首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses are an important cause of acute respiratory tract infection (ARTI) in children. This study aimed to develop and evaluate a rapid molecular diagnostic test (duplex real-time PCR) for human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), and to determine the frequency of these two viruses as causative agents of ARTI in Belgium. Nasopharyngeal aspirates were collected over two winter and spring seasons (November 2003 to May 2004 and November 2004 to May 2005) from children aged <5 years with ARTI (n = 778). The duplex real-time PCR showed a linear range of 10(4)-10(10) copies/mL for both hMPV and hRSV. Analysis of the stability of the hRSV and hMPV genomes revealed that nasopharyngeal aspirates could be stored at room temperature for up to 1 month without significant loss of detection. hRSV was detected by antigen testing and by real-time PCR; hMPV was detected by real-time PCR only. The hRSV antigen test was less sensitive than PCR, and failed to detect one-third of the hRSV infections. Overall, 54 (6.9%) and 306 (39.3%) of the 778 samples were positive for hMPV and hRSV, respectively. Both viruses infected young infants, but the mean age of infants infected by hRSV was lower than that of infants infected by hMPV (12 months vs. 17 months, respectively).  相似文献   

2.
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are important respiratory pathogens of small children and adults. The present study aimed to design a sensitive real-time RT-PCR assay for the detection of hRSV and hMPV in comparison with direct fluorescent assay (DFA) and to determine the incidence of hMPV and hRSV as causative agents of respiratory infections in a Finnish population. For DFA detection of hMPV antigen, four commercial antibodies were evaluated. The duplex real-time RT-PCR assay achieved a sensitivity of 103 copies/mL of specimen for hRSV and hMPV type A viruses and 104 copies/mL for type B hMPV. The detection rate of the RT-PCR assay was compared with those for DFA detection of hMPV and hRSV in analyses of 350 nasopharyngeal aspirates sent to HUSLAB, Helsinki University Hospital, for routine virus diagnostics during November 2007 to June 2008. Of the samples analyzed, 43 (12.3%) were positive for hRSV by DFA and an additional 13 specimens (3.7%) were positive for hRSV by RT-PCR. Only four samples (1.1 %) were found to be positive for hMPV RNA by RT-PCR, with two of them also positive by DFA. The duplex real-time RT-PCR assay described in the present study can therefore be applied for efficient identification of hMPV and hRSV in clinical specimens and collection of information on the epidemiology and clinical outcome of these viruses.  相似文献   

3.
Epidemiological and molecular characteristics of human metapneumovirus (hMPV) were compared with human respiratory syncytial virus (hRSV) in infants and young children admitted for acute lower respiratory tract infections in a prospective study during four consecutive years in subtropical Brazil. GeneScan polymerase chain assays (GeneScan RT‐PCR) were used to detect hMPV and hRSV in nasopharyngeal aspirates of 1,670 children during January 2003 to December 2006. hMPV and hRSV were detected, respectively, in 191 (11.4%) and in 702 (42%) of the children admitted with acute lower respiratory tract infections at the Sao Paulo University Hospital. Sequencing data of the hMPV F gene revealed that two groups of the virus, each divided into two subgroups, co‐circulated during three consecutive years. It was also shown that a clear dominance of genotype B1 occurred during the years 2004 and 2005, followed by genotype A2 during 2006. J. Med. Virol. 81:915–921, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
Detection of viruses identified recently in children with acute wheezing   总被引:2,自引:0,他引:2  
The etiologic role of recently identified respiratory viruses for acute wheezing in children is not yet clear. The purpose of this study was to investigate the prevalence of recently identified viruses, including human metapneumovirus (hMPV), human bocavirus (hBoV), human coronavirus NL63 (hCoV-NL63), and human coronavirus HKU1 (hCoV-HKU1) in children with acute wheezing. Viral etiology was identified in 231 children hospitalized with acute wheezing, aged from 1 month to 5 years. Viral antigens for common respiratory viruses were detected by IFA or multiplex PCR. RT-PCR was used to detect respiratory rhinoviruses, hCoV-NL63, hCoV-HKU1, and hMPV. PCR assays for hBoV DNA were performed using the primer sets for noncapsid protein (NP1) and nonstructural protein (NS1) genes. Viruses were found in 61.5% (142/231) of the study population and a single virus was detected in 45.5% (105/231) of the study population. Rhinovirus (33.3%), human respiratory syncytial virus (hRSV; 13.8%), and hBoV (13.8%) were the most frequently detected viruses. hMPV and hCoV-NL63 were detected in 7.8% and 1.3% of wheezing children, respectively. HCoV-HKU1 was not detected. In 16.0% of the study population, more than one virus was detected. In children with acute wheezing, rhinovirus, hRSV, and hBoV were most frequently detected. Further studies including healthy control subjects are needed to define the clinical significance of hBoV in acute wheezing.  相似文献   

