首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Guidepost cells are specific cellular cues in the embryonic environment utilized by axonal growth cones in pathfinding decisions. In the embryonic Drosophila CNS the RP motor axons make stereotypic pathways choices involving distinct cellular contacts: (i) extension across the midline via contact with the axon and cell body of the homologous contralateral RP motoneuron, (ii) extension down the contralateral longitudinal connective (CLC) through contact with connective axons and longitudinal glia, and (iii) growth into the intersegmental nerve (ISN) through contact with ISN axons and the segmental boundary glial cell (SBC). We have now ablated putative guidepost cells in each of the CNS pathway subsections and uncovered their impact on subsequent RP motor axon pathfinding. Removal of the longitudinal glia or the SBC did not adversely affect pathfinding. This suggests that the motor axons either utilized the alternative axonal substrates, or could still make filopodial contact with the next pathway section's cues. In contrast, RP motor axons did require contact with the axon and soma of their contralateral RP homologue. Absence of this neuronal substrate frequently impeded RP axon outgrowth, suggesting that the next cues were beyond filopodial reach. Together these are the first direct ablations of putative guidepost cells in the CNS of this model system, and have uncovered both pathfinding robustness and susceptibility by RP axons in the absence of specific contacts.  相似文献   

2.
Retrograde transport of horseradish peroxidase (HRP) after its application into the orbit was used to investigate the development of the different ocular motor nuclei in larvae of the sea lamprey (Petromyzon marinus) and to identify their regions of origin. In the smallest larvae studied (10–19 mm in length), the oculomotor and abducens neurons were ipsilateral to the site of HRP application, whilst trochlear neurons were contralateral. These motoneurons did not have dendritic processes. In larvae more than 19 mm in length, both ipsilateral and contralateral components were found in the oculomotor and trochlear nuclei; dendrites were present, and their length and branching increased with larval age. An adult-like pattern of topographic organization and dendritic arborization was reached in larvae of about 45–60 mm in length. In oculomotor neurons, medial dendrites appear first, then dorsolateral dendrites, and finally ventral dendries. Similarly, in trochlear neurons ventral and ventrolateral dendrites develop first, foll owed by dorsal dendrites that course either to the caudal optic tectum or to the terminal fields of the octaval and lateral line nerves in the cerebellar plate. Dorsal and ventral dendrites of the abducens neurons arise at the same time, but dorsal dendrites attain an adult-like morphology earlier. A few motoneurons showed ventricular attachments in larvae longer than 40 mm. The significance of these processes and their possible usefulness as a marker for the regions of origin of the ocular motor nuclei are discussed. Finally, the results presented here indicate that differentiation of the ocular motor nuclei in larval lampreys precedes and is independent of the maturation of the eye at transformation.  相似文献   

3.
The morphology of neonatal rat phrenic motoneurons was studied following retrograde labeling with horseradish peroxidase, which resulted in Golgi-like fills of phrenic motoneuron somata and dendrites. At birth, these neurons have well-developed dendritic trees with many characteristics described for phrenic motoneurons in the adult rat. The dendrites form tightly fasciculated bundles that emerge from the phrenic nucleus primarily along four axes: ventromedial, ventrolateral, dorsolateral, and rostral/caudal, with smaller and more variable projections directly lateral and ventral. Although sparse, some dendritic appendages were also present, and in a few animals, somata clustering was apparent. The most significant difference between adult and neonatal rat phrenic motoneurons is in the extent to which medially and laterally projecting dendrites extend beyond the borders of the ipsilateral gray matter. In the neonate, unlike the adult, these dendrites project extensively past the gray/white border to the edge of the hemicord. Ventromedial dendrites occasionally cross to the contralateral ventral horn in the ventral white commissure and laterally projecting dendrites could be seen reaching the edge of the cord, turning and traveling rostrally or caudally for up to 100 microns. Phrenic motoneurons are not unique in having long dendrites at birth. A brief comparative study showed that neonatal cervical, thoracic, and lumbar motoneurons also have long dendrites that project to the medial and lateral borders of the hemicord.  相似文献   

