首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transport of prostaglandin E(1) (PGE(1)) across the blood-brain barrier (BBB) was characterized using an in-situ rat brain perfusion technique. The uptake of [(3)H]PGE(1) was not affected by shortchain monocarboxylic acids (butyric acid and valeric acid). On the other hand, uptake of [(3)H]PGE(1) was significantly inhibited by medium-chain monocarboxylic acids such as hexanoic acid, enanthic acid and octanoic acid. These medium-chain monocarboxylic acids showed a more potent inhibitory effect on [(3)H]PGE(1) uptake with increasing number of carbon atoms. In contrast, there was no decrease in [(3)H]PGE(1) transport by any dicarboxylic acids with 5-8 carbon atoms. Valproic acid decreased [(3)H]PGE(1) uptake, whereas p-aminohippuric acid, a substrate for the organic anion transporter family, did not inhibit [(3)H]PGE(1) transport. Bromocresol green, an inhibitor of prostaglandin transporter (PGT), strongly decreased [(3)H]PGE(1) transport across the BBB. In addition, digoxin and taurocholate, substrates for organic anion transporting polypeptide subtype 2 (Oatp2), significantly inhibited [(3)H]PGE(1) uptake. RT-PCR analysis revealed that PGT mRNA and Oatp2 mRNA are expressed in a capillary-rich fraction from rat brain. Thus, it is suggested that PGE(1) transport across the BBB is mediated by some specific transport systems, possibly by the members of the Oatp family.  相似文献   

2.
The biflavone amentoflavone is an ingredient of Hypericum perforatum L. (Clusiaceae), a plant which is widely used for the treatment of mild to moderate depression. Amentoflavone inhibits the binding of flumazenil to the benzodiazepine binding site of the GABA A -receptor (IC(50) = 14.9 nM). Since it has to pass the blood-brain barrier (BBB) before reaching this receptor, the penetration of [(3)H]-amentoflavone through BBB was studied in an in vitro model consisting of primary cell cultures of porcine brain capillary endothelial cells (BCEC). Concentration-dependent uptake (37-2000 nM) was neither saturable nor temperature-sensitive indicating passive diffusion as the major uptake mechanism. This finding was confirmed by transport experiments through BCEC monolayers (> 2 % of applied dose was transported after 30 min). Co-administration of Hypericum extract increased amentoflavone transport significantly (amentoflavone alone: permeability coefficient P(app) = 4.59.10(-6) cm/s; co-administrated sucrose: P(app) = 3.22.10(-6)cm/s; amentoflavone together with hypericum: P(app) = 6.74.10(-6)cm/s, co-administrated sucrose P(app) = 5.49.10(-6)cm/s) indicating that Hypericum constituents enhance amentoflavone transport possibly by modulating paracellular permeability. Experiments with the P-glycoprotein (P-gp) overexpressing cell line P388-MDR showed that amentoflavone uptake was significantly enhanced by addition of the P-gp inhibitor verapamil, suggesting a P-gp mediated back-transport out of the cells. In conclusion, our findings show, that amentoflavone is able to pass the blood-brain barrier in vitro by passive diffusion.  相似文献   

3.
The blood-brain barrier acts as an interface between the brain and body through a combination of restrictive mechanisms and transport processes. Substances essential for brain function pass through the barrier either by passive diffusion or by active transport. We report here that [125I]-transforming growth factor-beta2 (TGF-beta2) passes through the blood-brain barrier and blood-nerve barriers, after intravenous, intraperitoneal or intramuscular injections. The entry of the [125I]-TGF-beta2 to the brain was rapid, saturable and inhibited by co-injection of unlabelled TGF-beta2. In contrast, co-injection of unlabelled TGF-beta2 increased the retention of [125I]-TGF-beta2 in the blood. The [125I]-TGF-beta2 transported into the brain was localised by autoradiography to the extracellular space, and was intact as judged by SDS-PAGE. The [125I]-TGF-beta2 was widely distributed throughout the brain, with the highest concentrations in the hypothalamus and nerves and the lowest in the cerebral hemispheres. The [125I]-TGF-beta2 had a half-life of 4 h in the brain. These results indicate that therapeutically relevant levels of TGF-beta2 reach the brain after peripheral administration of TGF-beta2.  相似文献   

