首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vascular tissue engineering, three‐dimensional (3D) biodegradable scaffolds play an important role in guiding seeded cells to produce matrix components by providing both mechanical and biological cues. The objective of this work was to fabricate fibrous biodegradable scaffolds from novel poly(ester amide)s (PEAs) derived from l ‐alanine by electrospinning, and to study the degradation profiles and its suitability for vascular tissue‐engineering applications. In view of this, l ‐alanine‐derived PEAs (dissolved in chloroform) were electrospun together with 18–30% w/w polycaprolactone (PCL) to improve spinnability. A minimum of 18% was required to effectively electrospin the solution while the upper value was set in order to limit the influence of PCL on the electrospun PEA fibres. Electrospun fibre mats with average fibre diameters of ~0.4 µm were obtained. Both fibre diameter and porosity increased with increasing PEA content and solution concentration. The degradation of a PEA fibre mat over a period of 28 days indicated that mass loss kinetics was linear, and no change in molecular weight was found, suggesting a surface erosion mechanism. Human coronary artery smooth muscle cells (HCASMCs) cultured for 7 days on the fibre mats showed significantly higher viability (p < 0.0001), suggesting that PEA scaffolds provided a better microenvironment for seeded cells compared with control PCL fibre mats of similar fibre diameter and porosity. Furthermore, elastin expression on the PEA fibre mats was significantly higher than the pure PEA discs and pure PCL fibre mat controls (p < 0.0001). These novel biodegradable PEA fibrous scaffolds could be strong candidates for vascular tissue‐engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Successful in vitro differentiation of spermatogenic cells into spermatids appears to offer extremely attractive potential for the treatment of impaired spermatogenesis and male infertility. Experimental evidence indicates that biocompatible polymers may improve in vitro reconstitution and regeneration of tissues of various origins. Here, we fabricated highly porous biodegradable poly(D,L ‐lactic‐co‐glycolic acid) or PLGA co‐polymer scaffolds by combining the gas‐foaming and salt‐leaching methods, using ammonium bicarbonate as a porogen, which allowed us to generate polymer scaffolds with a high density of interconnected pores of 400–500 µm in average diameter, concomitant with a high malleability to mould a wide range of temporal tissue scaffolds requiring a specific shape and geometry. The PLGA scaffolds were biocompatible and biodegradable, as evidenced by the fact that they survived almost 3 month long subcutaneous xenografting into immunodeficient host mice and became easily destroyable after recovery. Immature rat testicular cells that were seeded onto the surface of the scaffold exhibited about 65% seeding efficiency and up to 75% viability after 18 days in culture. Furthermore, our scaffolds enhanced the proliferation and differentiation of spermatogenic germ cells to a greater extent than conventional in vitro culture methods, such as monolayer or organ culture. Taken together, an implication of the present findings is that the PLGA‐based macroporous scaffold may provide a novel means by which spermatocytes could be induced to differentiate into presumptive spermatids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, fibrous scaffolds based on poly(γ‐benzyl‐l ‐glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution‐assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20–400 µm were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two‐step reaction procedure: first, aminolysis of the PBLG fibres’ surface layers was performed, which resulted in an increase in the hydrophilicity of the fibrous scaffolds after the introduction of N5‐hydroxyethyl‐l ‐glutamine units; and second, modification with the short peptide sequence azidopentanoyl–GGGRGDSGGGY–NH2, using the 'click' reaction on the previously modified scaffold with 2‐propynyl side‐chains, was performed. Radio‐assay of the 125I‐labelled peptide was used to evaluate the RGD density in the fibrous scaffolds (which varied in the range 10–3–10 pm /cm2). All the PBLG scaffolds, especially with density 90 ± 20 fm /cm2 and 200 ± 100 fm /cm2 RGD, were found to be potentially suitable for growth and chondrogenic differentiation of HTGSCs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The current study aimed to fabricate three‐dimensional (3D) polycaprolactone (PCL), polycaprolactone and β‐tricalcium phosphate (PCL–TCP) scaffolds via a selective laser‐sintering