首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Lactoferrin, LF, a multifunctional iron- and heparin-binding protein, present in exocrine body secretions and leukocytes, is remarkably resistant to proteolysis. Ingested bovine iron-unsaturated LF, apo-bLF, suppresses VEGF-A-mediated angiogenesis in a previously described rat mesentery angiogenesis assay, possibly explaining, at least in part, its established anticancer effect in rats and mice. METHODS: Using the same experimental system, we have now studied the effect of (i) ingested human apo-LF, apo-hLF, on angiogenesis mediated by VEGF-A and bFGF, (ii) ingested human iron-saturated LF, holo-hLF, on VEGF-A-mediated angiogenesis and (iii) subcutaneous continuously infused apo-hLF on VEGF-A-mediated angiogenesis. RESULTS: Ingested holo-hLF did not affect VEGF-A-mediated angiogenesis. Ingested apo-hLF (from one and the same batch) significantly enhanced VEGF-A-mediated angiogenesis but did not affect bFGF-mediated angiogenesis. Moreover, subcutaneously infused apo-hLF also significantly stimulated VEGF-A-mediated angiogenesis. CONCLUSION: Taken together, the data suggest that apo-hLF exerts a specific proangiogenic effect in VEGF-A-mediated angiogenesis. Clearly, human and bovine apo-LF exert opposite effects on VEGF-A-induced angiogenesis. Differences in molecular features between human and bovine LFs of possible significance for the outcome are discussed. In hypoxia, compensatory collateral circulation is mediated primarily by VEGF-A. We hypothesize that systemically administered apo-hLF may promote collateral blood vessel formation at hypoxic sites in normal tissue, thus counteracting ischemia and infarction.  相似文献   

2.
Expression of the cytokine interleukin 1 alpha (IL-1 alpha) was demonstrated in the rat PC12 pheochromocytoma cell line by (i) immunohistochemistry using rabbit polyclonal antisera raised against the recombinant murine IL-1 alpha, (ii) an ELISA, and (iii) a specific cell conversion bioassay based on the use of LBRM33-1A5 cells. IL-1 alpha mRNA was demonstrated in the PC12 cells, by PCR amplification. Constitutive expression of IL-1 alpha in PC12 cells was demonstrated in all experiments, although the cellular levels of IL-1 alpha-like immunoreactivity varied. The expression of IL-1 alpha, as studied at the mRNA level, was inducible by mouse nerve growth factor (7S NGF), and the gene product level was inducible in a dose- and time-dependent fashion by 7S NGF. The maximum induction corresponds to a 600% increase in IL-1 alpha-like immunoreactivity above the expression level found in noninduced cells and occurred after a 3-day incubation of the cells with NGF at 0.75 micrograms/ml of culture medium. The significance of the ability of NGF to induce IL-1 expression lies in the fact that IL-1 itself also acts as a growth factor that promotes glial proliferation and, even more importantly, IL-1 itself induces the expression of NGF at peripheral nerve injury [Lindholm, D., Heumann, R., Meyer, M. & Thoenen, H. (1987) Nature (London) 330, 658-659].  相似文献   

3.
4.
5.
6.
A marked coronary angiogenesis is known to occur with chronic bradycardia. We tested the hypothesis that vascular endothelial growth factor (VEGF), an endothelial cell mitogen and a major regulator of angiogenesis, is upregulated in response to low heart rate and consequential increased stroke volume. Bradycardia was induced in rats by administering the bradycardic drug alinidine (3 mg/kg body weight) twice daily. Heart rate decreased by 32% for 20 to 40 minutes after injection and was chronically reduced by 10%, 14%, and 18.5% after 1, 2, and 3 weeks of treatment, respectively. Arterial pressure and cardiac output were unchanged. Left ventricular capillary length density (mm/mm(3)) increased gradually with alinidine administration; a 15% increase after 2 weeks and a 40% increase after 3 weeks of alinidine treatment were documented. Left ventricular weight, body weight, and their ratio were not significantly altered by alinidine treatment. After 1 week of treatment, before an increase in capillary length density, VEGF mRNA increased >2-fold and then declined to control levels after 3 weeks of treatment. VEGF protein was higher in alinidine-treated rats than in controls after 2 weeks and increased further after 3 weeks of treatment. Injection of VEGF-neutralizing antibodies over a 2-week period completely blocked alinidine-stimulated angiogenesis. In contrast, bFGF mRNA was not altered by alinidine treatment. These data suggest that VEGF plays a key role in the angiogenic response that occurs with chronic bradycardia. The mechanism underlying this VEGF-associated angiogenesis may be an increase in stretch due to enhanced diastolic filling.  相似文献   

