首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmit and receive transmission line arrays for 7 Tesla parallel imaging.   总被引:1,自引:0,他引:1  
Transceive array coils, capable of RF transmission and independent signal reception, were developed for parallel, 1H imaging applications in the human head at 7 T (300 MHz). The coils combine the advantages of high-frequency properties of transmission lines with classic MR coil design. Because of the short wavelength at the 1H frequency at 300 MHz, these coils were straightforward to build and decouple. The sensitivity profiles of individual coils were highly asymmetric, as expected at this high frequency; however, the summed images from all coils were relatively uniform over the whole brain. Data were obtained with four- and eight-channel transceive arrays built using a loop configuration and compared to arrays built from straight stripline transmission lines. With both the four- and the eight-channel arrays, parallel imaging with sensitivity encoding with high reduction numbers was feasible at 7 T in the human head. A one-dimensional reduction factor of 4 was robustly achieved with an average g value of 1.25 with the eight-channel transmit/receive coils.  相似文献   

2.
Transmit and receive RF coil arrays have proven to be particularly beneficial for ultra‐high‐field MR. Transmit coil arrays enable such techniques as B1+ shimming to substantially improve transmit B1 homogeneity compared to conventional volume coil designs, and receive coil arrays offer enhanced parallel imaging performance and SNR. Concentric coil arrangements hold promise for developing transceiver arrays incorporating large numbers of coil elements. At magnetic field strengths of 7 tesla and higher where the Larmor frequencies of interest can exceed 300 MHz, the coil array design must also overcome the problem of the coil conductor length approaching the RF wavelength. In this study, a novel concentric arrangement of resonance elements built from capacitively‐shortened half‐wavelength transmission lines is presented. This approach was utilized to construct an array with whole‐brain coverage using 16 transceiver elements and 16 receive‐only elements, resulting in a coil with a total of 16 transmit and 32 receive channels. Magn Reson Med 63:1478–1485, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The performance of a 16-channel receive-only RF coil for brain imaging at 3.0 Tesla was investigated using a custom-built 16-channel receiver. Both the image signal-to-noise ratio (SNR) and the noise amplification (g-factor) in sensitivity-encoding (SENSE) parallel imaging applications were quantitatively evaluated. Furthermore, the performance was compared with that of hypothetical coils with one, two, four, and eight elements (n) by combining channels in software during image reconstruction. As expected, both the g-factor and SNR improved substantially with n. Compared to an equivalent (simulated) single-element coil, the 16-channel coil showed a 1.87-fold average increase in brain SNR. This was mainly due to an increase in SNR in the peripheral brain (an up to threefold SNR increase), whereas the SNR increase in the center of the brain was 4%. The incremental SNR gains became relatively small at large n, with a 9% gain observed when n was increased from 8 to 16. Compared to the (larger) product birdcage head coil, SNR increased by close to a factor of 2 in the center, and by up to a factor of 6 in the periphery of the brain. For low SENSE acceleration (rate-2), g-factors leveled off for n>4, and improved only slightly (1.4% averaged over brain) going from n=8 to n=16. Improvements in g for n>8 were larger for higher acceleration rates, with the improvement for rate-3 averaging 12.0%.  相似文献   

4.
5.
6.
7.
8.

Purpose

To design and evaluate a four‐channel cardiac transceiver coil array for functional cardiac imaging at 7T.

Materials and Methods

A four‐element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a B calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3.

Results

Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood‐myocardium contrast applying the B calibration approach.

