首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.  相似文献   

2.
Lactose monohydrate was melt agglomerated in an 8-l high shear mixer using Gelucire 50/13, Stearate 6000 WL 1644, or polyethylene glycol (PEG) 3000 as meltable binder. The impeller speed was varied at two levels, and massing time was varied at six levels. In order to obtain a similar agglomerate growth, a larger binder volume had to be used with Gelucire 50/13 than with Stearate 6000 WL 1644 and PEG 3000. The lower viscosity of Gelucire 50/13 gave rise to agglomerates of a wider size distribution and a higher porosity as well as more adhesion of mass to the bowl. A lower binder viscosity resulted in more spherical agglomerates at the low impeller speed.  相似文献   

3.
This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.  相似文献   

4.
The origination of granules in the early seconds is an important aspect of high shear granulation. To elucidate these mechanisms, a substandard amount (1.5% w/w) of an aqueous hydroxypropyl cellulose solution was added to four different lactose mixtures: (1) lactose 100 M (d(4,3) approximately 170 microm), (2) lactose 200 M (d(4,3) approximately 50 microm), and (3, 4) 10% magnesium stearate/lactose 100 or 200 M. Between 1 and 15 s after binder addition samples were taken, which were immediately frozen in liquid nitrogen. The frozen sample was sieved into granular (> 280 microm) and non-granular-material (< 280 microm). The binder distribution in these fractions was determined. The observed binder distribution behaviour revealed that three different nucleation mechanisms can occur: (I) For lactose 100 M holds that all the binder is initially located in the granules. These granules are subsequently broken again. (II) The lactose 200 M granules also contain 100% of the added binder liquid. Contrary to lactose 100 M the lactose 200 M granules remain intact during the process. It is argued that in both cases liquid penetration is responsible for the accumulation of all liquid in the granules. A theoretical evaluation also confirmed that liquid penetration leads to the formation of the primary granules (III) No liquid penetration is possible in the hydrophobic magnesium stearate/lactose mixtures and the binder is completely dispersed in the non-granular material.  相似文献   

5.
Effects of two different sets of impeller blades on melt pelletization of lactose with polyethylene glycol (PEG) 3000 were investigated in an 8 litre high shear mixer. Results obtained in the 8 litre mixer were compared with previous results from a 50 litre high shear mixer of the same type. In the 8 litre mixer curved impeller blades were found to give rise to a high power input and smooth pellets of a spherical shape, whereas plane impeller blades caused a lower power input and irregular agglomerates. Agglomerate growth was found to be different in mixers of different scale. This difference was primarily ascribed to differences in movement of the mass, power input and product temperature.  相似文献   

6.
A study was performed in order to elucidate the effects of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneities. Granules were produced by melt granulation in a high shear mixer from each of four calcium carbonates having mean particle sizes in the range of 5.5-63.1 microm. Each of three polyethylene glycols (PEGs) having viscosities in the range of approximately 40-14,000 mPas were applied as meltable binders. The size distribution of the calcium carbonate particles in three granule size fractions (125-250, 355-500, and 800-1000 microm) was measured after disintegration of the granules. Intragranular particle size heterogeneities were evaluated qualitatively by means of scanning electron microscopy. A preferential growth of the smaller particles was found to give rise to a higher content of small particles in large granules when calcium carbonates with mean particle sizes of 11.7, 34.5, and 63.1 microm were granulated with a binder of low viscosity. The use of a binder of medium or high viscosity leads to a marked reduction of these heterogeneities. A preferential growth of larger particles was seen when calcium carbonates with mean particle sizes of 5.5 and 11.7 microm were granulated with a highly viscous binder. The use of a binder with low or medium viscosity resulted in an increased homogeneity. Intragranular particle size heterogeneities were primarily seen when 5.5 and 11.7 microm calcium carbonate particles were granulated with a highly viscous binder.  相似文献   

7.
The effects of process conditions and the apparatus variables on the granulometric characteristics of a formulation containing a hydrophobic binder (stearic acid), lactose and paracetamol prepared by melt pelletization process were investigated in a 10-litre high shear mixer. The factors under investigation were: impeller speed, massing time, type of impeller blades and presence of the deflector and their reciprocal interactions. Two granule characteristics were analysed: the percentage of aggregates larger than 3000 microm (Y(1)) and the yield of the 2000-microm pellet size fraction (Y(2)). In order to estimate simultaneously the above-mentioned factors, a particular experimental design was adopted, that allowed the reduction of the number of trials from 378 to 35 and took into consideration other uncontrolled factors with the aid of a block variable. Using the postulated model, we found the optimal operating conditions to minimize Y(1) and increase Y(2) by selecting the type of impeller, and by using an impeller speed lower than 300 rpm, a massing time of 8-9 min and by not using the deflector. Finally, the validity of the adopted strategy has been proved with an additional check point.  相似文献   