technique (SLS). Collagen type I was further coated onto PCL–TCP scaffolds to form PCL–TCP–COL scaffolds. The physical characters of these three scaffolds were analysed. The osteogenic potential of porcine adipose‐derived stem cells (pASCs) was compared among these three scaffolds in order to find an optimal scaffold for bone tissue engineering. The experimental results showed no significant differences in pore size and porosity among the three scaffolds; the porosity was ca. 75–77% and the pore size was ca. 300–500 µm in all three. The compressive modulus was increased from 6.77 ± 0.19 to 13.66 ± 0.19 MPa by adding 30% β‐TCP into a 70% PCL scaffold. No significant increase of mechanical strength was found by surface‐coating with collagen type I. Hydrophilicity and swelling ratios showed statistical elevation (p < 0.05) after collagen type I was coated onto the PCL–TCP scaffolds. The in vitro study demonstrated that pASCs had the best osteogenic differentiation on PCL–TCP–COL group scaffolds, due to the highest ALP activity, osteocalcin mRNA expression and mineralization. A nude mice experiment showed better woven bone and vascular tissue formation in the PCL–TCP–COL group than in the PCL group. In conclusion, the study demonstrated the ability to fabricate 3D, porous PCL–TCP composite scaffolds (PCL:TCP = 70:30 by weight) via an in‐house‐built SLS technique. In addition, the osteogenic ability of pASCs was found to be enhanced by coating COL onto the PCL–TCP scaffolds, both in vitro and in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) has received much attention for its biodegradability and biocompatibility, characteristics that are required in tissue engineering. In this study, polyethylene oxide (PEO)‐incorporated PHBV nanofibres with random or aligned orientation were obtained by electrospinning. For further use in vivo, the nanofibre films were made into nerve conduits after treatment with NH3 plasma, which could improve the hydrophilicity of inner surfaces of nerve conduits and then facilitate laminin adsorption via electrostatic interaction for promoting cell adhesion and proliferation. Morphology of the surfaces of modified PHBV/PEO nanofibrous scaffolds were examined by scanning electron microscopy. Schwann cell viability assay was conducted and the results confirmed that the functionalized nanofibres were favourable for cell growth. Morphology of Schwann cells cultured on scaffolds showed that aligned nanofibrous scaffolds provided topographical guidance for cell orientation and elongation. Furthermore, three‐dimensional PHBV/PEO nerve conduits made from aligned and random‐oriented nanofibres were implanted into 12‐mm transected sciatic nerve rat model and subsequent analysis were conducted at 1 and 2 months postsurgery. The above functionalized PHBV/PEO scaffolds provide a novel and promising platform for peripheral nerve regeneration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Surface modification of materials designed for regenerative medicine may improve biocompatibility and functionality. The application of glycosaminoglycans (GAGs) and chemically sulphated GAG derivatives is a promising approach for designing functional biomaterials, since GAGs interact with cell‐derived growth factors and have been shown to support fibroblast growth in two‐dimensional (2D) cultures. Here, coatings with artificial extracellular matrix (aECM), consisting of the structural protein collagen I and the GAG hyaluronan (HA) or sulphated HA derivatives, were investigated for their applicability in a three‐dimensional (3D) system. As a model, macroporous poly(lactic‐co‐glycolic acid) (PLGA) scaffolds were homogeneously coated with aECM. The resulting scaffolds were characterized by compressive moduli of 0.9–1.2 MPa and pore sizes of 40–420 µm. Human dermal fibroblasts (dFbs) colonized these aECM‐coated PLGA scaffolds to a depth of 400 µm within 14 days. In aECM‐coated scaffolds, collagen I(α1) and collagen III(α1) mRNA expression was reduced, while matrix metalloproteinase‐1 (MMP‐1) mRNA expression was increased within 7 days, suggesting matrix‐degradation processes. Stimulation with TGFβ1 generally increased cell density and collagen synthesis, demonstrating the efficiency of bioactive molecules in this 3D model. Thus, aECM with sulphated HA may modulate the effectivity of TGFβ1‐induced collagen I(α1) expression, as demonstrated previously in 2D systems. Overall, the tested aECM with modified HA is also a suitable material for fibroblast growth under 3D conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Chitosan–gelatin B microspheres with an open, interconnected, highly macroporous (100–200 µm) structure were prepared via a three‐step protocol combining freeze‐drying with an electrostatic and ionic cross‐linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan–gelatin B microspheres, with N‐(3‐dimethylaminopropyl)‐N′‐ethyl‐carbodiimide/N‐hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan–gelatin B microspheres to attain improved biocompatibility. Water absorption of the three‐dimensional macroporous chitosan–gelatin B microspheres (3D‐P‐CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D‐P‐CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D‐P‐CGMs was spherical, unlike that of cells cultured under traditional two‐dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D‐P‐CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D‐P‐CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D‐P‐CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester‐urethane) (PEU) scaffolds. Different three‐dimensional (3D) forms of scaffold were prepared from lysine‐based PEU using traditional salt‐leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt‐leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, three different akermanite:poly‐?‐caprolactone (PCL) composite scaffolds (wt%: 75:25, 50:50, 25:75) were characterized in terms of structure, compression strength, degradation rate and in vitro biocompatibility to human adipose‐derived stem cells (hASC). Pure ceramic scaffolds [CellCeramTM, custom‐made, 40:60 wt%; β‐tricalcium phosphate (β‐TCP):hydroxyapatite (HA); and akermanite] and PCL scaffolds served as experimental controls. Compared to ceramic scaffolds, the authors hypothesized that optimal akermanite:PCL composites would have improved compression strength and comparable biocompatibility to hASC. Electron microscopy analysis revealed that PCL‐containing scaffolds had the highest porosity but CellCeramTM had the greatest pore size. In general, compression strength in PCL‐containing scaffolds was greater than in ceramic scaffolds. PCL‐containing scaffolds were also more stable in culture than ceramic scaffolds. Nonetheless, mass losses after 21 days were observed in all scaffold types. Reduced hASC metabolic activity and increased cell detachment were observed after acute exposure to akermanite:PCL extracts (wt%: 75:25, 50:50). Among the PCL‐containing scaffolds, hASC cultured for 21 days on akermanite:PCL (wt%: 75:25) discs displayed the highest viability, increased expression of osteogenic markers (alkaline phosphatase and osteocalcin) and lowest IL‐6 expression. Together, the results indicate that akermanite:PCL composites may have appropriate mechanical and biocompatibility properties for use as bone tissue scaffolds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this work was to study the in vitro biocompatibility of glass–ceramic scaffolds based on 45S5 Bioglass®, using a human osteosarcoma cell line (HOS‐TE85). The highly porous scaffolds were produced by the foam replication technique. Two different types of scaffolds with different porosities were analysed. They were coated with a biodegradable polymer, poly(3‐hydroxybutyrate) (P(3HB)). The scaffold bioactivity was evaluated by soaking in a simulated body fluid (SBF) for different durations. Compression strength tests were performed before and after immersion in SBF. These experiments showed that the scaffolds are highly bioactive, as after a few days of immersion in SBF a hydroxyapatite‐like layer was formed on the scaffold's surface. It was also observed that P(3HB)‐coated samples exhibited higher values of compression strength than uncoated samples. Biocompatibility assessment was carried out by qualitative evaluation of cell morphology after different culture periods, using scanning electron microscopy, while cell proliferation was determined by using the AlamarBlue? assay. Alkaline phosphatase (ALP) and osteocalcin (OC) assays were used as quantitative in vitro indicators of osteoblast function. Two different types of medium were used for ALP and OC tests: normal supplemented medium and osteogenic medium. HOS cells were seeded and cultured onto the scaffolds for up to 2 weeks. The AlamarBlue assay showed that cells were able to proliferate and grow on the scaffold surface. After 7 days in culture, the P(3HB)‐coated samples had a higher number of cells on their surfaces than the uncoated samples. Regarding ALP‐ and OC‐specific activity, no significant differences were found between samples with different pore sizes. All scaffolds containing osteogenic medium seemed to have a slightly higher level of ALP and OC concentration. These experiments confirmed that Bioglass®/P(3HB) scaffolds have potential as osteoconductive tissue engineering substrates for maintenance and normal functioning of bone tissue. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Gelatin scaffolds incorporating or not 50 wt% of magnesium calcium phosphate (MCP) or β‐tricalcium phosphate (βTCP) were prepared and the in vitro osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs) in the scaffolds was investigated. The pore sizes of the scaffolds were in the range 123.8 ± 47.2–153 ± 60.72 µm in diameter, while the porosity was 33.3 ± 2–44.9 ± 3.4%. The compression modulus of the sponges was about 2.04–2.24 mPa. There was no significant difference among groups regarding the physical and mechanical properties. When seeded into the sponges by an agitation method, the MSCs were distributed throughout the scaffold. Higher MSC proliferation was observed for scaffolds incorporating minerals. Following the incubation of MSCs in scaffolds incorporating MCP, the alkaline phosphatase activity was significantly higher at weeks 2, 3 and 4 in comparison with other scaffolds; however, the osteocalcin levels of MSCs did not show significant differences among groups. These findings indicate that MSCs seeded in scaffolds incorporating MCP showed significantly superior biological results in terms of proliferation and osteogenic differentiation in comparison with other scaffold types. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This study reports the manufacturing process of 3D interconnected macroporous tricalcium phosphate (TCP) scaffolds with controlled internal architecture by direct 3D printing (3DP), and high mechanical strength obtained by microwave sintering. TCP scaffolds with 27%, 35% and 41% designed macroporosity with pore sizes of 500 μm, 750 μm and 1000 μm, respectively, were manufactured by direct 3DP. These scaffolds were then sintered at 1150 °C and 1250 °C in conventional electric muffle and microwave furnaces, respectively. Total open porosity between 42% and 63% was obtained in the sintered scaffolds due to the presence of intrinsic micropores along with designed pores. A significant increase in compressive strength between 46% and 69% was achieved by microwave compared to conventional sintering as a result of efficient densification. Maximum compressive strengths of 10.95 ± 1.28 MPa and 6.62 ± 0.67 MPa were achieved for scaffolds with 500 μm designed pores (~ 400 μm after sintering) sintered in microwave and conventional furnaces, respectively. An increase in cell density with a decrease in macropore size was observed during in vitro cell‐material interactions using human osteoblast cells. Histomorphological analysis revealed that the presence of both micro‐ and macropores facilitated osteoid‐like new bone formation when tested in femoral defects of Sprague–Dawley rats. Our results show that bioresorbable 3D‐printed TCP scaffolds have great potential in tissue engineering applications for bone tissue repair and regeneration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A phytomolecule, icaritin, has been identified and shown to be osteopromotive for the prevention of osteoporosis and osteonecrosis. This study aimed to produce a bioactive poly (l ‐lactide‐co‐glycolide)–tricalcium phosphate (PLGA–TCP)‐based porous scaffold incorporating the osteopromotive phytomolecule icaritin, using a fine spinning technology. Both the structure and the composition of icaritin‐releasing PLGA–TCP‐based scaffolds were evaluated by scanning electron microscopy (SEM). The porosity was quantified by both water absorption and micro‐computed tomography (micro‐CT). The mechanical properties were evaluated using a compression test. In vitro release of icaritin from the PLGA–TCP scaffold was quantified by high‐performance liquid chromatography (HPLC). The attachment, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the composite scaffold were evaluated. Both an in vitro cytotoxicity test and an in vivo test via muscular implantation were conducted to confirm the scaffold's biocompatibility. The results showed that the PLGA–TCP–icaritin composite scaffold was porous, with interconnected macro‐ (about 480 µm) and micropores (2–15 µm). The mechanical properties of the PLGA–TCP–icaritin scaffold were comparable with those of the pure PLGA–TCP scaffold, yet was spinning direction‐dependent. Icaritin content was detected in the medium and increased with time. The PLGA–TCP–icaritin scaffold facilitated the attachment, proliferation and osteogenic differentiation of BMSCs. In vitro cytotoxicity test and in vivo intramuscular implantation showed that the composite scaffold had no toxicity with good biocompatibility. In conclusion, an osteopromotive