endostatin genes, and the order of the both genes transferred (first the endostatin gene, followed 1 week later by the angiostatin gene) had a profound inhibitory effect on tumor growth. These data suggest that in vivo delivery of antiangiogenic genes with low-voltage electroporation could be a possible therapeutic strategy for established solid tumors when both genes were applied in combination.  相似文献   

10.
PURPOSE: Recombinant adeno-associated virus (rAAV)-mediated antiangiogenic gene therapy offers a powerful strategy for cancer treatment, maintaining sustained levels of antiangiogenic factors with coincident enhanced therapeutic efficacy. We aimed to develop rAAV-mediated antiangiogenic gene therapy delivering endostatin and 3TSR, the antiangiogenic domain of thrombospondin-1. EXPERIMENTAL DESIGN: rAAV vectors were constructed to express endostatin (rAAV-endostatin) or 3TSR (rAAV-3TSR). The antiangiogenic efficacy of the vectors was characterized using a vascular endothelial growth factor (VEGF)-induced mouse ear angiogenesis model. To evaluate the antitumor effects of the vectors, immunodeficient mice were pretreated with rAAV-3TSR or rAAV-endostatin and received orthotopic implantation of cancer cells into the pancreas. To mimic clinical situations, mice bearing pancreatic tumors were treated with intratumoral injection of rAAV-3TSR or rAAV-endostatin. RESULTS: rAAV-mediated i.m. gene delivery resulted in expression of the transgene in skeletal muscle with inhibition of VEGF-induced angiogenesis at a distant site (the ear). Local delivery of the vectors into the mouse ear also inhibited VEGF-induced ear angiogenesis. Pretreatment of mice with i.m. or intrasplenic injection of rAAV-endostatin or rAAV-3TSR significantly inhibited tumor growth. A single intratumoral injection of each vector also significantly decreased the volume of large established pancreatic tumors. Tumor microvessel density was significantly decreased in each treatment group and was well correlated with tumor volume reduction. Greater antiangiogenic and antitumor effects were achieved when rAAV-3TSR and rAAV-endostatin were combined. CONCLUSIONS: rAAV-mediated 3TSR and endostatin gene therapy showed both localized and systemic therapeutic effects against angiogenesis and tumor growth and may provide promise for patients with pancreatic cancer.  相似文献   

11.
Transfection of the antiangiogenic angiostatin and endostatin genes was shown to be an alternative to high-dose administration of angiostatin or endostatin proteins for cancer therapy. We have systematically investigated whether coadministration of the mouse angiostatin kringle 1-3 gene (pFLAG-AngioK1/3) and the endostatin gene (pFLAG-Endo) complexed with cationic liposomes exhibits enhanced therapeutic efficacy. In vitro, the coexpressed mixture of angiostatin K1-3 and endostatin more effectively reduced angiogenesis in chorioallantoic membranes than either angiostatin K1-3 or endostatin alone. In vivo, subcutaneous co-administration of pFLAG-AngioK1/3 and pFLAG-Endo lipoplexes more effectively inhibited vascularization in Matrigel plugs implanted in mice than either one alone. Additionally, subcutaneous administration of these genes inhibited the growth and formation of pulmonary metastases of B16BL6 melanoma cells in mice. Compared to treatment with an empty vector, treatment with pFLAG-AngioK1/3 plus pFLAG-Endo inhibited 81% of tumor growth, while treatment with pFLAG-AngioK1/3 or pFLAG-Endo inhibited tumor growth 70 and 69%, respectively. Cotreatment with the two plasmids after primary tumor excision induced a 90% inhibition of pulmonary metastases versus 79% for pFLAG-AngioK1/3 or 80% for pFLAG-Endo individually. These results suggest that combined administration of angiostatin K1-3 and endostatin genes complexed with cationic liposomes may be an innovated antiangiogenic strategy for cancer therapy.  相似文献   

12.
Gene therapy transfer of angiostatin and endostatin represents an alternative method of delivering angiogenic polypeptide inhibitors. We examined whether liposomes complexed to plasmids encoding angiostatin or endostatin inhibited angiogenesis and the growth of MDA-MB-435 tumors implanted in the mammary fat pads of nude mice. We determined that plasmids expressing angiostatin (PCI-Angio) or endostatin (PCI-Endo) effectively reduced angiogenesis using an in vivo Matrigel assay. We then investigated the efficacy of these plasmids in reducing the size of tumors implanted in the mammary fat pad of nude mice. Both PCI-Angio and PCI-Endo significantly reduced tumor size when injected intratumorally (P < 0.05). Compared to the untreated control group, the mice treated with PCI-Angio and PCI-Endo exhibited a reduction in tumor size of 36% and 49%, respectively. In addition, we found that i.v. injections of liposomes complexed to PCI-Endo reduced tumor growth in the nude mice by nearly 40% when compared to either empty vector (PCI) or untreated controls (P < 0.05). These findings provide a basis for the further development of nonviral delivery of antiangiogenic genes.  相似文献   