Conclusion

A four‐channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood‐myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high‐resolution three‐dimensional imaging and dynamic two‐dimensional imaging and the importance of further improvements in spatio‐temporal resolution. The purpose of the study was to describe a novel 16‐channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three‐dimensional imaging of the upper airway during static posture, 6‐fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three‐dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm2 in‐plane spatial and 84 ms temporal resolution. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
An eight-channel receive-only brain coil and table-top detunable volume transmit coil were developed and tested at 7 T for human imaging. Optimization of this device required attention to sources of interaction between the array elements, between the transmit and receive coils and minimization of common mode currents on the coaxial cables. Circular receive coils (85 mm dia.) were designed on a flexible former to fit tightly around the head and within a 270-mm diameter TEM transmit volume coil. In the near cortex, the array provided a fivefold increase in SNR compared to a TEM transmit-receive coil, a gain larger than that seen in comparable coils at 3 T. The higher SNR gain is likely due to strong dielectric effects, which cause the volume coil to perform poorly in the cortex compared to centrally. The sensitivity and coverage of the array is demonstrated with high-resolution images of the brain cortex.  相似文献   

12.
13.
14.
15.
A flexible transceiver array, capable of multiple‐purpose imaging applications in vivo at ultrahigh magnetic fields was designed, implemented and tested on a 7 T MR scanner. By alternately placing coil elements with primary and secondary harmonics, improved decoupling among coil elements was accomplished without requiring decoupling circuitry between resonant elements, which is commonly required in high‐frequency transceiver arrays to achieve sufficient element‐isolation during radiofrequency excitation. This flexible array design is capable of maintaining the required decoupling among resonant elements in different array size and geometry and is scalable in coil size and number of resonant elements (i.e., number of channels), yielding improved filling factors for various body parts with different geometry and size. To investigate design feasibility, flexibility, and array performance, a multichannel, 16‐element transceiver array was designed and constructed, and in vivo images of the human head, knee, and hand were acquired using a whole‐body 7 T MR system. Seven Tesla parallel imaging with generalized autocalibrating partially parallel acquisitions (GRAPPA) performed using this flexible transceiver array was also presented. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Designing multidimensional radiofrequency pulses for clinical application must take into account the local specific absorption rate (SAR) as controlling the global SAR does not guarantee suppression of hot spots. The maximum peak SAR, averaged over an N grams cube (local NgSAR), must be kept under certain safety limits. Computing the SAR over a three-dimensional domain can require several minutes and implementing this computation in a radiofrequency pulse design algorithm could slow down prohibitively the numerical process. In this article, a fast optimization algorithm is designed acting on a limited number of control points, which are strategically selected locations from the entire domain. The selection is performed by comparing the largest eigenvalues and the corresponding eigenvectors of the matrices which locally describe the tissue's amount of heating. The computation complexity is dramatically reduced. An additional critical step to accelerate the computations is to apply a multi shift conjugate gradient algorithm. Two transmit array setups are studied: a two channel 3 T birdcage body coil and a 12-channel 7 T transverse electromagnetic (TEM) head coil. In comparison with minimum power radiofrequency pulses, it is shown that a reduction of 36.5% and 35%, respectively, in the local NgSAR can be achieved within short, clinically feasible, computation times.  相似文献   

17.
18.
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.  相似文献   

19.
Eight-channel transmit/receive body MRI coil at 3T.   总被引:1,自引:0,他引:1  
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.  相似文献   

20.
Phased array coils are finding widespread applications in both the research and the clinical setting. However, intensity nonuniformities with such coils can reduce the potential benefits of these coils, particularly for applications such as tissue segmentation. In this work, a method is described for correcting the nonuniform signal response based on in vivo measures of both the transmission field of body coil and the reception sensitivity of phased array coils, separately. For a uniform phantom, the reception sensitivity can be calculated using both Bloch equations and transmission field maps. For a heterogeneous object such as a brain, a minimal contrast acquisition must be obtained to map the receiver nonuniformities. This transmit field/receiver sensitivity (TFRS) approach is compared with the standard methods of using the body coil to obtain a reference scan and low-pass filtering. The quantitative comparison results shows that the TFRS approach provides superior results in correcting intensity nonuniformities for a uniform phantom. This approach reduces the ratio between signal intensity SD of an image and its mean intensity from approximately 21% before correction to 13% after correction. Results are also shown demonstrating the utility of this approach in vivo with human brain images. The method is general and can be applied with most pulse sequences, any coil combination for transmission and reception, and in any anatomic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号