4.
The location and dendritic morphology of motoneurons supplying the dorsal fin muscles were studied in the lamprey spinal cord (Ichthyomyzon unicuspis). Motoneurons were retrogradely labelled after injection of HRP into the fin muscles or after its application on the cut ends of the ventral roots. HRP-labelled cells were subsequently reconstructed, in the horizontal and/or transverse planes. Fin motoneurons were also injected intracellularly with Lucifer Yellow and their detailed three-dimensional structure was analysed by confocal laser-scanning microscopy. Unlike myotomal motoneurons, which are closely spaced in the lateral cell column, fin motoneurons were distributed along the spinal cord separately or in pairs. They could be distinguished from motoneurons supplying trunk muscles by having a limited number of dendrites in the lateral part of the spinal cord. In addition, some fin motoneurons extend their dendrites into the dorsal column. The motor cells innervating fin muscles were divided into two types based on their dendritic morphology. Type I have a widespread dendritic tree in the rostrocaudal direction and, with few exceptions, completely restricted to the ipsilateral side. A proportion (25%) of these cells have dendrites extending into the dorsal column. Type II fin motoneurons extended their dendrites both ipsi- and contra-laterally. The contra-lateral dendrites pass below and above the central canal. The dendrites send off branches into the dorsal columns on both the ipsi- and the contra-lateral sides. Electron microscopic analysis showed that both type I and type II fin motoneurons receive numerous synaptic contacts from dorsal column axons. During fictive locomotion both types of motoneurons are active in antiphase in relation to myotomal motoneurons and to the main locomotor burst.  相似文献   

5.
The peripheral and central aspects of the extraocular system were studied in the weakly electric fish Gnathonemus petersii. All six extraocular muscles show a similar composition of large and small fibers grouped characteristically in the proximal and distal regions respectively. The exit of the three extraocular nerves from the brain is similar to that in other vertebrates. However, the intracephalic and intracranial course of the trochlear nerve is unusual, partly because of the extraordinary hypertrophy of the cerebellum. The three nerves course rostrally on the ventral brain surface; the trochlear nerve penetrates the orbital cavity separately from the two other nerves. The fiber-diameter spectrum of each extraocular nerve is bimodal; unmyelinated fibers were not observed in any of the nerves. The location of the extraocular motor nuclei was established by retrograde axonal transport of HRP or cobaltic-lysine complex. The oculomotor nucleus is situated ventral to the posterior pole of the magnocellular mesencephalic nucleus and the trochlear nucleus is found caudal and dorsal to this. The abducens nucleus is situated at the level of the octavolateral efferent nucleus and consists of a single group of cells on each side of the ventral tegmentum. The oculomotor nucleus of G. petersii shows a somatotopic organization. The superior rectus muscle receives a contralateral innervation whereas the inferior rectus and oblique muscles and the internal rectus muscles receive an ipsilateral innervation. The superior oblique muscle is innervated by contralateral trochlear motoneurons and the external rectus by ipsilateral abducens motoneurons. The majority of extraocular motoneurons have piriform perikarya and long beaded dendrites that extend laterally in the oculomotor and abducens nuclei and rostrally in the trochlear nucleus. The terminal dendritic portions of trochlear motoneurons widely overlap with oculomotor dendrites and perikarya. In all three nuclei the axon originates opposite to the main dendrite. Collaterals of the hairpin-bend abducens axons could be identified in a few cases. The oculomotor system of G. petersii appears basically similar to that of other teleosts; the differences observed concern mainly the structure of the abducens nucleus, the intracranial and intracephalic course of the trochlear nerve, and the relatively small number of axons in each nerve.  相似文献   