4.
Alzheimer's disease, a neurodegenerative disorder, is associated with various pathological alterations to the blood-brain barrier, including disruption to the inter-endothelial tight junction proteins, altered expression of transport proteins involved in drug efflux, a reduction in cerebral blood flow and a thickening of the brain capillary basement membrane. There are many conflicting reports on whether such changes alter the ability of endogenous proteins to extravasate into the brain parenchyma, and there are even fewer reports focusing on the potential impact of these changes on drug transport into the CNS. The purpose of this review is to critically evaluate how the reported changes to the blood-brain barrier in Alzheimer's disease have (or have not) resulted in altered CNS drug delivery, and to highlight the requirement for more rigorous and systematic studies in this field for the benefit of drug discovery and delivery scientists.  相似文献   

5.
目的研究一甲基肼(MMH)跨血脑屏障转运的动力学特征,为阐明其血脑屏障转运机制提供依据。方法采用原位脑灌流技术对雄性Wistar大鼠进行MMH双侧脑灌流。MMH灌流浓度分别为145,290和580mg·L-1,灌流时间为2,5,8及10min;采用对-二甲氨基苯甲醛比色法进行脑组织中的MMH浓度测定。结果MMH可以跨过血脑屏障进入脑实质,脑中MMH浓度随着灌流浓度和灌流时间的增加而呈上升趋势;而MMH在各灌流浓度下跨血脑屏障转运速度常数kin并不随灌流浓度的升高而改变,分别为(0.0240±0.0015),(0.0308±0.0041)和(0.0300±0.0041)mL·min-1·g-1。结论MMH跨血脑屏障转运属于被动扩散的膜限速模型。  相似文献   

6.
Rapid and extensive biliary excretion of [D-penicillamine2,5]enkephalin (DPDPE) in rats as the unchanged peptide suggests that multiple transport proteins may be involved in the hepatobiliary disposition of this zwitterionic peptide. Although DPDPE is a P-glycoprotein substrate, the role of other transport proteins in the hepatic clearance of DPDPE has not been established. Furthermore, the ability of various experimental approaches to quantitate the contribution of a specific hepatic uptake or excretion process when multiple transport systems are involved has not been addressed. 3H-DPDPE uptake in suspended Wistar rat hepatocytes was primarily (>95%) due to temperature-dependent transport mechanisms; similar results were obtained in suspended hepatocytes from Mrp2-deficient (TR-) rats. Pharmacokinetic modeling revealed that saturable and linear processes were involved in 3H-DPDPE uptake in hepatocytes. The use of transport modulators suggested that hepatic uptake of 3H-DPDPE was mediated by Oatp1a1, Oatp1a4, and likely Oatp1b2. Accumulation of 3H-DPDPE in sandwich-cultured (SC) hepatocytes was rapid; uptake of 3H-DPDPE in SC rat hepatocytes from control and TR- rats was similar. However, the biliary excretion index and biliary clearance decreased by 83 and 85%, respectively, in TR- SC rat hepatocytes, indicating that DPDPE is an Mrp2 substrate. Rate constants for uptake and excretion of 3H-DPDPE in SC rat hepatocytes were determined by pharmacokinetic modeling; data were consistent with basolateral excretion of 3H-DPDPE from the hepatocyte. These results demonstrate the complexities of hepatobiliary disposition when multiple transport mechanisms are involved for a given substrate and emphasize the necessity of multi-experimental approaches for the comprehensive resolution of these processes.  相似文献   

7.
脑缺血再灌注后(^3H)GABA通过大鼠血脑屏障的外排转运   总被引:3,自引:0,他引:3  
目的 研究脑缺血/再灌后(^3H)GABA通过大鼠血脑屏障的外排运是否增强及其机制。方法 将(^3H)GABA或GABA(或丙磺舒)与其联合注射到缺血/再灌大在脑皮层顶二区后,测定(^3H)GABA的脑外排指数(BEI)及iv依文思蓝(EB)后EB的脑摄取量。结果:10min缺血/再灌30min,2h,6h和24h大鼠的BEI分别为67%,83%,92%和87%,显著高于对照值(58%),EB脑报  相似文献   