7.
Summary. From 2001 through 2004, 808 pediatric patients admitted to hospital because of acute respiratory infections were examined for presence of respiratory viruses by either direct fluorescent staining using monoclonal antibodies or RT-PCR during three consecutive winter-spring seasons. On the whole, 336 (42%) patients were detected as positive for one or more respiratory viruses. The most widely circulating virus was human respiratory syncytial virus (hRSV) infecting 50% of positive patients, followed by human metapneumovirus (hMPV) found in 13% of patients, and then by influenza virus type A, human parainfluenzaviruses and coinfections. Significant variations in the circulation rate of hRSV, hMPV and influenzavirus type A were observed during the individual seasons. In addition, the circulation rates of the different types of hMPV changed yearly. In 2001–2002 and 2002–2003 hMPV circulated at a significant lower proportion than hRSV, while in 2003–2004 the circulation rates of the two viruses were closer. In conclusion, the 4 hMPV subtypes circulated yearly in Northern Italy flanking hRSV as major respiratory pathogens in the infantile patient population.  相似文献   

8.
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) share virologic and epidemiologic features and cause clinically similar respiratory illness predominantly in young children. In a previous study of acute febrile respiratory illness in Bangladesh, we tested paired serum specimens from 852 children presenting fever and cough for diagnostic increases in titers of antibody to hRSV and hMPV by enzyme immunoassay (EIA). Unexpectedly, of 93 serum pairs that showed a ≥4-fold increase in titers of antibody to hRSV, 24 (25.8%) showed a concurrent increase in titers of antibody to hMPV; of 91 pairs showing an increase to hMPV, 13 (14.3%) showed a concurrent increase to hRSV. We speculated that common antigens shared by these viruses explain this finding. Since the nucleocapsid (N) proteins of these viruses show the greatest sequence homology, we tested hyperimmune antisera prepared for each virus against baculovirus-expressed recombinant N (recN) proteins for potential cross-reactivity. The antisera were reciprocally reactive with both proteins. To localize common antigenic regions, we first expressed the carboxy domain of the hMPV N protein that was the most highly conserved region within the hRSV N protein. Although reciprocally reactive with antisera by Western blotting, this truncated protein did not react with hMPV IgG-positive human sera by EIA. Using 5 synthetic peptides that spanned the amino-terminal portion of the hMPV N protein, we identified a single peptide that was cross-reactive with human sera positive for either virus. Antiserum prepared for this peptide was reactive with recN proteins of both viruses, indicating that a common immunoreactive site exists in this region.  相似文献   

9.
Evidence of human metapneumovirus in children in Argentina   总被引:4,自引:0,他引:4  
Human metapneumovirus (hMPV) is a virus, which was first associated with acute lower respiratory infection in children but is detected currently in all age groups. Clinical symptoms are similar to those described for respiratory syncytial virus (RSV) infections, ranging from mild respiratory illness to severe bronchiolitis and pneumonia in children. To date, no cases of hMPV have been reported in Argentina. In this study, 440 respiratory samples obtained during the period 1998-2002 from children under 5 years old with acute respiratory infection were evaluated. Routine detection for RSV, adenovirus, influenza, and parainfluenza was undertaken by immunofluorescent assay. Of the samples negative for these viruses, only 100 were available. All these samples were tested for hMPV by RT-PCR using primers for the L gene. Eleven out of 100 (11%) respiratory samples were positive for hMPV by RT-PCR. A higher frequency of detection was observed in spring. hMPV was detected in all the years studied, except in 2001. Ten out of 11 children positive for hMPV were hospitalized. Median age was 5 months. Of seven patients, five (71%) required oxygen supplementation. The most frequent diagnosis was bronchiolitis (86%), sometimes accompanied by conjunctivitis and otitis media. The present study showed that hMPV was associated with acute lower respiratory infections in children in Buenos Aires, Argentina. This evidence strongly suggests that hMPV is a common pathogen with a wide geographical distribution, which should be included in the routine diagnosis of respiratory viruses in young children.  相似文献   