8.
The Peschl-split bed shear tester was utilised to study the formation of different liquid states during wet massing for granulation. Using lactose monohydrate as a model bulking agent the threshold between pendular and funicular state was found to be at about 6% (w/w) of liquid binder added to the wet mass, here a 5% colloidal solution of HPMC in water. The upper limit of the funicular state appeared to be at approximately 15% (w/w) of liquid binder. The threshold values obtained from the shear cell measurements did correlate with values obtained from dried granule characteristics such as granule density and compressive Young's modulus determined by Dynamic Mechanical Analysis. The compressive Young's modulus increased with an increasing density of the wet mass during the shear experiments and decreased with an increase in the angle of internal friction. The results suggest that stiffer granules were a result of densification, not the strength of liquid bridge bond formation.  相似文献   

9.
Objectives The aim of this study was to investigate the correlation between the growth behaviour and in‐vitro dissolution rate of water‐insoluble drugs prepared with high‐shear wet granulation. Methods Granules containing nimodipine, microcrystalline cellulose, low‐substituted hydroxypropylcellulose and aqueous solution of hydroxypropylcellulose were prepared and the effects of independent process variables, including impeller speed and liquid‐to‐solid ratio were taken into consideration. The mean granule size, granule‐size distribution (GSD), porosity and surface properties were monitored at different kneading times to identify the granule‐growth mechanisms simultaneously. A computer‐based method was applied to simulate the dissolution behaviour of polydisperse granules based on the GSD data. Key findings The in‐vitro dissolution rate of drug was high for the early stages of granulation and sharply decreased when coalescence and consolidation of granules started, approaching a flat and low level when granules were sufficiently consolidated. The simulated dissolution results were in agreement with experimental observations and were significantly affected by the GSD, porosity and surface properties of granules during the granulation process. Moreover the GSD was directly related to the granule‐growth behaviour and mechanisms. Conclusions In general, it was concluded that the dissolution properties of nimodipine basically correlated with the growth behaviour of granules in a high‐shear mixer. The simulation method based on GSD can be used as a convenient and rapid way to predict the dissolution properties for formulation development and granulation optimization.  相似文献   

10.
The effects of process conditions and binder content on the process yield and pellet characteristics of two formulations prepared by melt pelletization in a laboratory-type high shear mixer were investigated. The formulations were prepared using Gelucire® 50/13 and Lutrol® F68 as meltable binders. The factors under investigation were impeller speed, mixing time, mixer load, binder concentration, and their reciprocal interactions. Analysis of variance (ANOVA) was used in order to study the significance of above mentioned process variables on the useful yield. Twenty-seven experiments were required for the response surface methodology based on Box–Behnken experimental design (24 combinations with three replications of the centre point) for each formulation.The control over the process and the quality of the resulting pellets were found to depend on the rheological properties of the binders used. In the case of a low viscosity binder (Gelucire® 50/13), the process was easily controllable whereas in the case of a high viscosity binder (Lutrol® F68), the process was more difficult to control.The useful yield of the formulation in the case of the low viscosity binder was found to be mostly influenced by the concentration of the binder. On the other hand, different binder concentrations did not affect the useful yield of the formulation prepared by use of the high viscosity binder. In the latter case, mixing time was identified as the variable that mostly influenced the pelletization process.Finally response surface methodology was applied to find the optimum values of the process variables.  相似文献   

11.
The structure of granules changes during the high shear granulation process. The purpose of this research was to investigate the effect of the amount of binder liquid on the structure of the granules and the structural changes which occur during the granulation process, using microcrystalline cellulose (MCC) and water as the model system. The structure is the result of the granulation mechanism; therefore, conclusions can be drawn about the latter by studying the former. X-ray microtomography and scanning electron microscopy (SEM) were applied in order to visualise the densification process of granules, which were first freeze dried in order to preserve their structure. Variations in their porosity were quantified by applying image analysis to the tomography results. In order to link the granule mechanical properties to their structural differences, a micromanipulation technique was used to measure granule resistance to deformation. MCC granules granulated with 100% (w/w) water showed increased densification with time, as expected; detailed examination showed that densification is more pronounced in the core of the granule; whereas the outer part remained more porous. Increased densification reduces deformability, so that granules become more resistant to breakage. The lower deformability of the densified granules in the final stages of granulation might result in establishment of equilibrium between attrition and growth, without substantial gross breakage. On the other hand, when more water was used (125%, w/w), densification was hardly observed; the porosity of the granule core was still high even after prolonged granulation times. This may be explained by the fact that higher water content increases the ease of deformation of granules. This increased deformability led to significant granule breakage even during the final phases of the granulation process. Therefore, for these granules a final equilibrium between breakage and coalescence might be established. This also explains why more granules produced with 125% granulation liquid were composed of fragments of irregular shape.

