首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FAK+, an isoform of focal adhesion kinase preferentially expressed in brain and PYK2/Cakβ (proline-rich tyrosine kinase 2/cell adhesion kinaseβ) are two related cytoplasmic tyrosine kinases. They are candidates for coupling electrical activity and stimulation of neurotransmitter receptors to short and long-term changes in synaptic properties, cytoskeletal organization and gene expression in neurons. As the same set of stimuli appear capable of stimulating FAK and/or PYK2 in non-neuronal cells and in cell lines with neuronal characteristics, we investigated the selectivity of regulation of these two kinases in mature nervous tissue. Using rat hippocampal slices, we compared the regulation of FAK+ and PYK2 by stimuli known to be active on one or the other of these two kinases in other cell types: lysophosphatidic acid (LPA), carbachol, depolarization, and hyperosmolarity. Phosphorylation of FAK+ was markedly increased by carbachol and LPA. Carbachol effects occurred via activation of M1 muscarinic receptors and nicotinic receptors. The effects of carbachol and LPA were prevented by protein kinase C inhibitors, whereas 8-Br-cAMP attenuated the effects of carbachol but not of LPA. Tyrosine phosphorylation of PYK2 but not of FAK+ was very strongly enhanced by depolarization and hyperosmolarity. This study and our previous results show that FAK+ and PYK2 are regulated differentially in hippocampal slices: FAK+ is phosphorylated on tyrosine in response to stimulation of G protein-coupled receptors, whereas PYK2 is mainly sensitive to depolarization and hyperosmolarity. Thus, FAK+ and PYK2 may provide specific and separate links between activation of neurotransmitters receptors, depolarization and tyrosine phosphorylation in mature hippocampus.  相似文献   

2.
The thrombin receptor on human platelets is activated by thrombin to stimulate platelet aggregation through the tethered ligand SFLLRN. This study examined the effects of thrombin and SFLLRN on aggregation and calcium mobilization ([Ca2+]i) in rat, guinea pig, rabbit, dog, monkey, and human platelets, and the role of protein kinases in regulating these functions. Thrombin induced platelet aggregation and [Ca2+]i in all species studied; however, only guinea pig, monkey and human platelets were responsive to SFLLRN. Similar species specific effects were obtained with [Ca2+]i studies. The kinetic profile for [Ca2+]i differed among species, suggesting that regulatory mechanisms for calcium differed between agonists and among species. Staurosporine, a non-selective inhibitor of protein kinases, inhibited platelet aggregation induced by thrombin or SFLLRN in all species. Staurosporine inhibited thrombin-induced [Ca2+]i in guinea pigs, had no effect in rat, and increased [Ca2+]i in all other species. Staurosporine inhibited SFLLRN-induced [Ca2+]i in guinea pig, yet had no effect in monkey or human. Tyrphostin 23, a specific inhibitor of tyrosine protein kinases, inhibited thrombin-induced aggregation of rabbit, monkey, dog and human platelets. SFLLRN-induced aggregation was also inhibited by tyrphostin 23. Tyrphostin 23 inhibited [Ca2+]i induced by either thrombin or SFLLRN in all species. Based on the differential response to agonist stimulation, we propose that thrombin can activate platelets via SFLLRN-dependent and independent mechanisms, which could involve yet unrecognized subtypes of the thrombin receptor or distinct cellular activating mechanisms. Furthermore, differential regulation of calcium mobilization and aggregation was observed in those platelets responding to either thrombin or SFLLRN.  相似文献   

3.
The interrelationship between ATP-secretion, protein phosphorylation and intracellular Ca2+ concentration ([Ca2+]i) was studied in both 32P and quin 2 loaded human platelets stimulated by thrombin or thromboxane A2 analogue (STA2). In platelets stimulated by thrombin, the degree of 47,000 dalton polypeptides (P47) phosphorylation was observed in completely dose-related manner, regardless of the amount of [Ca2+]i. In the same condition, the degree of myosin light chain (P20) phosphorylation, however, was well correlated with ATP secretion and [Ca2+]i, when platelets were stimulated by lower dose of thrombin. The similar results were obtained in platelets stimulated by STA2. These findings suggested that P20, but not P47, phosphorylation in activated platelets is mediated by a rise of [Ca2+]i and is well correlated with the secretory reaction. It was unlikely that P47 phosphorylation plays any role in promoting platelet activation.  相似文献   