10.
The discovery of human Metapneumovirus (hMPV) and human Bocavirus (hBoV) identified the etiological causes of several cases of acute respiratory tract infections in children. This report describes the molecular epidemiology of hMPV and hBoV infections observed following viral surveillance of children hospitalized for acute respiratory tract infections in Milan, Italy. Pharyngeal swabs were collected from 240 children ≤3 years of age (130 males, 110 females; median age, 5.0 months; IQR, 2.0-12.5 months) and tested for respiratory viruses, including hMPV and hBoV, by molecular methods. hMPV-RNA and hBoV-DNA positive samples were characterized molecularly and a phylogenetical analysis was performed. PCR analysis identified 131/240 (54.6%) samples positive for at least one virus. The frequency of hMPV and hBoV infections was similar (8.3% and 12.1%, respectively). Both infections were associated with lower respiratory tract infections: hMPV was present as a single infectious agent in 7.2% of children with bronchiolitis, hBoV was associated with 18.5% of pediatric pneumonias and identified frequently as a single etiological agent. Genetically distinct hMPV and hBoV strains were identified in children examined with respiratory tract infections. Phylogenetic analysis showed an increased prevalence of hMPV genotype A (A2b sublineage) compared to genotype B (80% vs. 20%, respectively) and of the hBoV genotype St2 compared to genotype St1 (71.4% vs. 28.6%, respectively). Interestingly, a shift in hMPV infections resulting from A2 strains has been observed in recent years. In addition, the occurrence of recombination events between two hBoV strains with a breakpoint located in the VP1/VP2 region was identified.  相似文献   

11.
Human metapneumovirus (hMPV), a virus causing lower respiratory tract infections in children, is classified two major groups or genotypes of hMPV and recently existence of multiple lineages has been suggested. The purpose of this study was to examine the extent of genetic variation and circulation pattern of hMPV in Korea. Between January 2005 and April 2007, nasopharyngeal aspirates were collected from 1,214 children <16 years of age hospitalized with acute respiratory tract infection at Sanggyepaik Hospital. Nasopharyngeal aspirates were tested for common respiratory pathogens using immunofluorescence or multiplex RT-PCR. RT-PCR was used to detect hMPV. The PCR products were purified and subsequently sequenced directly on both strands. hMPV was detected in 8.4% (102/1,214) of nasopharyngeal aspirates from children with acute respiratory tract infection. The 102 hMPV strains detected in this study were classified into two distinct F lineages, 87 strains belonged to genogroup A2 (A2a in 42, A2b in 45) and 15 strains to genogroup B. All hMPV subtypes except A1 co-circulated in Korean population. Although alternating predominance of hMPV subtypes from year to year could not be found, the changing predominance of sublineage A2a and A2b was demonstrated.  相似文献   

12.
Human metapneumovirus (hMPV) is a newly identified respiratory virus associated with respiratory tract infection in both adults and children. Previous reports showed that infection of hMPV appeared to be ubiquitous. To determine the seroprevalence of hMPV, a total of 576 human sera from patients in Saskatchewan, Canada, were screened by enzyme-linked immunosorbent assay (ELISA) based on expression of the nucleocapsid (N) protein of hMPV in recombinant baculovirus. The recombinant N protein with a molecular mass of 43.5 kDa was abundantly produced in insect cells. Moreover, the recombinant N proteins of the prototype viruses for the two major groups of hMPV have cross-antigenicity. The seropositive rate for each age group was 13.5% (13/96) (0-5 years), 26.1% (25/96) (6-10 years), 32.3% (31/96) (11-15 years), 99.0% (95/96) (16-30 years), 91.7% (88/96) (31-60 years), and 93.8% (90/96) (61+ years), respectively. The data indicated that exposure to hMPV is a common phenomenon. The ELISA based on recombinant baculovirus produced N protein of hMPV provides a useful tool for seroepidemiological study of this virus.  相似文献   

13.
Human metapneumovirus (hMPV) is responsible for respiratory tract disease, particularly in the young and elderly population. An epidemiological and phylogenic study was performed on children admitted to hospital with an acute lower respiratory tract infection (LRI). Data were obtained and analyzed over three consecutive winters, from 2002-2003 to 2004-2005. Each year during the winter period, from November to March, 2,415 nasal swabs were tested by a direct immunofluorescence assay (DFA) for influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses, and adenoviruses. Rhinoviruses, enteroviruses, and coronaviruses OC43 and 229E were detected by RT-PCR. A RT-PCR designed for the M gene was performed on negative samples for hMPV detection and phylogenic analyses. For the three consecutive winters, hMPV represented 10%, 22.6%, and 8.8% of virus-negative samples, respectively. In most cases, clinical symptoms indicated a LRI with a final diagnosis of bronchiolitis. During the winter of 2003-2004, all viral clusters (A1, A2, B1, and B2) that circulated in France shifted progressively from the A group to the B group. This study determined the prevalence of hMPV in Normandy, its clinical impact and permitted the analysis of the molecular evolution during the successive outbreaks.  相似文献   