6.
The distribution of extraocular motoneurons and abducens and oculomotor internuclear neurons was determined in guinea pigs by injecting horseradish peroxidase (HRP) into individual extraocular muscles, the abducens nucleus, the oculomotor nucleus, and the cerebellum. Motoneurons in the oculomotor nucleus innervated the ipsilateral inferior rectus, inferior oblique, medial rectus, and the contralateral superior rectus and levator palpebrae muscles. Most motoneurons of the trochlear nucleus projected to the contralateral superior oblique muscle although a small number innervated the ipsilateral superior oblique. The abducens and accessory abducens nuclei innervated the ipsilateral rectus and retractor bulbi muscles, respectively. The somata of abducens internuclear neurons formed a cap around the lateral and ventral aspects of the abducens nucleus. The axons of these internuclear neurons terminated in the medial rectus subdivision of the contralateral oculomotor nucleus. At least two classes of guinea pig oculomotor internuclear interneurons exist. One group, located primarily ventral to the oculomotor nucleus, innervated the abducens nucleus and surrounding regions. The second group, lying mainly in the dorsal midline area of the oculomotor nucleus, projected to the cerebellum. Intracellular staining with HRP demonstrated similar soma-dendritic organization for oculomotor and trochlear motoneurons of both guinea pigs and rabbits. Dendrites of oculomotor motoneurons radiated symmetrically from the soma to cover approximately one-third of the entire nucleus, and each motoneuron sent at least one dendrite into the central gray overlying the oculomotor nucleus. In both species, a small percentage of oculomotor motoneurons possessed axon collaterals that terminated both within and outside of the nucleus. The dendrites of trochlear motoneurons extended into the medial longitudinal fasciculus and the reticular formation lateral to the nucleus. Our data on the topography of motoneurons and internuclear neurons in the guinea pig and soma-dendritic organization of motoneurons in the guinea pig and rabbit show that these species share common organizational and morphological features. In addition, comparison of these data with those from other mammals reveals that dendritic complexity (number of dendrites per motoneuron) of extraocular motoneurons exhibits a systematic increase with animal size.  相似文献   

7.
The organization of the trochlear nucleus (N IV) was investigated in the frog Rana ridibunda. Retrograde tracing with horseradish peroxidase and biotinylated dextran amines resulted in labeling on the contralateral N IV of motoneurons with diverse morphologies and in direct caudal continuation with the oculomotor nucleus. Their dendritic arborizations extend profusely in the ipsilateral tegmentum and reach the oculomotor nucleus, the fasciculus longitudinalis medialis and also small processes branch towards the ventricle. Occasionally, one to three cells are labeled in the ipsilateral N IV, whereas mesencephalic trigeminal cells that would send their peripheral branch in the IVth nerve are never observed. The course of the labeled trochlear axons varies depending on the localization within the N IV of their cells of origin and different points of decussation are present above the midbrain ventricle. The ultrastructural analysis of identified trochlear motoneurons shows numerous axo-somatic synaptic contacts and six types of terminals with variable morphologies have been observed. Among them, a peculiar type of axon terminal forms mixed junctions with synaptic specializations and gap junctions together in the membrane interfaces that could represent the simultaneous presence of a chemical as well as an electrical component. The present data give more insights into the organization of the N IV and demonstrate that, although the organization of the trochlear nucleus is highly conservative in gnathostome vertebrates, it shows specific features for each species studied, as demonstrated for amphibians.  相似文献   

8.
The synapses between the filiform hair sensory afferents and giant interneurons (GIs) 1-6 of embryonic and first instar cockroaches, Periplaneta americana, were used to investigate the role of neuronal anatomy in determining synaptic specificity. The pattern of afferent-to-GI synapses was first determined by intracellular recording of excitatory postsynaptic potentials (EPSPs). The lateral (L) axon synapses only with GIs 3, 4, and 6, while the medial (M) axon synapses with the contralateral dendrites of all six GIs but with the ipsilateral dendrites only of GIs 1, 2, and 4. The three-dimensional anatomy of the filiform afferents and GIs was determined by injection of cobalt. There is little anatomical segregation of the filiform afferents; consequently, there is no correlation between the anatomy of the GIs and their synaptic inputs. The M axon and ipsilateral GI3 were studied in more detail by light and electron microscopy. Despite the presence of an anterior M axon branch which loops around the ipsilateral GI3 neurite at a distance of 2 microns, no synapses are formed between them. This lack of synapses is not due to the presence of physical barriers. Investigation of filiform afferents and GIs in embryonic ganglia shows that at no stage are the afferents sufficiently separated for their anatomy to be an important factor in determining the specificity of the synaptic inputs of the GIs. It was postulated that two pairs of complementary cell surface labels would be sufficient to code for this specificity, and that, in GIs 3, 5, and 6, spatial differences in the expression of these labels allow the M axon to distinguish ipsilateral dendrites from contralateral.  相似文献   

