首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
聚乳酸/壳聚糖复合支架材料的生物相容性研究   总被引:4,自引:0,他引:4  
为改善聚乳酸作为骨组织工程支架材料降解速率过快、亲水性差和降解产物呈酸性等缺点,本研究制备了一系列高孔隙率的聚乳酸/壳聚糖三维多孔复合支架材料,通过软骨细胞培养、动物皮下和肌肉植入试验对其进行了生物相容性研究。软骨细胞培养试验表明软骨细胞能在复合支架材料贴附增殖,材料无明显毒性;植入试验结果显示纯聚乳酸在体内2个月左右已经降解吸收,失去力学强度,复合材料三个月后仍能保持一定的力学强度和形状,而且组织切片也同时表明复合材料的炎症反应远远低于纯聚乳酸材料。  相似文献   

2.
目的 研究无水乙醇对三维多孔聚乳酸支架材料亲水性能的改善作用。方法 热致分相法制备圆盘状三维多孔聚乳酸支架,置于去离子水中浸泡,测量经无水乙醇处理组及对照组聚乳酸支架吸附水量。以负压法分别将无水乙醇处理组及对照组材料与牛骨形态发生蛋白复合,电镜观察材料表面及内部蛋白的复合及分布情况。结果 无水乙醇处理后,多孔PLA支架吸附水的能力明显增加,所复合活性蛋白在支架材料内部的分布更加合理。结论 无水乙醇能够迅速提高三维多孔聚乳酸支架材料的整体亲水性能,在组织工程研究中有利于材料支架和细胞或生长因子的复合。  相似文献   

3.
用聚乳酸海绵材料构建组织工程真皮   总被引:1,自引:0,他引:1  
目的 利用多孔聚乳酸海绵材料作为真皮支架材料,研究其在组织工程真皮构建中的作用及意义。方法 采用盐溶法制作出多孔聚乳酸海绵材料,再接种皮肤成纤维细胞,形成细胞—支架结构物;利用细胞计数、组织染色、电镜和免疫组化等检测手段,观察细胞在材料上的生长、增殖及分泌情况。结果 成纤维细胞在支架材料上状态良好,且能缓慢增殖。胞外基质丰富,胶原分泌旺盛。结论 聚乳酸能支持皮肤成纤维细胞正常的生理代谢和分泌,是理想的组织工程真皮支架材料。  相似文献   

4.
背景:实践证明,有机和无机材料单独应用都不是理想的支架材料。聚乳酸具有良好的生物相容性、生物降解性和生物吸收性,聚乳酸类复合材料将成为21世纪最重要的生物复合材料之一。目的:观察复合支架材料聚乳酸-壳聚糖纤维/羟基磷灰石-硅酸钙对成骨细胞黏附、增殖、分化的影响。方法:取新生24h内Wistar大鼠的颅盖骨,采用改良胶原酶消化法进行成骨细胞原代培养。通过倒置相差显微镜、苏木精-伊红染色、碱性磷酸酶染色、钙结节茜素红染色对获得的细胞进行生物学特性的观察与鉴定。然后将第3代细胞与聚乳酸/壳聚糖纤维、聚乳酸-壳聚糖纤维/硅酸钙、聚乳酸-壳聚糖纤维/羟基磷灰石-硅酸钙三种支架材料体外复合培养。培养3,6,9d后,采用倒置相差显微镜观察材料周边的细胞形态,通过碱性磷酸酶活性测定法和MTT法观察3种支架材料对细胞分化、增殖的影响。结果与结论:三种材料均有利于成骨细胞的黏附、生长、分化、增殖,而聚乳酸-壳聚糖纤维/羟基磷灰石-硅酸钙复合支架材料较聚乳酸/壳聚糖纤维、聚乳酸-壳聚糖纤维/硅酸钙支架材料促进成骨细胞的分化增殖效果更好,证实其生物相容性好,有望成为一种新型的骨组织工程支架材料。  相似文献   

