首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this work is to build a multiple source model to represent the 6 MV photon beams from a Cyberknife stereotactic radiosurgery system for Monte Carlo treatment planning dose calculations. To achieve this goal, the 6 MV photon beams have been characterized and modelled using the EGS4/BEAM Monte Carlo system. A dual source model has been used to reconstruct the particle phase space at a plane immediately above the secondary collimator. The proposed model consists of two circular planar sources for the primary photons and the scattered photons, respectively. The dose contribution of the contaminant electrons was found to be in the order of 10(-3) of the total maximum dose and therefore has been omitted in the source model. Various comparisons have been made to verify the dual source model against the full phase space simulated using the EGS4/BEAM system. The agreement in percent depth dose (PDD) curves and dose profiles between the phase space and the source model was generally within 2%/1 mm for various collimators (5 to 60 mm in diameter) at 80 to 100 cm source-to-surface distances (SSD). Excellent agreement (within 1%/1 mm) was also found between the dose distributions in heterogeneous lung and bone geometry calculated using the original phase space and those calculated using the source model. These results demonstrated the accuracy of the dual source model for Monte Carlo treatment planning dose calculations for the Cyberknife system.  相似文献   

2.
A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations.  相似文献   

3.
A method is described for determining an effective, depth dose consistent bremsstrahlung spectra for high-energy photon beams using depth dose curves measured in water. A simple, analytical model with three parameters together with the nominal accelerating potential is used to characterise the bremsstrahlung spectra. The model is used to compute weights for depth dose curves from monoenergetic photons. These monoenergetic depth doses, calculated with the convolution method from Monte Carlo generated point spread functions (PSF), are added to yield the pure photon depth dose distribution. The parameters of the analytical spectrum model are determined using an iterative technique to minimise the difference between calculated and measured depth dose curves. The influence from contaminant electrons is determined from the difference between the calculated and the measured depth dose.  相似文献   

4.
The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident.  相似文献   

5.
目的:精确重建VarianClinaciX15MeV光子束能谱。方法:利用先验模型和遗传算法,以光子束中轴百分深度剂量(PDD)为基础数据实现医用直线加速器光子能谱重建。1.EGS模拟仿真VarianClinacix治疗头和标准水模体,获得15MeV光子束的模拟能谱以及单能光子中轴PDD数据;2.根据测量得到的中轴PDD数据以及模拟得到的单能光子中轴PDD数据,运用遗传算法优化求解先验模型的参数:3.将优化后的先验模型所计算的结果作为初始化种群.再用遗传算法二次优化重建光子能谱。结果:重建能谱与蒙特卡洛模拟得到的能谱具有良好的一致性,相关系数为0.9970;重建能谱的平均能量与由相空间文件分析所得平均能量的相对误差为1.16%;根据重建能谱计算得到的中轴PDD数据与实际测量的中轴PDD数据之间的相关系数为O.9999。结论:利用先验模型和遗传算法进行光子束能谱重建可靠有效.具有实用价值。  相似文献   

6.
Chow JC 《Medical physics》2007,34(1):175-182
Monte Carlo simulation was used to calculate the lateral buildup ratio (LBR) used in estimating the percentage depth dose (PDD) and dose per monitor unit for an irregular shaped cutout field in electron radiotherapy. Monte Carlo code BEAMnrc/EGSnrc was used to build a simulation model for a Varian 21 EX linear accelerator producing clinical electron beams with energies of 4, 6, 9, 12, and 16 MeV. The model is optimized by adjusting the incident electron energy within the Monte Carlo simulation so that the calculated PDD curves agree with the measurement within +/-2%. The LBR is calculated from the PDD curves for different diameters of circular cutouts. Although Monte Carlo simulation requires a longer time to create a LBR database compared to measurement using scanning water tank and dosimeter, the simulation models for different electron energies, applicators, and cutouts are very similar. As the calculations can be carried out in a batch mode automatically run by a computer, human efforts in carrying out measurements in the treatment room and fabricating the circular cutouts in the mold room are greatly saved. Moreover, the simulation avoids human error in the experimental setup and can better handle the electron scattering affecting accuracy in the measurement. Using Monte Carlo simulation to calculate the LBR is proved to be useful in the commissioning of the electron beams for electron radiotherapy.  相似文献   