9.
Axonal projections and neurotransmitters used by commissural interneurons mediating crossed actions of reticulospinal neurons were investigated in adult cats. Eighteen interneurons, located in or close to lamina VIII in midlumbar segments, that were monosynaptically excited by reticulospinal tract fibres and projected to contralateral motor nuclei were labelled by intracellular injection of tetramethylrhodamine-dextran and Neurobiotin. The nine most completely labelled interneurons were analysed with combined confocal and light microscopy. None of the stem axons gave off ipsilateral axon collaterals. Seven cells had axon collaterals that arborized in the contralateral grey matter in the ventral horn of the same segments. Transmitters were identified by using antibodies raised against vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and the glycine transporter 2. The axons of two cells were immunoreactive for the glycine transporter 2 and hence were glycinergic. Three cells were immunoreactive for the vesicular glutamate transporter 2 and hence were glutamatergic. None of the axons displayed immunoreactivity for glutamic acid decarboxylase. Electron microscopy of two cells revealed direct synaptic connections with motoneurons and other neurons. Axonal swellings of one neuron formed synapses with profiles in motor nuclei whereas those of the other formed synapses with other structures, including cell bodies in lamina VII. The results show that this population of commissural interneurons includes both excitatory and inhibitory cells that may excite or inhibit contralateral motoneurons directly. They may also influence the activity of motoneurons indirectly by acting through interneurons located outside motor nuclei in the contralateral grey matter but are unlikely to have direct actions on interneurons in the ipsilateral grey matter.  相似文献   

10.
Luo P  Dessem D  Zhang J 《Brain research》2001,890(2):314-329
Neural circuits from the supratrigeminal region (Vsup) to the hypoglossal motor nucleus were studied in rats using anterograde and retrograde neuroanatomical tracing methodologies. Iontophoretic injection of 10% biotinylated dextran amine (BDA) unilaterally into the Vsup anterogradely labeled axons and axon terminals bilaterally in the hypoglossal nucleus (XII) as well as other regions of the brainstem. In the ipsilateral XII, the highest density of BDA labeling was found in the dorsal compartment and the ventromedial subcompartment of the ventral compartment, where BDA labeling formed a dense, patchy distribution. Microinjection of 20% horseradish peroxidase (HRP) ipsilaterally or bilaterally into the tongue resulted in retrograde labeling of XII motoneurons confined to the dorsal and ventral compartments of the hypoglossal motor nucleus. Under light microscopical examination, BDA-labeled terminals were observed closely apposing the somata and primary dendrites of HRP-labeled hypoglossal motoneurons. Two hundred and sixty-five of these BDA-labeled terminals were examined at the ultrastructural level. One hundred and twelve BDA-labeled axon terminals were observed synapsing with either the somata (39%, 44/112) or the large or medium-size dendrites (61%, 68/112) of retrogradely labeled hypoglossal motoneurons. Axon terminals containing spherical vesicles (S-type) formed asymmetric synapses with HRP-labeled hypoglossal motoneuron dendrites. In contrast to this, FF-type axon terminals, containing flattened vesicles, formed symmetric synapses with both the somata and dendrites of HRP-labeled hypoglossal motoneurons with a preponderance of the contacts on their somata. Axon terminals containing pleomorphic vesicles (FP-type) were noted forming both symmetric and asymmetric synapses with HRP-labeled hypoglossal motoneuron somata and dendrites. The present study provides anatomical evidence of neuronal projections and synaptic connections from the supratrigeminal region to hypoglossal motoneurons. These data suggest that the supratrigeminal region, as one of the premotor neuronal pools of the hypoglossal nucleus, may coordinate and modulate the activity of tongue muscles during oral motor behaviors.  相似文献   

11.
The morphology of phrenic motoneurons (PMs) of adult cat was examined by utilizing the technique of intracellular injection of horseradish peroxidase. Twenty-one cells were reconstructed from serial sections in transverse, sagittal, and horizontal planes. The cell bodies were ellipsoid, with the major diameter oriented parallel to the longitudinal axis of the spinal cord. The dendrites of PMs are not distributed in a radially symmetric fashion, but rather project to four separate fields. The field containing the greatest number of dendrites extends rostrocaudally within the phrenic motor column. This collection of dendrites forms a rostrocaudal bundle in which the dendrites from neighboring PMs lie in close association with one another. The remaining dendrites project dorsolaterally, dorsomedially, and to a lesser extent, ventrally. The dorsolaterally directed dendrites form bundles upon entering the lateral funiculus with the dendrites from other PMs. Several of the dorsomedially directed dendrites cross to the contralateral spinal cord via the anterior commissure or central gray. A wide variety of dendritic spines and appendages was observed. There were no instances in which axon collaterals were observed for the 11 well-stained axons examined. The length of the initial segment of the axon was a function of the distance of the cell body from the ventral funiculus.  相似文献   