5.
背景:聚乳酸材料不具备细胞外基质材料的良好细胞亲和性能,采用化学方法将透明质酸交联制得的水凝胶具有良好的生物相容性。 目的:以透明质酸对新型多孔隙率聚乳酸支架的进行改性,观察改性后支架的细胞相容性的改变。 方法:采用盐析法制备出高孔隙率聚乳酸支架,采用低浓度NaOH进行表面轻度水解后,利用EDC和透明质酸进行支架的改性。 结果与结论:透明质酸改性聚乳酸支架在扫描电镜下显示为多微孔的三维立体结构,孔壁及界面平滑,孔隙之间可见更细小微孔相连。改性聚乳酸支架水滴渗入较快,改性后多孔支架的保水能力与吸水能力得到明显的改善;透明质酸改性聚乳酸支架上细胞黏附及增殖优于未改性聚乳酸支架。透明质酸改性聚乳酸组软骨细胞生长密度及基质分泌更加旺盛。表明透明质酸改性聚乳酸多孔支架仍保持多孔的三维结构,其水亲和力、吸水能力、保水能力和细胞相容性均得到明显改善。 关键词:透明质酸;聚乳酸;多孔支架;表面改性;水亲和力;吸水能力 doi:10.3969/j.issn.1673-8225.2012.03.023  相似文献   

6.
聚乳酸多孔支架制备及细胞实验   总被引:4,自引:0,他引:4  
以冰粒子作为致孔剂,采用冷冻干燥-粒子滤出复合法制备了块状聚乳酸多孔支架。将聚乳酸溶于氯仿溶液后加入冰粒子,在液氮中冷冻后冷冻干燥获得多孔支架。对支架孔隙结构分析表明,该工艺制备的多孔支架无致孔剂残留,其孔隙大小由加入的冰粒子大小决定。细胞实验表明该多孔支架具有较好的生物相容性并且无细胞毒性。  相似文献   

7.
在体外培养的条件下观察干湿纺聚乳酸/壳聚糖纤维交织织物与成骨细胞的相容性,探讨其作为人工胸壁支架材料和人工骨支架材料的可行性.将hFOB1.19人SV40转染的成骨细胞与干湿纺聚乳酸/壳聚糖纤维交织织物体外联合培养.用扫描电镜对体外联合培养早期细胞的形态学进行观察.结果 表明,成骨细胞与干湿纺聚乳酸/壳聚糖交织织物间黏附良好,具有良好的相容性,干湿纺聚乳酸/壳聚糖纤维交织织物有可能成为一种理想的可用于修复胸壁缺损和骨缺损的成骨细胞载体.  相似文献   

8.
背景:传统的支架材料存在疏水性强,材料表面缺乏细胞表面受体特异结合的生物活性分子,材料的酸性降解产物易引发无菌性炎性反应等不足。根据仿生原理及软骨真实结构和构成来选择和制备组织工程软骨支架能够获得理想效果。 目的:制备聚乳酸/壳聚糖纳米纤维/纳米羟基磷灰石支架,评价其与兔膝关节软骨细胞的生物相容性,探讨其应用于关节软骨组织工程的可行性。 方法:采用二次相分离技术制备聚乳酸/壳聚糖纳米纤维/纳米羟基磷灰石复合支架,将第3代新西兰兔软骨细胞接种至复合支架材料上复合培养,倒置相差显微镜下观察细胞生长情况。细胞-支架复合物在24孔板中培养5 d以后,将其植入裸鼠皮下8周。 结果与结论:聚乳酸/壳聚糖纳米纤维/纳米羟基磷灰石支架材料经化学合成后,具有合适的三维多孔结构,孔隙率为90%,孔径300~450 μm;植入裸鼠皮下8周后Ⅱ型胶原免疫组织化学染色和甲苯胺蓝染色显示细胞-支架复合物中的软骨细胞可以像天然软骨一样分泌黏多糖和Ⅱ型胶原。提示生物材料聚乳酸/壳聚糖纳米纤维/纳米羟基磷灰石对于兔软骨细胞有良好的生物相容性,可作为生物组织工程支架。  相似文献   