7.
A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.  相似文献   

8.
In this study, a Monte Carlo (MC)-based beam model for an ELEKTA linear accelerator was established. The beam model is based on the EGSnrc Monte Carlo code, whereby electron beams with nominal energies of 10, 12 and 15?MeV were considered. For collimation of the electron beam, only the integrated photon multi-leaf-collimators (MLCs) were used. No additional secondary or tertiary add-ons like applicators, cutouts or dedicated electron MLCs were included. The source parameters of the initial electron beam were derived semi-automatically from measurements of depth-dose curves and lateral profiles in a water phantom. A routine to determine the initial electron energy spectra was developed which fits a Gaussian spectrum to the most prominent features of depth-dose curves. The comparisons of calculated and measured depth-dose curves demonstrated agreement within 1%/1?mm. The source divergence angle of initial electrons was fitted to lateral dose profiles beyond the range of electrons, where the imparted dose is mainly due to bremsstrahlung produced in the scattering foils. For accurate modelling of narrow beam segments, the influence of air density on dose calculation was studied. The air density for simulations was adjusted to local values (433?m above sea level) and compared with the standard air supplied by the ICRU data set. The results indicate that the air density is an influential parameter for dose calculations. Furthermore, the default value of the BEAMnrc parameter 'skin depth' for the boundary crossing algorithm was found to be inadequate for the modelling of small electron fields. A higher value for this parameter eliminated discrepancies in too broad dose profiles and an increased dose along the central axis. The beam model was validated with measurements, whereby an agreement mostly within 3%/3?mm was found.  相似文献   

9.
Our aim in the present study was to investigate the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a linac 6 MV photon beam. Moreover, the range of values of these parameters was derived, so that the resulted differences between measured and calculated doses were less than 1%. Mean energy, radial intensity distribution and energy spread of the initial electron beam, were studied. The method is based on absorbed dose comparisons of measured and calculated depth-dose and dose-profile curves. All comparisons were performed at 10.0 cm depth, in the umbral region for dose-profile and for depths past maximum for depth-dose curves. Depth-dose and dose-profile curves were considerably affected by the mean energy of electron beam, with dose profiles to be more sensitive on that parameter. The depth-dose curves were unaffected by the radial intensity of electron beam. In contrast, dose-profile curves were affected by the radial intensity of initial electron beam for a large field size. No influence was observed in dose-profile or depth-dose curves with respect to energy spread variations of electron beam. Conclusively, simulating the radiation source of a photon beam, two of the examined parameters (mean energy and radial intensity) of the electron beam should be tuned accurately, so that the resulting absorbed doses are within acceptable precision. The suggested method of evaluating these crucial but often poorly specified parameters may be of value in the Monte Carlo simulation of linear accelerator photon beams.  相似文献   

10.
Clinical implementation of a Monte Carlo treatment planning system.   总被引:4,自引:0,他引:4  
The purpose of this study was to implement the Monte Carlo method for clinical radiotherapy dose calculations. We used the EGS4/BEAM code to obtain the phase-space data for 6-20 MeV electron beams and 4, 6, and 15 MV photon beams for Varian Clinac 1800, 2100C, and 2300CD accelerators. A multiple-source model was used to reconstruct the phase-space data for both electron and photon beams, which retained the accuracy of the Monte Carlo beam data. The multiple-source model reduced the phase-space data storage requirement by a factor of 1000 and the accelerator simulation time by a factor of 10 or more. Agreement within 2% was achieved between the Monte Carlo calculations and measurements of the dose distributions in homogeneous and heterogeneous phantoms for various field sizes, source-surface distances, and beam modulations. The Monte Carlo calculated electron output factors were within 2% of the measured values for various treatment fields while the heterogeneity correction factors for various lung and bone phantoms were within 1% for photon beams and within 2% for electron beams. The EGS4/DOSXYZ Monte Carlo code was used for phantom and patient dose calculations. The results were compared to the dose distributions produced by a conventional treatment planning system and an intensity-modulated radiotherapy inverse-planning system. Significant differences (>5% in dose and >5 mm shift in isodose lines) were found between Monte Carlo calculations and the analytical calculations implemented in the commercial systems. Treatment sites showing the largest dose differences were for head and neck, lung, and breast cases.  相似文献   