13.
The possibility of inhibiting tumor growth by blocking the formation of new tumor vessels has recently received attention. Antiangiogenic tumor therapies have recently attracted intense interest because of their direct endothelial targeting and the absence of drug resistance. Local antiangiogenic gene therapy for cancer offers a potential way to achieve sustained therapeutic release of antiangiogenic substances. As a step toward this goal, we used liposomes complexed to angiostatin cDNA and targeted to human squamous cell carcinoma cell lines in vivo. Tumor cells expressing angiostatin after local gene transfer showed markedly reduced vascularity and contained many apoptotic tumor cells. These results demonstrate the potential utility of liposome-derived angiostatin for adjuvant therapy of oral cancer in humans.  相似文献   

14.
Baculovirus is an insect virus that is non-pathogenic to humans and has emerged as a promising gene therapy vector. Since solid tumor growth/metastasis critically relies on angiogenesis and hEA, a fusion protein comprising human endostatin and angiostatin, exhibits potent antiangiogenic and antitumor efficacy in mouse models; this study aimed to evaluate the feasibility of baculovirus for hEA expression and antiangiogenesis-based cancer gene therapy. Toward this end, we constructed Bac-hEA that mediated transient hEA expression and Bac-ITR-hEA that exploited the adeno-associated virus inverted terminal repeats (ITRs) for prolonged hEA expression. Western blot and ELISA analyses showed that both Bac-hEA and Bac-ITR-hEA expressed hEA in transduced mammalian cells, yet Bac-ITR-hEA only marginally prolonged the hEA expression. In comparison with Bac-hEA, nonetheless, Bac-ITR-hEA significantly enhanced the hEA expression level that concurred with augmented antiangiogenic properties, as demonstrated by cell proliferation, migration and tubule network formation assays. Importantly, intratumoral injection of Bac-ITR-hEA into prostate cancer mouse models, when compared with Bac-hEA, exerted stronger antiangiogenic effects in vivo, more potently inhibited tumor growth and significantly prolonged mouse survival. This study collectively supported the notion that hEA is an effective antiangiogenic protein and proved the potential of baculovirus as a vector for antiangiogenesis-based cancer therapy, which may be combined with chemotherapy, radiotherapy or gene therapies using other vectors.  相似文献   

15.
Liu F  Tan G  Li J  Dong X  Krissansen GW  Sun X 《Cancer science》2007,98(9):1381-1387
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and is chemoresistant to anticancer drugs. Anti-angiogenic therapy has been shown to enhance the efficacy of chemotherapy to treat solid tumors. The aim of the present study was to determine whether endostatin, a potent antiangiogenic agent, could enhance the efficacy of doxorubicin to combat HCC. An endostatin expression plasmid was constructed and its expression in vitro and in vivo was detected after gene transfer. Recombinant endostatin inhibited angiogenesis in the chorioallantoic membrane assay, and showed synergistic effects with doxorubicin in inhibiting the in vitro proliferation of endothelial cells, but not that of tumor cells. Both endostatin gene therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and tumor angiogenesis. Combination therapy with endostatin gene therapy and doxorubicin showed a stronger effect in suppressing tumor growth, and tumor angiogenesis, than the respective monotherapies. Gene transfer of endostatin down-regulated the expression of both hypoxia-inducible factor-1alpha and vascular endothelial growth factor (VEGF), whereas doxorubicin only down-regulated VEGF expression. Endostatin and doxorubicin synergized to down-regulate VEGF expression. Endostatin and doxorubicin combination therapy warrants investigation as a therapeutic strategy to combat HCC.  相似文献   

16.
Antiangiogenic therapy is a promising alternative for prostate cancer growth and metastasis and holds great promise as an adjuvant therapy. The present study evaluated the potential of stable expression of angiostatin and endostatin before the onset of neoplasia and during the early and late stages of prostate cancer progression in transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Groups of 5-, 10-, and 18-week-old male TRAMP mice received recombinant adeno-associated virus-6 encoding mouse endostatin plus angiostatin (E+A) by i.m. injection. The effects of therapy were determined by sacrificing groups of treated mice at defined stages of tumor progression and following cohorts of similarly treated mice for long-term survival. Results indicated remarkable survival after recombinant adeno-associated virus-(E+A) therapy only when the treatment was given at an earlier time, before the onset of high-grade neoplasia, compared with treatment given for invasive cancer. Interestingly, early-stage antiangiogenic therapy arrested the progression of moderately differentiated carcinoma to poorly differentiated state and distant metastasis. Immunohistochemical analysis of the prostate from treated mice indicated significantly lower endothelial cell proliferation and increased tumor cell apoptosis. Vascular endothelial growth factor receptor (VEGFR)-2 expression was significantly down-regulated in tumor endothelium after treatment but not VEGFR-1. Analysis of the neuroendocrine marker synaptophysin expression indicated that antiangiogenic therapy given at an early-stage disease reduced neuroendocrine transition of the epithelial tumors. These studies indicate that stable endostatin and angiostatin gene therapy may be more effective for minimally invasive tumors rather than advanced-stage disease.  相似文献   