7.
c-fos-induced growth factor/vascular endothelial growth factor D (Figf/Vegf-D) is a secreted factor of the VEGF family that binds to the vessel and lymphatic receptors VEGFR-2 and VEGFR-3. Here we report that Figf/Vegf-D is a potent angiogenic factor in rabbit cornea in vivo in a dose-dependent manner. In vitro Figf/Vegf-D induces tyrosine phosphorylation of VEGFR-2 and VEGFR-3 in primary human umbilical cord vein endothelial cells (HUVECs) and in an immortal cell line derived from Kaposi's sarcoma lesion (KS-IMM). The treatment of HUVECs with Figf/Vegf-D induces dose-dependent cell growth. Figf/VEGF-D also induces HUVEC elongation and branching to form an extensive network of capillary-like cords in three-dimensional matrix. In KS-IMM cells Figf/Vegf-D treatment results in dose-dependent mitogenic and motogenic activities. Taken together with the previous observations that Figf/Vegf-D expression is under the control of the nuclear oncogene c-fos, our data uncover a link between a nuclear oncogene and angiogenesis, suggesting that Figf/Vegf-D may play a critical role in tumor cell growth and invasion.  相似文献   

8.
Hong KH  Ryu J  Han KH 《Blood》2005,105(4):1405-1407
Monocyte chemoattractant protein-1 (MCP-1) has been recognized as an angiogenic chemokine. In the present study, we investigated the detailed mechanism by which MCP-1 induces angiogenesis. We found that MCP-1 up-regulated hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene expression in human aortic endothelial cells (HAECs), which induced vascular endothelial growth factor-A(165) (VEGF-A(165)) expression in the aortic wall and HAECs through activation of p42/44 mitogen-activated protein kinase (MAPK). In vivo angiogenesis assay using chick chorioallantoic membrane (CAM) showed that MCP-1-induced angiogenesis was as potent as that induced by VEGF-A(165) and completely inhibited by a VEGF inhibitor, Flt(2-11). The inhibition of RhoA small G protein did not affect MCP-1-induced VEGF-A(165) production and secretion but completely blocked both MCP-1- and VEGF-A-induced new vessel formation, as determined by CAM assay. These results suggest that MCP-1-induced angiogenesis is composed largely of 2 sequential steps: the induction of VEGF-A gene expression by MCP-1 and the subsequent VEGF-A-induced angiogenesis.  相似文献   

9.
10.
Vascular endothelial growth factor (VEGF) increases vascular permeability and is important in pleural effusion formation. In studies using transforming growth factor beta (TGF-beta) to produce pleurodesis, we observed that although TGF-beta was more effective than talc or doxycycline, it induced transient production of large pleural effusions. We hypothesized that TGF-beta stimulates VEGF production in pleural tissues in vivo, and by mesothelial cells in vitro. New Zealand White rabbits (n = 33) were given TGF-beta(2) (1.7 or 5.0 microg), talc (400 mg/kg), doxycycline (10 mg/kg), or buffer intrapleurally. Pleural fluid was collected at 24 h. Intrapleural injection of TGF-beta(2) induced a dose-dependent increase in VEGF production. The pleural fluid VEGF level was 2-fold higher in rabbits given 5.0 microg of TGF-beta(2) than in those given 1.7 microg of TGF-beta(2) and 3-fold higher than in those given buffer. VEGF levels were higher after the injection of TGF-beta(2) than after administration of talc or doxycycline. The pleural fluid VEGF correlated significantly with the volume of pleural effusions (r = 0.79, p < 0.00001). In vitro, TGF-beta(2) stimulated a dose-dependent increase in VEGF production from murine pleural mesothelial cells. At 4 and 24 h, TGF-beta(2), but not talc or doxycycline, induced a significant increase in VEGF, when compared with controls. The mesothelial cell VEGF production was significantly reduced by anti-TGF-beta antibody in the TGF-beta(2), talc, and control (buffer and medium) groups. In conclusion, mesothelial cells are an important source of VEGF. TGF-beta increases the VEGF production by mesothelial cells in vivo and in vitro.  相似文献   