Our results establish the link between the granulation behaviour of MCC in the latter stages and the material structure of these granules, which is determined by their liquid content. The process conditions (amount of liquid) to be chosen depend largely on the final purpose for which the granular material is produced.  相似文献   


12.
This study was performed in order to evaluate the possibility of obtaining prolonged release matrix pellets by a melt pelletization process in a laboratory high shear mixer (Mi-Pro, Pro-C-epT). Phenylephrine hydrochloride pellet formulations based on lactose 450 mesh and a mixture of Compritol 888 and Precirol ATO 5 as melting binders were evaluated. The fatty binder content of pellets was substantially increased (from 18 to 80% w/w). The effects of jacket temperature, massing time (MT) and impeller speed (IS) on the pellet characteristics were investigated. It was shown that pellets of narrow size distribution can be produced by using an IS of 800 rpm, a chopper speed of 4000 rpm and a MT of 8 min. On the other hand, the applicability of this technique for the production of sustained-release pellets using ciprofloxacin hydrochloride, ketoprofen and theophylline as less water soluble model drugs than phenylephrine hydrochloride was also studied. This study demonstrated that formulations based on an appropriate mixture of Precirol and Compritol can be used to produce in a short time prolonged release pellets for very hydrosoluble drugs like phenylephrine hydrochloride as well as for the other drugs tested.  相似文献   

13.
The applicability of a high shear mixer for melt pelletisation of binary mixtures of sodium valproate and glycerol monostearate was investigated. The effects of binder concentration, impeller speed, jacket temperature and massing time on mean pellet size and size distribution were examined in a 2(4)-factorial design. Binder concentration and impeller speed were found to be the most important variables influencing the mean granule size and size distribution. An increase in each of those accelerated the granule growth. Due to the solubility of the drug in the molten binder very low amounts of binder were necessary for the formation of pellets. The modified high shear mixer was found to be suitable for batch sizes of 1-4 kg; granule growth was delayed with increasing load. A common pellet growth pattern, which can be divided into three phases, was derived and confirmed from all trials. The process was monitored by means of a torque measuring system. The torque-time curve can be used to detect the beginning of the destruction phase.  相似文献   

14.
This study was performed in order to evaluate the possibility of obtaining spherical agglomerates with a high content of meltable binder by a melt agglomeration process in a high shear mixer. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 1500 or 6000 in a 10-l high shear mixer at an impeller speed of 400 rpm. The PEG 1500 was used as a size fraction of beads, and the PEG 6000 as a fine powder, a powder, unfractionated beads, and size fractions of beads. It was found to be possible to incorporate a high amount of PEG (28% m/m of the amount of lactose), because the rather low impeller speed applied in the present experiments caused less densification of the agglomerates. The fine powder of the PEG 6000 caused a complete adhesion of the mass to the bowl shortly after melting. A rapid agglomerate growth by coalescence was found to be the dominant growth mechanism when agglomeration was performed with the PEG 6000 powder. The PEG beads resulted in a slow and more controllable agglomerate growth, because the growth occurred primarily by an immersion of the lactose particles in the surface of the molten binder droplets. The initial shape of the agglomerates produced with the PEG beads was similar to the spherical shape of the beads. This shape could not be maintained during the process due to a breakage of the agglomerates caused by a hollow structure of the PEG beads.  相似文献   

15.
The process of melt pelletisation in a Diosna P10 high shear mixer was examined for sodium valproate and glycerol monostearate. The effects of binder concentration, impeller speed and massing time on mean granule size, size distribution and liquid saturation were investigated. Spherical pellets of almost similar size and size distribution were obtained after 20 min of massing time, with a binder content from 3.1 to 14.1% w/w by adjusting the impeller speed. Granule growth was observed at low levels of binder concentration and liquid saturation (<80%) which is untypical for melt granulation. The liquid saturation seemed to have no major influence on the final pellet size. Additional, mutually compensating effects on granule growth were found to be impeller speed and massing time for a fixed binder concentration. Low levels of both, binder concentration and impeller speed, allowed for good control of the process. The amount of water adsorbed by the hygroscopic drug was found to accelerate granule growth.  相似文献   