14.
Purpose: There are a few seroepidemiological studies reported on human metapneumovirus (hMPV) as hMPV was only discovered in the year 2001. This respiratory virus has been reported to be ubiquitous and associated with respiratory tract infections in all age groups. The present study aimed at determining the prevalence of antibodies to hMPV in children and adults of 1 month to 55 years of age. Materials and Methods: Serum samples from 100 study subjects were tested for hMPV antibody by an in-house ELISA system that used hMPV-infected cell lysate antigen. Result: The prevalence of antibody to hMPV was lowest in children less than 5 years of age (60%) and increased throughout age to > 80%. Similarly, geometric mean titres were 1:180 in children less than 5 years of age and reached a peak of 1:419 in adults over 35 years of age. Conclusion: The results show that hMPV infection is acquired early in life and re-infection in later life may maintain the seroprevalence and antibody levels in adult population.  相似文献   

15.
Human metapneumovirus (hMPV) is associated with acute respiratory tract infections, mainly in paediatric patients. The aim of this study was to evaluate the usefulness of two new commercial techniques available for the detection of hMPV in clinical samples from children: an enzyme immunoassay, hMPV EIA (Biotrin International Ltd), and a molecular assay, real-time RT-PCR (Pro hMPV Real Time Assay Kit; Prodesse). A total of 184 nasopharyngeal aspirate specimens from 173 children aged less than 5 years who were hospitalized with acute wheezing were analysed. Respiratory syncytial virus was detected in 27% of the samples, followed by influenza A virus (6%), parainfluenza virus (PIV)3 (2.2%), adenovirus (2%), PIV1 (1.1%), PIV2 (1.1%), and influenza B virus (0.5%). The presence of hMPV was tested in all samples, using the real-time RT-PCR and EIA. Real-time RT-PCR detected 13 hMPV-positive samples (8%), and EIA detected 17 (9.3%). When the EIA results were compared with those of real-time RT-PCR for the detection of hMPV, a good correlation was found (94%). A relatively low co-infection rate (15%) was observed in our patients. RT-PCR and EIA provide robust methods for the diagnosis of hMPV infection in children.  相似文献   

16.
17.
Two recently detected viruses, human metapneumovirus (hMPV) and coronavirus NL63 (HCoV-NL63), have been associated with acute respiratory tract infections, particularly in young children. This study investigated the frequency of hMPV and HCoV-NL63 infections in Swedish children by screening 221 nasopharyngeal aspirates, collected between November 2003 and May 2005, from 212 children attending the paediatric department of a county hospital in Sweden or submitted from local general practitioners. The samples were originally submitted to be tested for respiratory syncytial virus (RSV), and were examined retrospectively for hMPV and HCoV-NL63 by RT-PCR. Of the 212 patients, 101 were positive for RSV (48%), 22 (10%) were positive for hMPV, and 12 (6%) were positive for HCoV-NL63. The frequency of HCoV-NL63 infection increased from 1% in 2003-2004 to 10% in 2004-2005. Sequence analysis of parts of the coronavirus genomes showed considerable similarity to the HCoV-NL63 prototype sequence. The study demonstrated that HCoV-NL63 and hMPV occur in south-west Sweden with essentially the same frequency, seasonal distribution and clinical characteristics as have been reported in other countries.  相似文献   

18.
19.
BACKGROUND: Nasopharyngeal secretions aspirated from infants with bronchiolitis (NPA) are a valuable resource for the study of virus dynamics and local inflammatory responses, however samples are small and difficult to manipulate. OBJECTIVES: To improve yield of NPA from infants. To establish if removal of the cellular component of NPA affects quantification of human metapneumovirus (hMPV) or human respiratory syncytial virus (hRSV) genome. STUDY DESIGN: Weight of NPA collected into traps from 30 infants was compared with that collected in trap plus catheter and washed through with saline from another 30 infants. hMPV (n=33) and hRSV (n=30) genome was measured by reverse-transcribed real-time polymerase chain reaction (RT-RT-PCR) in paired whole and cell-free NPA collected by the improved method. RESULTS: The improved method of NPA collection gave near two-fold greater weight (p = 0.002) of NPA (mean = 0.52 g (S.D. = 0.30 g)) than the traditional method (0.32 g (S.D. 0.19)). There was strong agreement and no significant difference between viral load measured in whole and cell-free fractions of NPA for both viruses (samples (n), correlation coefficient (cc) and significance (p)); hMPV (n=33, cc=0.938, p<0.001) and hRSV (n=30, cc=0.977 and p<0.001). CONCLUSIONS: The majority of hRSV and hMPV in nasal secretions is not associated with cells. Removal of the cellular component of NPA does not interfere with quantification of hRSV and hMPV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号