9.
目的:研究一种适于人成纤雏细胞生长的组织工程支架材料,确定碱性成纤维细胞生长因子(bFGF)的用量。材料与方法:采用胶原与壳聚糖整合bFGF做为人成纤维细胞生长的支架材料,用体外细胞培养法确定胶原与壳聚糖在材料中的配比,用体外细胞相容性直观法观察材料与人成纤维细胞的相容性。结果:选择出了胶原与壳聚糖在材料中较佳的配比,确定了bFGF在材料中的用量范围.人成纤维细胞在胶碌一壳聚糖/bFGF膜持续生长繁殖,具有生物降解性。材料与细胞呈低毒性反应。结论:胶原—壳聚糖/bFGF可做为组织工程的支架材料。  相似文献   

10.
目的:合成新型的复合生物材料框架作为骨组织工程研究的细胞外基质材料。方法:本研究采用材料学自组装技术的原理,以Ⅰ型胶原蛋白为分子模板,引导钙磷盐在液相中的矿化,制备具有天然骨基质层状结构的羟基磷灰石/胶原复合材料,并以热致分相法制备了羟基磷灰石/胶原-聚乳酸复合三维多孔框架。结果:羟基磷灰石/胶原复合材料具有与天然骨基质相似的成分与结构,加入聚乳酸制备成三维多孔框架,孔隙直径界于50um-300um。结论:羟基磷灰石/胶原-聚乳酸复合三维多孔框架可能作为骨组织工程良好的细胞外基质材料。  相似文献   

11.
Because of the incomparable merits (nontoxicity, non-remainder, fast transfer mass) of supercritical carbon dioxide fluid technique(SC-CO2), it was used to developed a series of novel biodegradable tissue engineering scaffold materials in this research. The novel PLA/chitosan composite materials could be molded to different shapes, and the porosity of the materials were over 200 lam and connected. Chondrocyte cultivation, subcutaneous and intramuscular implantation were mainly discussed this paper. The results showed that the cells could well adhere, grow and multiplicate on the surface of the materials, which indicated good biocompatibility of the composite materials. The plantation test revealed that the PLA materials had already dismissed 2 month late in the body, while the composite materials could still keep certain strength and shape, and the most important things is the response of the tissue toward the implanted PLA/chitosan composite materials was mild and had far less inflammation than PLA materials. 8 to 16 weeks later, fiber membrane was stable; degradation of the materials was seen clear and tissue had already spread into it.  相似文献   

12.
Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA–chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA–chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.  相似文献   

13.
A novel structure of injectable scaffold is designed and fabricated by combining collagen-coated polylactide (PLA) microcarriers and crosslinkable chitosan hydrogel. The collagen-coated PLA microcarriers were firstly mixed with the hydrogel precursor, a thickening agent of konjac glucomannan (KGM), and redox initiators of ammonium persulfate and tetramethylethylenediamine (TMEDA). The mixture was then injected into a mold and incubated at 37 degrees C to obtain the composite scaffold. The hydrogel can deliver the collagen-coated PLA microcarriers to the desired site and, after gelation, will prevent them from uncontrolled movement. On the other hand, the collagen-coated PLA microcarriers can substantially enhance the mechanical properties of the composite system. It was found that the microcarriers suspended stably in 0.6% KGM/1% chitosan derivative (CML) solution at 37 degrees C at least for 15 min. The dynamic elastic modulus (G') of the composite scaffold increased along with the increase of the microcarrier content. G' of the composite scaffold with 10% microcarriers was measured as 0.87-2.15 MPa at a frequency range of 0.1-100 rad/s, which was 120-90 times higher than that of its hydrogel system alone (12.1-24.4 kPa). In vitro culture of chondrocytes/composite scaffold showed that the cell metabolic activity increased rapidly before day 9, then leveled off. Cells in the hydrogel could attach and grow on the surface of the collagen-coated PLA microcarriers to form confluent cell layers after days 9-12. These features make the composite scaffold to be injectable and applicable in either tissue engineering, or regenerative medicine, and in particular, in orthopaedics.  相似文献   