12.
We examined a corticotectobulbar pathway from the orofacial motor cortex (OfM) to the parvicellular reticular formation (RFp), where numerous premotor neurons for the orofacial motor nuclei were known to be distributed, light and electron microscopically by using a combination of anterograde and retrograde tracing techniques. After contralateral injections of biotinylated dextranamine (BDA) into the OfM and cholera toxin B subunit (CTb) into the RFp, the overlapping distribution of ipsilateral axon terminals labeled with BDA and contralateral neurons labeled with CTb was found in the lateralmost part of the superior colliculus (SC). Furthermore, contralateral injections of BDA into the OfM and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the RFp resulted in that ipsilateral axons labeled with BDA made asymmetrical synaptic contacts with the dendrites of contralateral SC neurons labeled with WGA-HRP.  相似文献   

13.
G Székely 《Brain research》1976,103(2):275-290
Ventral and dorsal roots of the frog's spinal cord were filled with cobaltous chloride, and the resulting cobaltous sulfide precipitate, following treatment with H2S-buffer solutions, was intensified with physical developers. A ventromedial and a dorsolateral motoneuron group could be discerned in the ventral horn. The ventromedial, motoneurons gave origin to a strong dendrite crossing to the contralateral side. In the dendritic arborization pattern of the dorsolateral motoneurons a dorsomedial, a dorsal and a lateral dendritic array were distinguished. They were regarded as representing three different input channels to the motoneurons. Intramedullary branching of motor axons and recurrent axon collaterals were never observed. The dorsal root could be divided into a medial and lateral division carrying small and large caliber fibers, respectively. The end-branches of the small caliber fibers were seen to terminate in the substantia gelatinosa. Fine collaterals of the large caliber fibers also terminated in the substantia gelatinosa; coarser collaterals penetrated deeper and terminated in a triangular-shaped area in the base of the dorsal horn and in the intermediate gray matter. From this area a tail was followed into the ventral horn and several synapses were seen on the proximal dendrites and on the somata of motoneurons. A few dorsal root fibers could be seen crossing to the contralateral side.  相似文献   

14.
We studied the anatomical pathway underlying the nictitating reflex in the monitor lizard Varanus exanthematicus by the anterograde degeneration technique combined with retrograde transport of horseradish peroxidase (HRP) and electron microscopy. After application of HRP to the abducens nerve, retrogradely labeled neurons were observed in the ipsilateral principal and accessory abducens motor nuclei. The transection, in the same experiments, of the root of the trigeminal nerve resulted in massive degeneration of myelinated fibers in the descending trigeminal tract. In the ipsilateral accessory abducens nucleus, we observed electron-dense degenerating axon terminals that formed asymmetric synaptic contacts with the primary and secondary dendrites of large neurons retrogradely labeled with HRP. A few of the degenerating terminals could be traced in serial sections to myelinated axons. No terminal degeneration was found in the contralateral accessory abducens nucleus or in the ipsilateral and contralateral principal abducens nuclei. The present results are complementary with the findings of previous light microscopic experimental tracing studies (Barbas-Henry, H.A., and A.H.M. Lohman, J. Comp. Neurol. 1986, 254:314-329; see also J. Comp. Neurol. 1988, 267:370-386), and strongly suggest the existence in Varanus of a monosynaptic, unilateral reflex pathway in which trigeminal fibers, presumably originating from the cornea, synapse with motoneurons of the bursalis and retractor bulbi muscles, which are located in the accessory abducens nucleus. This monosynaptic pathway may mediate a rapid unilateral eyeball retraction and nictitating membrane extension.  相似文献   