11.
The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10 x 10 to 40 x 40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10 x 10 cm2 and 40 x 40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases.  相似文献   

12.
Polarity effects in ionization chambers are caused by a radiation induced current, also known as Compton current, which arises as a charge imbalance due to charge deposition in electrodes of ionization chambers. We used a phantom-embedded extrapolation chamber (PEEC) for measurements of Compton current in megavoltage photon and electron beams. Electron contamination of photon beams and photon contamination of electron beams have a negligible effect on the measured Compton current. To allow for a theoretical understanding of the Compton current produced in the PEEC effect we carried out Monte Carlo calculations with a modified user code, the COMPTON/ EGSnrc. The Monte Carlo calculated COMPTON currents agree well with measured data for both photon and electron beams; the calculated polarity correction factors, on the other hand, do not agree with measurement results. The conclusions reached for the PEEC can be extended to parallel-plate ionization chambers in general.  相似文献   

13.
Shih R  Li XA  Chu JC 《Medical physics》2001,28(4):612-619
The purpose of this study is to analyze the characteristics of dynamic wedges (DW) and to compare DW to physical wedges (PW) in terms of their differences in affecting beam spectra, energy fluence, angular distribution, contaminated electrons, and dose distributions. The EGS4/BEAM Monte Carlo codes were used to simulate the exact geometry of a 6 MV beam and to calculate 3-D dose distributions in phantom. The DW was simulated in accordance with the segmented treatment tables (STT). The percentage depth dose curves and beam profiles for PW, DW, and open fields were measured and used to verify the Monte Carlo simulations. The Monte Carlo results were found to agree within 2% with the measurements performed using film and ionizing chambers in a water phantom. The present EGS4 calculation reveals that the effects of a DW on beam spectral and angular distributions, as well as electron contamination, are much less significant than those for a PW. For the 6 MV photon beam, a 45 degrees PW can result in a 30% increase in mean photon energy due to the effect of beam hardening. It can also introduce a 5% dose reduction in the build-up region due to the reduction of contaminated electrons by the PW. Neither this mean-energy increase nor such dose reduction is found for a DW. Compared to a DW, a PW alters the photon-beam spectrum significantly. The dosimetric differences between a DW and a PW are significant and clearly affect the clinical use of these beams. The data presented may be useful for DW commissioning.  相似文献   

14.
Stereotactic radiosurgery is often used for treating functional disorders. For some of these disorders, the size of the target can be on the order of a millimeter and the radiation dose required for treatment on the order of 80 Gy. The very small radiation field and high prescribed dose present a difficult challenge in beam calibration, dose distribution calculation, and dose delivery. In this work the dose distribution for dynamic stereotactic radiosurgery, carried out with 1.5 and 3 mm circular fields, was studied. A 10 MV beam from a Clinac-18 linac (Varian, Palo Alto, CA) was used as the radiation source. The BEAM/EGS4 Monte Carlo code was used to model the treatment head of the machine along with the small-field collimators. The models were validated with the EGSnrc code, first through a calculation of percent depth doses (PDD) and dose profiles in a water phantom for the two small stationary circular beams and then through a comparison of the calculated with measured PDD and profile data. The three-dimensional (3-D) dose distributions for the dynamic rotation with the two small radiosurgical fields were calculated in a spherical water phantom using a modified version of the fast XVMC Monte Carlo code and the validated models of the machine. The dose distributions in a horizontal plane at the isocenter of the linac were measured with low-speed radiographic film. The maximum sizes of the Monte Carlo-calculated 50% isodose surfaces in this horizontal plane were 2.3 mm for the 1.5 mm diameter beam and 3.8 mm for the 3 mm diameter beam. The maximum discrepancies between the 50% isodose surface on the film and the 50% Monte Carlo-calculated isodose surfaces were 0.3 mm for both the 1.5 and 3 mm beams. In addition, the displacement of the delivered dose distributions with respect to the laser-defined isocenter of the machine was studied. The results showed that dynamic radiosurgery with very small beams has a potential for clinical use.  相似文献   