8.
Transporter-mediated permeation of drugs across the blood-brain barrier   总被引:16,自引:0,他引:16  
Drug distribution into the brain is strictly regulated by the presence of the blood-brain barrier (BBB) that is formed by brain capillary endothelial cells. Since the endothelial cells are connected to each other by tight junctions and lack pores and/or fenestrations, compounds must cross the membranes of the cells to enter the brain from the bloodstream. Therefore, hydrophilic compounds cannot cross the barrier in the absence of specific mechanisms such as membrane transporters or endocytosis. So, for efficient supply of hydrophilic nutrients, the BBB is equipped with membrane transport systems and some of those transporter proteins have been shown to accept drug molecules and transport them into brain. In the present review, we describe mainly the transporters that are involved in drug transfer across the BBB and have been molecularly identified. The transport systems described include transporters for amino acids, monocarboxylic acids, organic cations, hexoses, nucleosides, and peptides. Most of these transporters function in the direction of influx from blood to brain; the presence of efflux transporters from brain to blood has also been demonstrated, including P-glycoprotein, MRPs, and other unknown transporters. These efflux transporters seem to be functional for detoxication and/or prevention of nonessential compounds from entering the brain. Various drugs are transported out of the brain via such efflux transporters, resulting in the decrease of CNS side effects for drugs that have pharmacological targets in peripheral tissues or in the reduction of efficacy in CNS because of the lower delivery by efflux transport. To identify the transporters functional at the BBB and to examine the possible involvement of them in drug transports by molecular and physiological approaches will provide a rational basis for controlling drug distribution to the brain.  相似文献   

9.
The role of P-glycoprotein on the efflux of the 5-HT(1A) receptor agonist flesinoxan across the blood-brain barrier in vivo and in vitro was investigated. In vitro, the transport ratios (representing polarized transport) of flesinoxan (10 microg/ml) were 4.2 in the MDR1-transfected LLC-PK1 cell line, which could be inhibited by the Pgp modulators SDZ-PSC 833 and LY 335979 and 1.1 in the wild-type LLC-PK1 cell line after 4 h. Flesinoxan concentrations lower than 33 microg/ml were actively transported by Pgp, while at higher concentrations Pgp became saturated and transport in the MDR1-transfected cell line was comparable with the wild-type cell line. In the in vitro BBB co-culture model the transport ratio was 2.0 and was decreased to 1.0 in the presence of Pgp modulators. In vivo, the accumulation of flesinoxan in the brain at 3 h was much higher in the mdr1a(-/-) mice compared to mdr1a(+/+) mice (ratio 12.6 and 27.0 at dose levels of 3 mg/kg and 10 mg/kg respectively). In conclusion, both in vivo as well as in vitro results have demonstrated that Pgp is a limiting factor for the transport of the 5-HT(1A) receptor agonist flesinoxan into the CNS. This should be considered when its application in therapy is combined with other Pgp substrates.  相似文献   

10.
The cyclic peptide [2,6-dimethyl-Tyr1,D-Pen2,D-Pen5]enkephalin (2) was synthesized by solid-phase techniques and contains the optically pure unnatural amino acid 2,6-dimethyltyrosine (DMT) as a replacement for the Tyr1 residue of [D-Pen2,D-Pen5]enkephalin (DPDPE, 1). This structural modification resulted in a 10-fold increase in the potency of 2 at the delta opioid receptor and a 35-fold increase in potency at the mu receptor while substantial delta receptor selectivity was maintained. In addition, 2 was 86-fold more effective than 1 at inhibiting electrically stimulated contractions of the mouse vas deferens. In the hot plate test, 2 was 7-fold more potent than 1 after intracerebroventricular administration in the mouse. While 1 was inactive following systemic administration of doses as high as 30 mg/kg, subcutaneous administration of 2 significantly inhibited writhing with an ED50 of 2.6 mg/kg. These results demonstrate that the potency and systemic activity of DPDPE are significantly increased by replacement of Tyr1 with DMT.  相似文献   

11.
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS not to disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses are mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly regulating immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier control immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis (MS), immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of our current knowledge on the molecular mechanisms involved in immune cell entry into the CNS has been derived from studies performed in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Thus, a large part of our current knowledge on immune cell entry across the BBBs is based on the results obtained in this animal model. Similarly, knowledge on the benefits and potential risks associated with therapeutic targeting of immune cell recruitment across the BBB in human diseases are mostly derived from such treatment regimen in MS. Other mechanisms of immune cell entry into the CNS might therefore apply under different pathological conditions such as bacterial meningitis or stroke and need to be considered.  相似文献   

12.
纳米粒穿透血脑屏障机制的研究进展   总被引:1,自引:0,他引:1  
血脑屏障(blood-brain barrier,BBB)的存在使98%的药物无法进入脑组织,是制约神经系统药物发展的重要因素.纳米粒载药系统能够透过BBB,并提高脑内药物浓度,是实现脑内靶向给药的良好载体,但其透过BBB的机制至今尚未完全明白.自从2001年Kreuter提出关于纳米粒(nanoparticles,NP)透过BBB的6点可能机制后,针对此机制并进而提高载药NP入脑效率的探讨已成为热点之一,文中就目前NP穿透BBB机制研究进展做一综述.  相似文献   