phytomolecule, icaritin, was successfully incorporated into PLGA–TCP to form an innovative porous composite scaffold with sustained release of osteopromotive icaritin, and this scaffold had good biocompatibility and osteopromotion, suggesting its potential for orthopaedic applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Advances in tissue engineering have enabled the development of bioactive composite materials to generate biomimetic nanofibrous scaffolds for bone replacement therapies. Polymeric biocomposite nanofibrous scaffolds architecturally mimic the native extracellular matrix (ECM), delivering tremendous regenerative potential for bone tissue engineering. In the present study, biocompatible poly(l ‐lactic acid)‐co‐poly(ε‐caprolactone)–silk fibroin–hydroxyapatite–hyaluronic acid (PLACL–SF–HaP–HA) nanofibrous scaffolds were fabricated by electrospinning to mimic the native ECM. The developed nanofibrous scaffolds were characterized in terms of fibre morphology, functional group, hydrophilicity and mechanical strength, using SEM, FTIR, contact angle and tabletop tensile‐tester, respectively. The nanofibrous scaffolds showed a higher level of pore size and increased porosity of up to 95% for the exchange of nutrients and metabolic wastes. The fibre diameters obtained were in the range of around 255 ± 13.4–789 ± 22.41 nm. Osteoblasts cultured on PLACL–SF–HaP–HA showed a significantly (p < 0.001) higher level of proliferation (53%) and increased osteogenic differentiation and mineralization (63%) for the inclusion of bioactive molecules SF–HA. Energy‐dispersive X‐ray analysis (EDX) data proved that the presence of calcium and phosphorous in PLACL–SF–HaP–HA nanofibrous scaffolds was greater than in the other nanofibrous scaffolds with cultured osteoblasts. The obtained results for functionalized PLACL–SF–HaP–HA nanofibrous scaffolds proved them to be a potential biocomposite for bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Multichannel scaffolds, formed by rapid prototyping technologies, retain a high potential for regenerative medicine and the manufacture of complex organs. This study aims to optimize several parameters for producing poly(lactic‐co‐glycolic acid) (PLGA) scaffolds by a low‐temperature, deposition manufacturing, three‐dimensional printing (3DP, or rapid prototyping) system. Concentration of the synthetic polymer solution, nozzle speed and extrusion rate were analysed and discussed. Polymer solution with a concentration of 12% w/v was determined as optimal for formation; large deviation of this figure failed to maintain the desired structure. The extrusion rate was also modified for better construct quality. Finally, several solid organ scaffolds, such as the liver, with proper wall thickness and intact contour were printed. This study gives basic instruction to design and fabricate scaffolds with de novo material systems, particularly by showing the approximation of variables for manufacturing multichannel PLGA scaffolds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Customized scaffold plays an important role in bone tissue regeneration. Precise control of the mechanical properties and biological functions of scaffolds still remains a challenge. In this study, metal and ceramic biomaterials are composited by direct 3‐D printing. Hydroxyapatite (HA) powders with diameter of about 25 μm and Ti‐6Al‐4V powders with diameter of 15–53 μm were mixed and modulated for preparing 3‐D printing inks formulation. Three different proportions of 8, 10, and 25 wt.% HA specimens were printed with same porosity of 72.1%. The green bodies of the printed porous scaffolds were sintered at 1,150°C in the atmosphere of argon furnace and conventional muffle furnace. The porosities of the final 3‐D‐printed specimens were 64.3 ± 0.8% after linear shrinkage of 6.5 ± 0.8%. The maximum compressive strength of the 3‐D‐printed scaffolds can be flexibly customized in a wide range. The maximum compressive strength of these scaffolds in this study ranged from 3.07 to 60.4 MPa, depending on their different preparation process. The phase composition analysis and microstructure characterization indicated that the Ti‐6Al‐4V and HA were uniformly composited in the scaffolds. The cytocompatibility and osteogenic properties were evaluated in vitro with rabbit bone marrow stromal cells (rBMSCs). Differentiation and proliferation of rBMSCs indicated good biocompatibility of the 3‐D‐printed scaffolds. The proposed 3‐D printing of Ti‐6Al‐4V/HA composite porous scaffolds with tunable mechanical and biological properties in this study is a promising candidate for bone tissue engineering.  相似文献   

17.