14.
Chitosan, a natural polysaccharide that has excellent biocompatibility and biodegradability,can be used as nerve conduit material. The purpose of this work was to study the ability of chitosan and some chitosan-derived materials to facilitate nerve cell attachment, differentiation and growth. The biomaterials studied were chitosan, poly-L-lysine-blended chitosan (CP), collagen-blended chitosan (CC) and albumin-blended chitosan (CA), with collagen control material. Culture of PC12 cells and fetal mouse cerebral cortex (FMCC) cells on these biomaterials was used to evaluate their nerve cell affinity. The composite materials, including CP, CC and CA, had significantly improved nerve cell affinity compared to chitosan, as established by increasing attachment, differentiation and growth of PC12 cells. FMCC cells could also grow better on composite materials than on chitosan. CP exhibited the best nerve cell affinity among these three types of composite material. CP is an even better material in promoting neurite outgrowth than collagen, a substrate that is widely used in tissue engineering, suggesting that CP is a promising candidate material for nerve regeneration.  相似文献   

15.
The impact of biodegraded nano-hydroxyapatite/collagen (nHAC) composite and nano-hydroxyapatite/collagen/poly(L-lactic acid) (nHAC/PLA) scaffold composite on neutrophils reaction was evaluated in vitro. Neutrophils were separated from human peripheral blood of healthy subjects. The nHAC and nHAC/PLA materials were immersed in the D-Hanks' Balanced Salt Solution (D-HBSS) for 1 day, 7 days and 2, 4, 8 weeks (37 degrees C) as testing solution, which mixed with the neutrophils for 1 h. Both of the nHAC and nHAC/PLA materials were shown the same cell survival rate as blank control, but the lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha) released from the neutrophils were increased significantly after the 2 weeks in nHAC sample. The possible reason relied on the high concentration of calcium due to the quick biodegradation of the nHAC material. Before 2 weeks, the LDH value of nHAC/PLA is higher than that of nHAC sample that corresponded to the initial PLA degradation in vitro. This study provided the biocompatibility test of neutrophils other than common methods, such as osteoblastic cells for biomimetic materials. Moreover, it demonstrated the calcium concentration stimulating effect for cytokine release from neutrophils.  相似文献   

16.
Studies on nerve cell affinity of biodegradable modified chitosan films   总被引:2,自引:0,他引:2  
Chitosan, a natural polysaccharide that has excellent biocompatibility and biodegradability, can be used as nerve conduit material. The purpose of this work was to study the ability of chitosan and some chitosan-derived materials to facilitate nerve cell attachment, differentiation and growth. The biomaterials studied were chitosan, poly-L-lysine-blended chitosan (CP), collagen-blended chitosan (CC) and albumin-blended chitosan (CA), with collagen control material. Culture of PC12 cells and fetal mouse cerebral cortex (FMCC) cells on these biomaterials was used to evaluate their nerve cell affinity. The composite materials, including CP, CC and CA, had significantly improved nerve cell affinity compared to chitosan, as established by increasing attachment, differentiation and growth of PC12 cells. FMCC cells could also grow better on composite materials than on chitosan. CP exhibited the best nerve cell affinity among these three types of composite material. CP is an even better material in promoting neurite outgrowth than collagen, a substrate that is widely used in tissue engineering, suggesting that CP is a promising candidate material for nerve regeneration.  相似文献   