15.
Following axotomy, morphologically unusual, distal processes (UDPs) emerge from motoneuron dendrites. These processes contain an axonal protein, growth‐associated protein 43 (GAP‐43) but lack immunostaining for the dendritic protein microtubule‐associated protein 2a/b (MAP2a/b). Thus, it appears that neuronal polarity alters following axotomy. Our goal was to describe this change in neuronal polarity on a more detailed and quantitative level. We asked two questions: Following axotomy, where in the entire neuron does the immunoreactivity for MAP2a/b and GAP‐43 change and do these changes reflect a transformation of dendrite to axon or growth from terminal dendrites? Using intracellular labeling and immunocytochemistry, changes in MAP2a/b and GAP‐43 immunoreactivity were also found in processes with a morphology typical of terminal branches of intact motoneurons (called simple distal processes [SDPs]), as well as UDPs. Trajectories (the path from the soma to a single terminus) with UDPs and SDPs were longer than trajectories without these processes, and trajectories with UDPs were the longest. Trajectories without UDPs or SDPs were similar in length to trajectories from intact motoneurons. The distance from the soma to the point where MAP2a/b immunoreactivity became absent in trajectories with UDPs or SDPs was similar to the length of trajectories from intact motoneurons. Thus, following axotomy, two morphologically distinct types of axon‐like processes emerge from dendrites. The formation of these processes does not involve a transformation of the original dendrite, but rather growth at the ends of dendrites. J. Comp. Neurol. 450:318–333, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

16.
We have investigated the organizational and morphological features of motoneurons from cat sacrocaudal spinal cord, the portion of the neuraxis that innervates the tail. This information is pertinent for development of a new model of spinal cord injury. An understanding of sacrocaudal circuitry is essential for physiological and behavioral assessment of the effects of sacrocaudal lesions. Observations from Nissl-stained sections corroborated Rexed's cytoarchitectural scheme. Putative motoneurons were located within two regions of the ventral horn: the ventromedial nucleus (lamina IX) and the nucleus commissuralis. To map motoneuron pools, cholera toxin-horseradish peroxidase conjugate was injected into each dorsal tail muscle. The dorsomedial muscle was innervated by ipsilateral nucleus commissuralis motoneurons. The dorsolateral and intertransversarius muscles were innervated by ipsilateral lamina IX and nucleus commissuralis motoneurons. Cell bodies of retrogradely labeled sacrocaudal motoneurons ranged from 22 to 82 microns in diameter; the unimodal distributions peaked between 45 and 50 microns. Dendritic trees of motoneurons, revealed by retrograde labeling or by intracellular injection with horseradish peroxidase, were extensive. Five to eight primary dendrites originated from the cell body. Dendritic branches extended throughout the ipsilateral ventral gray matter, with processes spreading into the surrounding white matter and the base of the dorsal horn. Dendrites from motoneurons with their soma in the lateral portion of lamina IX formed a longitudinal plexus at the gray/white border. Medial dendrites from motoneurons in the nucleus commissuralis formed bundles in the ventral gray commissure and spread throughout the contralateral ventral horn. It is speculated that contralateral dendrites subserve synchronized co-contraction of medial muscles from both sides of the tail.  相似文献   

17.
Spinal network of the Mauthner cell   总被引:1,自引:0,他引:1  
Most swimming vertebrates, particularly fishes and amphibians, avoid predators by producing an escape behavior initiated by a single action potential in one of a pair of cells, the Mauthner cells, located in the hindbrain. The most prominent feature of this behavior is a rapid, forceful bend of body and tail which leads to a characteristic C bend (stage 1) early in the escape. The spinal output of the Mauthner cell is largely responsible for this bend. Each Mauthner cell sends an axon down the length of the spinal cord on the side opposite the soma. When one Mauthner axon fires, it massively excites the ipsilateral musculature by (1) monosynaptic excitation of the large primary motoneurons that innervate the fast white muscle fibers and (2) polysynaptic excitation of motoneurons which is most likely mediated through an identified class of descending interneurons. While motoneurons on the side of the C bend are excited, excitation of those on the opposite side is blocked by inhibition of primary motoneurons and descending interneurons. This inhibition is mediated by commissural interneurons that are electrotonically coupled to the Mauthner axon and cross the spinal cord to monosynaptically inhibit cells on the opposite side. They inhibit not only primary motoneurons and descending interneurons, but also the commissural inhibitory interneurons on the opposite side. The inhibition of contralateral primary motoneurons and descending interneurons prevents motor activity on the side opposite the C bend from opposing that bend, while the inhibition of commissural interneurons prevents them from interfering, via their inhibitory connections, with excitation of motoneurons on the side of the bend. The spinal network responsible for the bend has several similarities with the spinal network for swimming in other anamniotic vertebrates, including lampreys and embryonic frogs. These similarities reveal important, primitive features of axial motor networks among vertebrates.  相似文献   