11.
12.
13.
14.
Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF), which stimulate the phosphorylation of proteins on tyrosine in PC12 cells, initiate these modifications through ligand-specific cell surface receptors that contain the causative tyrosine kinases. One apparent substrate for these enzymes is phosphatidylinositol 3-kinase (PI 3-kinase), an enzyme that phosphorylates the D-3 position of the inositol ring and associates with several protein tyrosine kinases, as indicated by the fact that it is immunoprecipitated from EGF-, bFGF-, and NGF-stimulated PC12 cells by an anti-phosphotyrosine antibody. All three growth factors increase immunoprecipitable PI 3-kinase activity after 2 min of addition at concentrations able to stimulate either mitogenic or neurotrophic responses in PC12 cells. The level of stimulation of PI 3-kinase activity by EGF, bFGF, and NGF is 15- to 20-fold, 2- to 3-fold, and 8- to 10-fold, respectively. Moreover, tyrosine phosphorylation of PI 3-kinase was detected in EGF-, bFGF-, and NGF-stimulated PC12 cells, and the amount of the phosphorylation correlated with the level of stimulation of enzyme activity. In contrast, phosphatidylinositol 4-kinase, which produces the inositol phospholipids cleaved by phospholipase C-gamma to yield diacylglycerol and inositol-1,4,5-trisphosphate, is not affected by these growth factors. The pattern of stimulation of PI 3-kinase does not correlate with the induction of neurite outgrowth but rather with the mitotic responses, suggesting that PI 3-kinase and its products may be more important for signaling in cell division than in trophic processes. However, the levels of phosphatidylinositol 3-phosphate do not coincide with the stimulation of [3H]thymidine incorporation by these growth factors, rendering its role in mitotic functions, at least in PC12 cells, also uncertain.  相似文献   

15.
Nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) stimulate neuronal differentiation, whereas epidermal growth factor (EGF) promotes only mitogenic responses in PC12 pheochromocytoma cells. The early changes in protein synthesis induced by bFGF, NGF, and EGF in these cells have been determined by two-dimensional PAGE of [35S]methionine-labeled proteins and computerized image analysis. The rate of synthesis of only 29 proteins (out of approximately 1500 identified) was found to be modulated during the first several hours of growth factor stimulation. Individually, 12 were affected by EGF, 23 were affected by bFGF, and 20 were affected by NGF. Eight of these were regulated by all three growth factors, while 10 proteins were commonly induced by bFGF and NGF, in accordance with the essentially identical morphological responses induced by these two factors. In addition, the effects of bFGF and NGF were about equally divided between increases and decreases in the rate of synthesis of individual proteins, whereas EGF caused significantly more positive (increased) responses. All proteins modulated by NGF or FGF alone were negative in their response and those induced by only EGF were positive. Of particular interest, the rate of synthesis of two proteins of 55 kDa and pI 5.45 and 5.50 was dramatically and transiently induced during the first 2 hr of bFGF and NGF treatment and was not affected by EGF. This study indicates that all three factors elicit early increases and decreases in the synthesis of a quite limited number of proteins and provides molecular evidence for the specificity of a differentiative vs. a proliferative growth factor-induced signaling pathway in these cells.  相似文献   

16.
Therapeutic angiogenesis using vascular endothelial growth factor   总被引:1,自引:0,他引:1  
Therapeutic angiogenesis using vascular endothelial growth factor can reduce tissue ischemia by simulating the natural process of angiogenesis. Vascular endothelial growth factor not only stimulates endothelial cells to proliferate and migrate, but also mobilizes endothelial progenitor cells and achieves vascular protection. Besides direct administration of angiogenic proteins, plasmids and viral vectors carrying angiogenic genes have been used. Animal experiments have shown promise with evidence of neovascularization and improved perfusion in the target myocardium. Initial phase I and II clinical trials results are encouraging and reflect the potential success of therapeutic angiogenesis as a clinical modality for the treatment of ischemic heart disease. This review discusses the role of vascular endothelial growth factor in therapeutic angiogenesis, along with the problems and considerations of this approach as a treatment strategy.  相似文献   

17.
18.
19.
The role of vascular endothelial growth factor in angiogenesis   总被引:15,自引:0,他引:15  
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenic inducer as well as a mediator of vascular permeability. The biological effects of VEGF are mediated by two tyrosine kinase receptors, Flt-1 (VEGFr-1) and KDR (VEGFR-2). VEGF is essential for developmental angiogenesis and is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF in tumors and intraocular neovascular syndromes. Currently, several clinical trials are ongoing to test the hypothesis that inhibition of VEGF activity may be beneficial for these conditions.  相似文献   

20.
Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号