4.
Stimulation of human platelets with von Willebrand factor (vWF) induces the rapid tyrosine phosphorylation of several proteins, but very little is known on the tyrosine kinases involved in this process. In the present work, we investigated and compared the activation of two related tyrosine kinases expressed in platelets: the proline-rich tyrosine kinase 2 (Pyk2) and the focal adhesion kinase (FAK). Both kinases were tyrosine phosphorylated upon vWF interaction with glycoprotein Ib-IX-V complex, but with different mechanisms. Tyrosine phosphorylation of FAK was totally dependent on thromboxane A2 production, and was inhibited by the integrin alphaIIbeta3 antagonist RGDS peptide. Moreover, chelation of intracellular calcium or inhibition of protein kinase C (PKC) totally blocked vWF-induced tyrosine phosphorylation of FAK, indicating that this event is downstream phospholipase A2 and phospholipase C activation. By contrast, tyrosine phosphorylation of Pyk2 was only partially reduced by aspirin and RGDS, and was not affected by either calcium chelation or PKC inhibition, suggesting that activation of this kinase does not require phospholipase-mediated signalling. Both FAK and Pyk2 translocated to the cytoskeleton upon vWF stimulation of human platelets by a mechanism depending on agonist-induced actin polymerisation. Prevention of cytoskeletal relocation of Pyk2 and FAK by cytochalasin D totally blocked vWF-induced tyrosine phosphorylation of both kinases. Finally, phosphorylation of Pyk2 induced by vWF, but not by thrombin, was inhibited by piceatannol, suggesting that this kinase lies downstream Syk. These results demonstrate that both Pyk2 and FAK are involved in platelet stimulation by vWF, but indicate that only Pyk2 may play a role in the early signal transduction events activated by ligand binding to glycoprotein Ib-IX-V.  相似文献   

5.
Two different models of brain ischemia were used to examine the evoked changes in the tyrosine phosphorylation of NMDA receptor subunits 2A and 2B (NR2A and NR2B), as well as their interactions with non-receptor tyrosine kinases (NRTKs: FAK, PYK2 Src), and PSD-95 protein. Only short-term 5 min ischemia followed by 3 h reperfusion resulted in the elevated tyrosine phosphorylation of both investigated NMDA receptor subunits, but in contrast to previously published data, more pronounced in the case of NR2B. Concomitantly, an increased association of NR2B with FAK, PYK2, Src and PSD-95 has been observed. This sharp early reaction to brief ischemia was markedly attenuated during prolonged recovery (72 h) with almost complete return to control values. The initial recruitment of tyrosine kinases to NMDA receptor during the first 3 h of reperfusion is generally consistent with an active postischemic remodeling of PSD and may participate in the induction of the postischemic signal transduction pathway in gerbil hippocampus. In contrast, ischemia of longer duration (up to 30 min) caused an immediate decrease in the protein levels as well as tyrosine phosphorylation of both NR2A and NR2B subunits which was accompanied by the marked attenuation of the association with their investigated molecular partners--PSD-95 and NRTKs. This effect may be mimicked in vitro by Ca2+-dependent activation of endogenous calpains in purified PSD preparation suggesting irreversible deterioration of the synaptic signaling machinery during irreversible long-term ischemia.  相似文献   

6.
Binding of the coagulation protease factor VIIa to its receptor Tissue Factor (TF) induces intracellular signals in several cell types including HaCaT keratinocytes. TF belongs to the cytokine receptor family, but is most likely not alone in transferring the complete TF/FVIIa signal over the plasma membrane. The protease activated receptor PAR2 is involved in factor VIIa and factor Xa signal transduction. Our results indicate that the epidermal growth factor receptor (EGFR) and the proline rich tyrosine kinase 2 (PYK2) participate in TF/FVIIa signalling as formation of the TF/FVIIa complex increased the phosphorylation of these proteins. Both FVIIa protease activity and available TF were necessary for generation of the signal. Increased tyrosine phosphorylation of the EGFR was observed following TF/FVIIa complex formation on the cell surface. The EGFR kinase inhibitor tyrphostin AG1478 abrogated the TF/FVIIa-complex induced MAP kinase activation and mRNA increase of egr-1, heparin-binding EGF, and interleukin-8 following FVIIa addition. Using specific antibodies, increased phosphorylation of PYK2 tyrosine residues 402 and 580 was observed. The first site is the major autophosphorylation site and the docking site for Src family kinases. The second site is important for the kinase activity. The Src family kinase Yes and the tyrosine phosphatase SHP-2 were detected in immunoprecipitates using either anti-PYK2 or anti-EGFR antibodies. Their coprecipitation with EGFR increased in the presence of FVIIa. Moreover, the coprecipitation of EGFR and PYK2 increased with FVIIa stimulation. Together, these data suggest that EGFR, PYK2, Yes, and SHP-2 are involved in transduction of the TF/FVIIa signal possibly via transactivation of the EGF receptor.  相似文献   