16.
Effects of particle size, morphology, particle density, and surface silicification, on powder flow properties were investigated using a ring shear tester. Flow properties were quantified by flow function (FF), that is, unconfined yield strength, f(c), as a function of major principal stress. A total of 11 powders from three series of microcrystalline cellulose (MCC): Avicel (regular MCC, elongated particles), Prosolv (silicified MCC, elongated particles), and Celphere (spherical MCC), were studied. Particle size distribution in each type of MCC was systematically different. Within each series, smaller particles always led to poorer powder flow properties. The slope of FF line was correlated to degree of powder consolidation by external stress. A key mechanism of the detrimental effect of particle size reduction on flow properties was the larger powder specific surface area. Flow properties of Celphere were significantly better than Avicel of comparable particles size, suggesting spherical morphology promoted better powder flow properties. Flow properties of powders different in densities but similar in particle size, shape, and surface properties were similar. When corrected for density effect, higher particle density corresponded to better flow behavior. Surface silicification significantly improved flow properties of finer MCC, but did not improve those of coarser.  相似文献   

17.
The purpose of this study was to investigate the effect of reducing drug proportion and mixing time on the content uniformity of a low dose drug. Buspirone hydrochloride was used as a model drug and was mixed with other ingredients in two different concentrations (0.5% w/w and 5% w/w) in a T. K. Fielder high shear mixer at a high impeller speed (522 rpm) and a high chopper speed (3600 rpm) up to 32 min. Samples were withdrawn from nine locations in the mixer at specific time points using a side-sampling thief probe. The final blends at 32 min were compressed using an instrumented tablet press. Tablets were sampled at the beginning, middle, and end of the compression run. The statistical results indicated that the drug proportion had a significant effect on the content uniformity of the powder blend and the corresponding tablets. For this study, the optimum time to mix the 0.5% w/w formulation was after 8 min while it was only 1 min for the 5% w/w formulation. The RSD of buspirone hydrochloride contents of tablets decreased as the compression run was toward its end. Uniformly mixed blends produced tablets that met the USP XXIV content uniformity requirements.  相似文献   

18.
The present study aims to investigate the behavior of melt agglomeration with a low-viscosity hydrophobic meltable binder by using a non-meltable additive. The size, crushing strength, and pore size distribution of resultant agglomerates, the rheological, surface tension, and wetting properties of the molten binder, as well as, the flow characteristics of preagglomeration powder blend were determined. The use of additive showed contradictory agglomerate growth-promoting and -retarding effects on the molten binder surface tension and the interparticulate frictional forces. Critical concentration effects of additive corresponded to threshold transition of agglomeration-promoting to -retarding behavior were discussed.  相似文献   

19.
The aim of this study was to prepare by melt agglomeration agglomerates containing solid dispersions of diazepam as poorly water-soluble model drug in order to evaluate the possibility of improving the dissolution rate. Lactose monohydrate was melt agglomerated with polyethylene glycol (PEG) 3000 or Gelucire 50/13 (mixture of glycerides and PEG esters of fatty acids) as meltable binders in a high shear mixer. The binders were added either as a mixture of melted binder and diazepam by a pump-on procedure or by a melt-in procedure of solid binder particles. Different drug concentrations, maximum manufacturing temperatures, and cooling rates were investigated. It was found to be possible to increase the dissolution rate of diazepam by melt agglomeration. A higher dissolution rate was obtained with a lower drug concentration. Admixing the binders by the melt-in procedure resulted in similar dissolution rates as the pump-on procedure. The different maximum manufacturing temperatures and cooling rates were found to have complex effects on the dissolution rate for formulations containing PEG 3000, whereas only minor effects of the cooling procedure were found with Gelucire 50/13. Gelucire 50/13 resulted in faster dissolution rates compared to PEG 3000.  相似文献   

20.
T Abberger 《Die Pharmazie》2001,56(12):949-952
The aim of the study was to investigate melt granulation in a laboratory scale fluid-bed granulator with respect to granule growth, granule properties and resulting tablet properties. The parameters investigated were method of addition of PEG (spray-on or addition as flakes), binder concentration, PEG type (3000, 4000 and 6000, sprayed-on), size (PEG 4000, added as three different sized flakes), powder type (two different sized lactose types and corn starch) and operating conditions (volume air flow and heating temperature). Addition of binder as flakes led to layering as a growth mechanism when the size of the flakes was high. Coalescence occurred when the size was low. Coalescence also occurred when spraying was the method of addition. Due to the greater viscosity of the PEG 6000 melt it produced bigger granules than 3000 or 4000. The influence of volume air flow was moderate and the influence of heating temperature in the range of 70-90 degrees C was very low with both methods of addition. The disintegration time of tablets from granules where PEG was added as flakes was shorter than from granules where PEG was sprayed-on. The latter method of binder addition led to tablets which did not disintegrate but eroded. This was apparently caused by formation of a binder matrix, which could not be destroyed by the disintegrant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号