15.
The effect of beam obliquity on the surface relative dose profiles for the tangential photon beams was studied. The 6 and 15 MV photon beams with 4 x 4 and 10 x 10 cm2 field sizes produced by a Varian 21 EX linear accelerator were used. Phase-space models of the photon beams were created using Monte Carlo simulations based on the EGSnrc code, and were verified using film measurements. The relative dose profiles in the phantom skin, at 2 mm depth from the surface of the half-phantom geometry, or HPG, were calculated for increasing gantry angles from 270 to 280 deg clockwise. Relative dose profiles of a full phantom enclosing the whole tangential beam (full phantom geometry, or FPG) were also calculated using Monte Carlo simulation as a control for comparison. The results showed that, although the relative dose profiles in the phantom skin did not change significantly with an oblique beam using a FPG, the surface relative depth dose was increased for the HPG. In the HPG, with 6 MV photon beams and field size = 10 x 10 cm2, when the beam angle, starting from 270 deg, was increased from 1 to 3 deg, the relative depth doses in the phantom skin were increased from 68% to 79% at 10 cm depth. This increase in dose was slightly larger than the dose from 15 MV photon beams with the same field size and beam angles, where the relative depth doses in phantom skin were increased from 81% to 87% at 10 cm depth. A parameter called the percent depth dose (PDD) ratio, defined as the relative depth dose from the HPG to the relative depth dose from the FPG at a given depth along the phantom skin, was used to evaluate the effect of the phantom-air interface. It is found that the PDD ratio increased significantly when the beam angle was changed from zero to 1-3 degrees. Moreover, the PDD ratio, for a given field size, experienced a greater increase for 6 MV than for 15 MV. For the same photon beam energy, the PDD ratio increased more with a 4 x 4 cm2 field compared to 10 x 10 cm2. The results in this study will be useful for physicists and dosimetrists to predict the surface relative dose variations when using clinical tangential-like photon beams in radiation therapy.  相似文献   

16.
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.  相似文献   

17.
Advanced electron beam dose calculation models for radiation oncology require as input an initial phase space (IPS) that describes a clinical electron beam. The IPS is a distribution in position, energy and direction of electrons and photons in a plane in front of the patient. A method is presented to derive the IPS of a clinical electron beam from a limited set of measured beam data. The electron beam is modelled by a sum of four beam components: a main diverging beam, applicator edge scatter, applicator transmission and a second diverging beam. The two diverging beam components are described by weighted sums of monoenergetic diverging electron and photon beams. The weight factors of these monoenergetic beams are determined by the method of simulated annealing such that a best fit is obtained with depth-dose curves measured for several field sizes at two source-surface distances. The resulting IPSs are applied by the phase-space evolution electron beam dose calculation model to calculate absolute 3D dose distributions. The accuracy of the calculated results is in general within 1.5% or 1.5 mm; worst cases show differences of up to 3% or 3 mm. The method presented here to describe clinical electron beams yields accurate results, requires only a limited set of measurements and might be considered as an alternative to the use of Monte Carlo methods to generate full initial phase spaces.  相似文献   