13.
Recent studies have shown that drugs that are normally unable to cross the blood-brain barrier (BBB) following intravenous injection can be transported across this barrier by binding to poly(butyl cyanoacrylate) nanoparticles and coating with polysorbate 80. However, the mechanism of this transport so far was not known. In the present paper, the possible involvement of apolipoproteins in the transport of nanoparticle-bound drugs into the brain is investigated. Poly(butyl cyanoacrylate) nanoparticles loaded with the hexapeptide dalargin were coated with the apolipoproteins AII, B, CII, E, or J without or after precoating with polysorbate 80. In addition, loperamide-loaded nanoparticles were coated with apolipoprotein E alone or again after precoating with polysorbate 80. After intravenous injection to ICR mice the antinociceptive threshold was measured by the tail flick test. Furthermore, the antinociceptive threshold of polysorbate 80-coated dalargin-loaded nanoparticles was determined in ApoEtm1Unc and C57BL/6J mice. The results show that only dalargin or loperamide-loaded nanoparticles coated with polysorbate 80 and/or with apolipoprotein B or E were able to achieve an antinociceptive effect. This effect was significantly higher after polysorbate-precoating and apolipoprotein B or E-overcoating. With the apolipoprotein E-deficient ApoEtm1Unc mice the antinociceptive effect was considerably reduced in comparison to the C57BL/6J mice. These results suggest that apolipoproteins B and E are involved in the mediation of the transport of drugs bound to poly(butyl cyanoacrylate) nanoparticles across the BBB. Polysorbate 80-coated nanoparticles adsorb these apolipoproteins from the blood after injection and thus seem to mimic lipoprotein particles that could be taken up by the brain capillary endothelial cells via receptor-mediated endocytosis. Bound drugs then may be further transported into the brain by diffusion following release within the endothelial cells or, alternatively, by transcytosis.  相似文献   

14.
The successful treatment of brain tumors or metastases in the brain is still hampered by the very efficient blood-brain barrier, which prevents the cerebral accumulation of a pharmacologically sufficient amount of a drug. Beside the possibility of disintegrating the functionality of this effective working barrier, a nanocarrier-mediated transport is presently an interesting and promising method to increase the drug concentration in the brain. Nanocarriers are small vesicles (<200 nm) and can be prepared by polymerization, resulting in nanoparticles, or by producing superficial lipid structures to incorporate the drug. In this context, liposomes are of importance owing to their ability to adapt their properties to the pharmacological requirements. In this article, we will give an overview of current possibilities of enhancing anticancer drug transport across the blood-brain barrier, based on its structure and functionality. Special consideration will be given to recent liposomal approaches that use active targeting for receptor-mediated transport across this physiological barrier.  相似文献   

15.
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.  相似文献   

16.
We investigated influx and efflux transporters involved in blood-brain barrier transport of the nonsedative H1-antagonist epinastine. The basal-to-apical transport of [14C]epinastine was markedly higher than that in the opposite direction in LLC-GA5-COL150 cells stably transfected with human multidrug resistance (MDR)1 gene. The brain-to-plasma concentration ratio of [14C]epinastine in mdr1a/b(-/-) mice was 3.2 times higher than that in wild-type mice. The uptake of both [3H]mepyramine and [14C]epinastine into immortalized rat brain capillary endothelial cells (RBEC)1 showed temperature and concentration dependence. The kinetic parameters, K(m), V(max), and uptake clearance (V(max)/K(m)), of the initial uptake of [3H]mepyramine and [14C]epinastine by RBEC1 were 150 microM, 41.8 nmol/min/mg protein, and 279 microl/min/mg protein for mepyramine and 10.0 mM, 339 nmol/min/mg protein, and 33.9 microl/min/mg protein for epinastine, respectively. The uptake of [3H]mepyramine and [14C]epinastine by RBEC1 was inhibited by organic cations such as quinidine, amantadine, and verapamil, but not by other organic cations, tetraethyl ammonium, guanidine, and carnitine. Organic anions such as benzoic acid, estrone-3-sulfate, taurocholate, and neutral digoxin were not inhibitory. Furthermore, some cationic H1 antagonists (chlorpheniramine, cyproheptadine, ketotifen, and desloratadine) inhibited the [3H]mepyramine and [14C]epinastine uptake into RBEC1. In conclusion, the present study demonstrated that the combination of efficient efflux transport by P-glycoprotein and poor uptake by the influx transporter, which is identical with that responsible for the uptake of mepyramine, account for the low brain distribution of epinastine.  相似文献   