17.
Modalities that act through different mechanisms can often provide synergistic antitumor activity for the treatment of refractory tumors when used in combination. Here we report a gene therapy approach in which the genes for the angiogenesis inhibitor, endostatin, and the marker protein and potent immunogen, green fluorescent protein (GFP), were delivered to murine neuroblastoma cells prior to inoculation of the tumor cells into syngeneic immunocompetent mice. Although the effect of either angiogenesis inhibition or immunomodulation alone resulted in only a modest delay in tumor growth, when these approaches were used in combination, prevention of the formation of appreciable tumors was effected in 15 of 24 (63%) mice. The combination of endostatin and GFP expression elicited a strong immune response that was T cell-mediated and was reactive against both GFP and tumor cell line-specific antigens. This afforded treated mice protection against subsequent tumor challenge with unmodified tumor cells. These results suggest that antiangiogenic and immunotherapy strategies, when used in a gene therapy-mediated approach, can act synergistically in an effective multimodality anticancer approach.  相似文献   

18.
Antiangiogenic gene transfer has the potential to be more efficacious than protein-based therapies or pharmacotherapies for the control of solid tumor growth, invasion and metastasis. For a sustained antiangiogenic effect, a vector capable of long-term expression without vector-associated immunity or toxicity is advantageous. The present study evaluated the potential of a recombinant adeno-associated virus-2 (rAAV) encoding the human soluble FMS-like tyrosine kinase receptor 1 (sFlt-1), which functions by both sequestering vascular endothelial growth factor (VEGF) and forming inactive heterodimers with other membrane-spanning VEGF receptors, in vitro and in vivo. Results indicated significant growth inhibitory activity of the transgenic factor in a human umbilical vein endothelial cell proliferation assay in vitro and protection against the growth of an angiogenesis-dependent human ovarian cancer cell line, SKOV3.ip1, xenograft in vivo with increased disease-free survival. Stable expression of the secretory factor and transgene persistence were confirmed by immunohistochemistry and in situ hybridization analyses, respectively. Increased therapeutic effects on both the growth index of the implanted tumor cells and tumor-free survival also correlated with an increasing dose of the vector used. These studies indicate that rAAV-mediated sFlt-1 gene therapy may be a feasible approach for inhibiting tumor angiogenesis, particularly as an adjuvant/therapy.  相似文献   

19.
Angiogenesis, an essential phenotype for tumor formation, requires the interaction of many cells within the tumor microenvironment. Therefore, successful antiangiogenic therapies must be able to block all of the different mechanisms tumors use to induce neovascularization. A major challenge for developing such protocols is determining which agents are likely to have the highest degree of synergistic activity in vivo. We treated human microvascular endothelial cells with six inhibitors of angiogenesis and used microarrays to seek divergent patterns of gene expression suggestive of potential synergies. The expression profiles of a thrombospondin-mimetic peptide (DI-TSPa) and TNP-470 (TNP) were very similar, whereas endostatin had a dramatically different profile. In vitro, endostatin was synergistically antiangiogenic with either TNP-470 or DI-TSPa. In vivo, mice bearing Lewis lung carcinoma cells treated with a combination of endostatin and either DI-TSPa or TNP-470, at doses that were ineffective when used alone, resulted in a marked inhibition of tumor growth and decreased tumor angiogenesis. Conversely, animals treated with both DI-TSPa and TNP-470 demonstrated a modest effect on both tumor growth and angiogenesis. These results suggest that even in the absence of a complete mechanistic understanding of how these inhibitors work, gene expression profiling may be used to predict synergistic antiangiogenic activity and thus maximize their antitumor efficacy.  相似文献   

20.
Novel treatment strategies such as gene therapy are warranted in view of the failure of current treatment approaches to cure a high percentage of patients with advanced bladder cancers. Testing of the hypothesis that blocking the angiogenic switch may keep tumour growth in check has been facilitated by the discovery of endogenous inhibitors of angiogenesis and has also added another research dimension to the field of cancer gene therapy. Consequently, the concept of targeting the tumour vasculature with anti-angiogenic agents has emerged as an attractive new strategy in the treatment of cancer. Targeted biological therapies that selectively interfere with tumour angiogenesis could improve survival among patients with bladder cancer. Endostatin is a tumour-derived angiogenesis inhibitor and is the first endogenous inhibitor of angiogenesis to be indentified in a matrix protein. Gene therapy represents an attractive approach to treat cancers and other chronic diseases. The development of an effective delivery system is absolutely critical to the usefulness and safety of gene therapy. At present, the adeno-associated virus (AAV) vector has the most promising potential in view of its non-pathogenicity, wide tropisms and long-term transgene expression in vivo. Gene therapy studies using different serotypes of recombinant AAV (rAAV) as delivery vehicles have proved rAAVs to be an effective modality of cancer gene therapy. In the present study, an IgG fragment was inserted at the start of the sequence coding for endostatin with the aim of enabling continuous secretion of endostatin the serum. We also investigated the suppression effect of AAV-mediated endostatin expression on endothelial cells and in mice xenograft models of bladder cancer. Our data demonstrates that rAAV-endostatin controlled tumour cell growth and achieves strong anti-tumour efficacy in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号