17.
Cheng M  Deng J  Yang F  Gong Y  Zhao N  Zhang X 《Biomaterials》2003,24(17):2871-2880
A series of chitosan-gelatin composite films was prepared by varying the ratio of constituents. FT-IR and X-ray analysis showed good compatibility between these two biopolymers. Differential scanning calorimetry (DSC) analysis indicated that the water take-up of chitosan film increased when blended with gelatin. Composite film exhibited a lower Young's modulus and a higher percentage of elongation-at-break compared with chitosan film, especially in wet state. All composite films were hydrophilic materials with water contact angles ranging from 55 degrees to 65 degrees. The results obtained from ELISA indicated the adsorption amount of fibronectin on composite films was much higher than on chitosan film. PC12 cells culture was used to evaluate the nerve cell affinity of materials. The cells cultured on the composite film with 60wt% gelatin differentiated more rapidly and extended longer neurites than on chitosan film. The results suggest that the soft and elastic complex of chitosan and gelatin, which has better nerve cell affinity compared to chitosan, is a promising candidate biomaterial for nerve regeneration.  相似文献   

18.
Biodegradable nerve guidance conduits (NGCs) represent a promising alternative to current clinical nerve repair procedures. Chitosan, a natural polysaccharide that has excellent biocompatibility and biodegradability, can be used as a nerve conduit material. The purpose of this work was to study the nerve cell affinity of chitosan modified by blending with different content of poly-L-lysine. PC12 cells culture was used to evaluate the nerve cell affinity of the chitosan-poly-L-lysine composite materials. The results showed that composite materials had significantly improved nerve cell affinity compared to chitosan as indicated by increased attachment, differentiation, and growth of nerve cells. The improved nerve cell affinity might be due to both the increased surface charge and hydrophilicity of composite materials. Composite material with 3 wt% poly-L-lysine content (PL-3) is an even better material in nerve cell affinity than collagen, suggesting that poly-L-lysine-blended chitosan is a promising candidate material for nerve regeneration.  相似文献   

19.
文题释义:                                                                                                     天然骨:主要由无机的羟基磷灰石和有机的胶原成分构成,并具有一定的力学性能。以羟基磷灰石和磷酸三钙为主的磷酸盐材料拥有良好的骨传导性和部分骨诱导性,能够与宿主的骨直接发生骨结合,已成为目前临床应用最多的骨移植材料。 锻烧骨:是经高温锻烧异体动物骨所获得的无机材料,主要成分是羟基磷灰石,其钙磷比接近于人骨,拥有极好的生物相容性和优越的骨引导性。与人工合成的羟基磷灰石相比,不用考虑煅烧骨材料的结构形貌,而且材料来源广泛、制作成本低。 背景:壳聚糖具备优异的理化性能与良好的生物相容性,但其缺乏骨结合的生物活性,需要与其他材料复合用于骨组织修复中。 目的:将煅烧骨与壳聚糖复合,分析其理化性能和细胞毒性。 方法:采用溶液共混法制备煅烧骨与壳聚糖质量比分别为1/2、1/1、2/1的复合材料,表征3种复合材料的理化性能。在第5代小鼠成纤维细胞 L929中分别加入3种复合材料浸提液,CCK-8法检测复合材料的细胞毒性。 结果与结论:①X射线衍射和红外光谱显示,3种复合材料的主要成分均为羟基磷灰石与β-磷酸三钙,并且随着煅烧骨比例的增加,复合材料中的羟基磷灰石/β-磷酸三钙的特征衍射峰逐渐增强;②扫描电镜显示,煅烧骨颗粒较均匀地分散于壳聚糖介质中;③随着煅烧骨比例的增加,复合材料的抗压强度逐渐降低;④培养7 d时,3种复合材料浸提液中的细胞生长良好,形态无明显变化;培养9 d的时间内,3种复合材料浸提液中的细胞相对增殖率均在90%以上,细胞毒性均为1级,符合生物材料的安全标准;⑤结果表明,煅烧骨/壳聚糖复合材料具备良好的结构特征、理化性能及合适的抗压强度,并且安全无毒。 ORCID: 0000-0003-3519-4485(廖健) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号