17.
Significant efforts through genomic approaches have been dedicated toward the identification of novel protein-protein interactions as promising therapeutic targets for indications such as Alzheimer's disease, Parkinson's disease and neuropsychiatric disorders. Additionally, the number of biotherapeutic agents entering the Pharmaceutical sector continues to increase and according to EvaluatePharma's "World Preview 2014" report, "the compounded annual growth rate of biologics is expected to be 8.5 percent from 2008-2014, eight to 10 times greater than the growth rate of small molecules". However, there are limited examples of success in developing biotherapeutic modalities for central nervous system (CNS) diseases in the drug development pipeline. A primary reason for the lack of application of biotherapeutics to neuroscience targets, is that the blood-brain barrier (BBB) isolates and protects CNS structures creating a unique biochemically and immunologically privileged environment, therefore passage of macromolecules across this barrier has additional challenges. An understanding of the anatomical and physiological properties of this barrier with respect to penetration of biotherapeutics is presented in this review document. In this summary, recent advances in biotherapeutic delivery mechanisms across the BBB including transcranial brain drug delivery, focused ultrasound technology, nasal delivery, absorptive endocytosis, and receptor mediated endocytosis are evaluated using an industrial perspective. With acknowledgement that each approach has advantages and disadvantages, this review discusses the opportunities and challenges that are encountered during application of these methods across a variety of therapeutic areas such as, pain, obesity, neuroscience, and oncology. Utilizing an industrial perspective, including consideration of cost of goods and commercial feasibility for these approaches, this review highlights technology features which would enable industry investments toward novel BBB delivery technologies for biologics. Through continued development and improvement of such technology, new therapeutic options to treat and potentially cure central nervous system diseases could eventually evolve.  相似文献   

18.
肽类物质的跨血脑屏障转运研究进展   总被引:1,自引:0,他引:1  
血脑屏障(BBB)对大分子肽类药物的通透性直接关系到中枢神经系统疾病的药物治疗效果。肽类物质过去一直被认为是不能透过BBB的,但随着研究方法的不断发展和研究手段的不断改进,已有越来越多的实验表明,肽类物质不仅可以透过BBB,而且很可能主要是靠透过BBB而不是靠神经运输来达到CNS中的作用部位的。文章对血脑屏障的药物转运机制、影响大分子肽类药物血脑屏障通透性的因素以及改变大分子肽类药物血脑屏障通透性的可能途径及其临床意义等作一综述,以期对CNS的药物治疗有新的认识。  相似文献   

19.
In the drug development process, it remains a difficult task to regulate the entry of the drugs. However, recent progress in studies of the transporter-mediated influx and efflux of endogenous and exogenous compounds, including synthetic drugs, across the blood-brain barrier (BBB) is beginning to provide a rational basis for controlling drug distribution to the brain. This paper describes mechanisms established in the last decade for carrier-mediated influx and efflux of drugs and endocytosis of biologically active peptides across the BBB. The transport systems at the BBB described here are the uptake transporters for nutrients, such as amino acids and hexoses, monocarboxylates, amines, carnitine and glutathione and efflux transporters, such as P-glycoprotein and multiple organic anion transporters. Delivery of cationized peptides across the BBB via adsorptive-mediated endocytosis is also described. By utilizing such highly specific transport mechanisms, it should be possible to establish strategies to regulate the entry of candidate drugs, including peptides, into the brain.  相似文献   

20.
Drugs vary in their ability to permeate the blood-retinal barrier (BRB), blood-aqueous humor barrier (BAB), and blood-brain barrier (BBB) and the factors affecting the drug permeation remain unclear. In this study, the permeability of various substances across BRB, BAB, and BBB in rats was determined using the brain uptake index (BUI), retinal uptake index (RUI), and aqueous humor uptake index (AHUI) methods. Lipophilic substances showed high permeabilities across BBB and BRB. The RUI values of these substances were approximately four-fold higher than the BUI values. The AHUI versus lipophilicity curve had a parabolic shape with AHUI(max) values at log D(7.4) ranging from -1.0 to 0.0. On the basis of the difference on the lipophilicities, verapamil, quinidine, and digoxin showed lower permeability than predicted from those across BBB and BRB, whereas only digoxin showed a lower permeability across BRB. These low permeabilities were significantly increased by P-glycoprotein inhibitors. Furthermore, anion transporter inhibition increased the absorption of digoxin to permeate into the retina and aqueous humor. In conclusion, this study suggests that efflux transport systems play an important role in the ocular absorption of drugs from the circulating blood after systemic administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号