7.
Incubation of human washed platelets with 9,11-epithio-11,12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, caused the activation of protein kinase C and myosin light chain (MLC) kinase to the same extents as those induced by thrombin as judged by measuring the phosphorylation of a 40-kilodalton protein and MLC, respectively. However, STA2 stimulated much less phosphoinositide turnover than thrombin. Furthermore, the doses of STA2 necessary for protein kinase C activation and phosphoinositide turnover were higher than those necessary for MLC kinase activation, although the doses of thrombin necessary for these three reactions were nearly the same. These results suggest that protein kinase C may be activated at the Ca2+ concentrations higher than those required for MLC kinase activation by the action of STA2, presumably due to the inability of this agonist to produce diacylglycerol in an amount enough to increase the affinity of the enzyme for Ca2+.  相似文献   

8.
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2/cell adhesion kinase beta (PYK2/CAKbeta) are related, non-receptor, cytoplasmic tyrosine kinases, highly expressed in the central nervous system (CNS). In addition, FAK+ is a splice isoform of FAK containing a 3-amino acid insertion in the carboxy-terminal region. In rat hippocampal slices, FAK+ and PYK2/CAKbeta are differentially regulated by neurotransmitters and depolarization. We have studied the regional and cellular distribution of these kinases in adult rat brain and during development. Whereas PYK2/CAKbeta expression increased with postnatal age and was maximal in the adult, FAK+ levels were stable. PYK2/CAKbeta mRNAs, detected by in situ hybridization, were expressed at low levels in the embryonic brain, and became very abundant in the adult forebrain. Immunocytochemistry of the adult brain showed a widespread neuronal distribution of FAK+ and PYK2/CAKbeta immunoreactivities (ir). PYK2/CAKbeta appeared to be particularly abundant in the hippocampus. In hippocampal neurons in culture at early stages of development, FAK+ and PYK2/CAKbeta were enriched in the perikarya and growth cones. FAK+ extended to the periphery of the growth cones tips, whereas PYK2/CAKbeta appeared to be excluded from the lamellipodia. During the establishment of polarity, a proximal-distal gradient of increasing PYK2/CAKbeta-ir could be observed in the growing axon. In most older neurons, FAK+-ir was confined to the cell bodies, whereas PYK2/CAKbeta-ir was also present in the processes. In vitro and in vivo, a subpopulation of neurons displayed neurites with intense FAK+-ir. Thus, FAK+ and PYK2/CAKbeta are differentially regulated during development yet they are both abundantly expressed in the adult brain, with distinctive but overlapping distributions.  相似文献   

9.
Aggregation, secretion and 47kDa protein (P47) phosphorylation by various agonists such as thrombin, ADP and ionophore A23187 were markedly reduced in platelets from stroke-prone spontaneously hypertensive rats (SHRSP) compared with those of age-matched Wistar Kyoto rat (WKY) platelets, suggesting defective functions of intracellular Ca2+ in SHRSP platelets (Tomita et al. Hypertension 1989: 14: 304–315). To clarify the mechanism of the platelet hypofunctions, saponin permeabilized platelets were prepared to compare the responses of platelets from both rats in varying concentrations of extracellular Ca2+. The leakage of lactate dehydrogenase from saponin (15 μg/ml)-treated platelets was approx. 5 % of total activity; the degree of the leakage in both platelets did not differ. In saponin-treated platelets, extracellular Ca2+ alone did not induce either aggregation or secretion in both strains. However, in the presence of 1-oleoyl-2-acetylglycerol (10 μg/ml), Ca2+ dose dependently stimulated both aggregation and secretion. Under this condition, Ca2+ sensitivity of aggregation, secretion and P47 phosphorylation in SHRSP platelets were significantly reduced compared with those in WKY platelets. These results strongly suggest that intracellular Ca2+ functions are impaired in SHRSP platelets.  相似文献   