Freeze casting, or controlled unidirectional solidification, can be used to fabricate chitosan–alginate (C–A) scaffolds with highly aligned porosity that are suitable for use as nerve‐guidance channels. To augment the guidance of growth across a spinal cord injury lesion, these scaffolds are now evaluated in vitro to assess their ability to release neurotrophin‐3 (NT‐3) and chondroitinase ABC (chABC) in a controlled manner. Protein‐loaded microcapsules were incorporated into C–A scaffolds prior to freeze casting without affecting the original scaffold architecture. In vitro protein release was not significantly different when comparing protein loaded directly into the scaffolds with release from scaffolds containing incorporated microcapsules. NT‐3 was released from the C–A scaffolds for 8 weeks in vitro, while chABC was released for up to 7 weeks. Low total percentages of protein released from the scaffolds over this time period were attributed to limitation of diffusion by the interpenetrating polymer network matrix of the scaffold walls. NT‐3 and chABC released from the scaffolds retained bioactivity, as determined by a neurite outgrowth assay, and the promotion of neurite growth across an inhibitory barrier of chondroitin sulphate proteoglycans. This demonstrates the potential of these multifunctional scaffolds for enhancing axonal regeneration through growth‐inhibiting glial scars via the sustained release of chABC and NT‐3. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three‐dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε‐caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering.  相似文献   

19.
The DLTIDDSYWYRI motif (Ln2‐P3) of human laminin‐2 has been reported to promote PC12 cell attachment through syndecan‐1; however, the in vivo effects of Ln2‐P3 have not been studied. In Schwann cells differentiated from skin‐derived precursors, the peptide was effective in promoting cell attachment and spreading in vitro. To examine the effects of Ln2‐P3 in peripheral nerve regeneration in vivo, we developed a dual‐component poly(p‐dioxanone) (PPD)/poly(lactic‐co‐glycolic acid) (PLGA) artificial nerve graft. The novel graft was coated with scrambled peptide or Ln2‐P3 and used to bridge a 10 mm defect in rat sciatic nerves. The dual‐component nerve grafts provided tensile strength comparable to that of a real rat nerve trunk. The Ln2‐P3‐treated grafts promoted early‐stage peripheral nerve regeneration by enhancing the nerve regeneration rate and significantly increased the myelinated fibre density compared with scrambled peptide‐treated controls. These findings indicate that Ln2‐P3, combined with tissue‐engineering scaffolds, has potential biomedical applications in peripheral nerve injury repair. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this work was the fabrication and characterization of bioactive glass–poly(lactic‐co‐glycolic acid) (PLGA) composite scaffolds mimicking the topological features of cancellous bone. Porous multilayer PLGA–CEL2 composite scaffolds were innovatively produced by a pressure‐activated microsyringe (PAM) method, a CAD/CAM processing technique originally developed at the University of Pisa. In order to select the optimal formulations to be extruded by PAM, CEL2–PLGA composite films (CEL2 is an experimental bioactive SiO2–P2O5–CaO–MgO–Na2O–K2O glass developed at Politecnico di Torino) were produced and mechanically tested. The elastic modulus of the films increased from 30 to > 400 MPa, increasing the CEL2 amount (10–50 wt%) in the composite. The mixture containing 20 wt% CEL2 was used to fabricate 2D and 3D bone‐like scaffolds composed by layers with different topologies (square, hexagonal and octagonal pores). It was observed that the increase of complexity of 2D topological structures led to an increment of the elastic modulus from 3 to 9 MPa in the composite porous monolayer. The elastic modulus of 3D multilayer scaffolds was intermediate (about 6.5 MPa) between the values of the monolayers with square and octagonal pores (corresponding to the lowest and highest complexity, respectively). MG63 osteoblast‐like cells and periosteal‐derived precursor cells (PDPCs) were used to assess the biocompatibility of the 3D bone‐like scaffolds. A significant increase in cell proliferation between 48 h and 7 days of culture was observed for both cell phenotypes. Moreover, qRT–PCR analysis evidenced an induction of early genes of osteogenesis in PDPCs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号