18.
The morphology of the cervical giant fiber (CGF) neuron ofDrosophila melanogaster was studied by intracellular injection of Lucifer yellow dye. The CGF neuron is the command cell in a motor circuit causing visually driven escape behavior: a single action potential in a CGF axon produces patterned activity in jump and flight muscles. The present study identified the CGF cell body, a large soma located in the posterior part of the lower ipsilateral protocerebrum. The main process runs anteriorly from the cell body, extends three branches, and turns posteromedially while descending through the brain. The CGF axon courses through the cervical connective and ends within the mesothoracic neuromere of the thoracic ganglion. Thus, the CGF neuron is an interneuron, not a motoneuron as previously believed. We have been isolating mutants that affect CGF neuron-mediated behavior. Comparison of CGF neuron morphology in wildtype strains with that in these mutants will allow identification of genes that affect the development, structure, and connections of the CGF neuron.  相似文献   

19.
The axons of sacral parasympathetic preganglionic neurons (PGNs) originate on a primary dendrite between 10 and 110 mum from the soma. Therefore, it was hypothesized that the location of the axon origin would impact the relative efficacy of ipsilateral and contralateral synaptic inputs. The morphology of two PGNs was reconstructed, and the transfer impedance was used to quantify the influence of synaptic inputs on the transmembrane potential at the axon initial segment. The ratio of ipsilateral transfer impedance to contralateral transfer impedance (termed the relative gain) was increased by 14-29% for axons originating from the dendrite vs. axons originating from the soma. The addition of 50 synchronized "gating" synapses on the proximal dendrites increased the relative gain by 17-38% when the axon originated from the dendrite, but only by 11-15% when the axon originated from the soma. The efficacy of synaptic inputs and the ability of proximal gating synapses to regulate synaptic efficacy were strongly influenced by the site of origin of the axon. The position of axon origin is an effective structural mechanism to regulate the relative efficacy of synaptic inputs arriving at different locations on the dendritic tree.  相似文献   

20.
In contrast to many other neurons in the central nervous system, spinal motoneurons in adult cats have been shown to regenerate their axons after an axotomy accomplished within the CNS compartment. This regenerative capacity may be the result of extrinsic influences, or intrinsic properties of the motoneurons themselves, or interactions between extrinsic and intrinsic factors. As part of the effort to establish circumstances of importance for this central regeneration, a detailed analysis of the morphology of lumbar motoneurons was performed 3-11 weeks following a ventral funiculus axotomy. Fourteen large neurons considered to be intramedullarly axotomized alpha motoneurons were labeled intracellularly with horseradish peroxidase. Twelve out of the fourteen analyzed neurons had an axonlike regenerating process. These twelve neurons could, in turn, be separated into two groups, based on the proximity of the axonal lesion and the proximal morphology of the regenerating process. Thus, after a comparatively proximal axotomy, new axons were produced, originating either from the cell soma or from a distal dendritic branch. After a more distal axotomy, but still intramedullarly, it seemed as if the proximal part of the original axon always persisted and subsequently regenerated. Analysis of the relation between the cell soma diameter and the diameter and number of its stem dendrites revealed that dendrites become thinner and also decrease in number after an intramedullary axotomy. In this way, it may be calculated that the total dendritic surface area of lesioned motoneurons will decrease by approximately half. In four neurons, most dendrites had an abnormal appearance in the light microscope with increasing diameter of distal branches. Ultrastructural analysis revealed that such dendrites were surrounded by myelin sheaths. Small filopodia in close relation to axon terminals were found to emerge from the cell membrane of the lesioned motoneurons. Their function may be to establish contact with presynaptic elements and then retract them to the cell membrane. We interpret the morphological changes of the motoneurons as signs of a large capacity for axonal regeneration, even after axotomy in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号