18.
The purpose of this investigation is to study the feasibility of using an alternative method to commission stereotactic radiosurgery beams shaped by micro multi-leaf collimators by using Monte Carlo simulations to obtain beam characteristics of small photon beams, such as incident beam particle fluence and energy distributions, scatter ratios, depth-dose curves and dose profiles where measurements are impossible or difficult. Ionization chambers and diode detectors with different sensitive volumes were used in the measurements in a water phantom and the Monte Carlo codes BEAMnrc/DOSXYZnrc were used in the simulation. The Monte Carlo calculated data were benchmarked against measured data for photon beams with energies of 6 MV and 10 MV produced from a Varian Trilogy accelerator. The measured scatter ratios and cross-beam dose profiles for very small fields are shown to be not only dependent on the size of the sensitive volume of the detector used but also on the type of detectors. It is known that the response of some detectors changes at small field sizes. Excellent agreement was seen between scatter ratios measured with a small ion chamber and those calculated from Monte Carlo simulations. The values of scatter ratios, for field sizes from 6 x 6 mm2 to 98 x 98 mm2, range from 0.67 to 1.0 and from 0.59 to 1.0 for 6 and 10 MV, respectively. The Monte Carlo calculations predicted that the incident beam particle fluence is strongly affected by the X-Y-jaw openings, especially for small fields due to the finite size of the radiation source. Our measurement confirmed this prediction. This study demonstrates that Monte Carlo calculations not only provide accurate dose distributions for small fields where measurements are difficult but also provide additional beam characteristics that cannot be obtained from experimental methods. Detailed beam characteristics such as incident photon fluence distribution, energy spectra, including composition of primary and scattered photons, can be independently used in dose calculation models and to improve the accuracy of measurements with detectors with an energy-dependent response. Furthermore, when there are discrepancies between results measured with different detectors, the Monte Carlo calculated values can indicate the most correct result. The data set presented in this study can be used as a reference in commissioning stereotactic radiosurgery beams shaped by a BrainLAB m3 on a Varian 2100EX or 600C accelerator.  相似文献   

19.
M Fippel 《Medical physics》1999,26(8):1466-1475
A new Monte Carlo algorithm for 3D photon dose calculation in radiation therapy is presented, which is based on the previously developed Voxel Monte Carlo (VMC) for electron beams. The main result is that this new version of VMC (now called XVMC) is more efficient than EGS4/PRESTA photon dose calculation by a factor of 15-20. Therefore, a standard treatment plan for photons can be calculated by Monte Carlo in about 20 min. on a "normal" personal computer. The improvement is caused mainly by the fast electron transport algorithm and ray tracing technique, and an initial ray tracing method to calculate the number of electrons created in each voxel by the primary photon beam. The model was tested in comparison to calculations by EGS4 using several fictive phantoms. In most cases a good coincidence has been found between both codes. Only within lung substitute dose differences have been observed.  相似文献   

20.
In radiosurgery narrow photon beams, the depth of maximum dose d(max), in the beam central axis increases as the size of the additional collimator increases. This behavior is the opposite of what is observed in radiotherapy conventional beams. To understand this effect, experimental depth dose curves of the additional collimators were obtained for a Siemens KD2 linear accelerator in 6 MV photon mode and the shift of d(max) varied from 11.0 +/- 0.6 mm for the 5 mm collimator to 14.5 +/- 0.6 mm for the 23 mm collimator. Monte Carlo simulations showed that the photons that had no interactions in the additional collimators, contributing more than 90% to the total dose in water, were responsible for the shift in d(max). Monte Carlo simulations also showed that electrons originated from these photons and contributing to the dose deposit in water in the beam central axis could be divided in two groups: those that deposit energy far away from their point of origin (the point of the first photon collision in water) and those that deposit energy locally (originated at more than one photon collision in water). Applying a simplified model based on the fact that the photons originating Compton electrons (at the first and subsequent collisions) have similar characteristics in air for all the additional collimators, it was shown that these electrons were also responsible for the shift of d(max) in the beam central axis. Finally, it was shown that the changes in the initial gradients of the depth dose curves of the additional collimators were mainly due to electrons originated from the first photon collision in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号