10.
Protein kinases associated with ribosomes in the brains of suckling (4–10 days) and adult (2 months) rats were extracted from ribosomal fraction with 0.5 M KCl. The different protein kinase activities were characterized by their ability to phosphorylate three exogenous substrates: casein, histone IIs and histone IIIs in the presence of different modulators. Ribosomal salt wash fractions contain a high casein kinase activity which was partially inhibited by heparin and stimulated by calmodulin in the presence of Ca2+, indicating the presence of casein kinase I and II and calcium/calmodulindependent kinases. Cyclic AMP and cyclic GMP-dependent kinases and protein kinase C (calcium/phospholipids-dependent kinase) were also present. No differences were found in the casein kinase activities of suckling and adult animals, but histone kinase activities were higher in adult than in suckling animals.

To identify initiation factor 2 kinases, purified factor from adult brains was used as a protein marker. In addition to the phosphorylation of both factor subunits and β by casein kinase I or II, an increased phosphorylation was detected of a subunit in the presence of cyclic AMP, and β subunit, in the presence of Ca2+/calmodulin or Ca2+/phospholipids.

Present results reinforce our hypothesis that, as occurs in other eukaryotic cells, the decreased rate of protein synthesis during brain development may be regulated by phosphorylation of initiation factor 2.  相似文献   


11.
The nonreceptor tyrosine kinase PYK2 represents a stress-sensitive mediator of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) signaling pathways in many cell types. In the present study, we assessed the tyrosine phosphorylation of PYK2 under normal and pathological conditions in the CNS. We generated a polyclonal antibody that selectively recognizes tyrosine-phosphorylated PYK2 at its major autophosphorylation site. By using this antibody, we demonstrate that the phosphorylation profile of PYK2 after focal cerebral ischemia is biphasic. The first phase occurs within 1 hr, when most of the phospho-PYK2 immunoreactivity was observed in cortical neurons, whereas 24-72 hr after ischemia, a striking induction of phospho-PYK2 immunoreactivity was evident in microglia around the necrotic infarcted area. Double-immunostaining analysis using both anti-phospho-PYK2 antibody and antibody against the double-phosphorylated active form of p38MAPK revealed that the two phosphorylated protein kinases exhibit strikingly similar distribution patterns after ischemia. A short time after ischemia, phosphorylation of p38MAPK was evident in the cortical neurons as demonstrated by both immunohistochemistry and immunoblotting analysis, whereas 24-72 hr after ischemia, phospho-p38MAPK was found in activated microglia and colocalized with phospho-PYK2. In contrast to cortical neurons, basal phospho-PYK2 immunoreactivity was observed in hippocampal pyramidal neurons, which was markedly decreased after kainate acid-induced status epilepticus. However, 24 hr after the epileptic onset, a pronounced upregulation of PYK2 and phospho-PYK2 immunoreactivities was evident in microglial cells, as demonstrated by double-immunostaining with the microglial marker OX42. These results provide, for the first time, in situ localization of tyrosine-phosphorylated PYK2 in neuronal stress pathways in the adult rat brain and are consistent with the role of PYK2 as an upstream regulator of p38MAPK signaling cascades in response to stress signals.  相似文献   

12.
Washed rat platelets aggregation and endogenous serotonin release were studied after thrombin stimulation in the presence of different concentrations of Ca2+, Sr2+ or Ba2+. The extent of platelet aggregation and release was found to depend upon the external concentration of these cations. For all of them, an optimum concentration could be defined. Higher concentrations were shown to inhibit both aggregation and release. Efficiency to support thrombin-induced aggregation was in the order Ca2+>Sr2+>Ba2+. Complete inhibition of aggregation and release induced by thrombin was obtained after a 30 second preincubation with 38 uM nitrendipine, 1 nM Cd2- or 1 mM Mn2+. Inhibition was obtained in the presence of Ca2+, Sr2+ or Ba2+. These results are consistent with the hypothesis that Sr2+ and Ba2+ are able to support platelet activation acting as Ca2+ substitutes. Following thrombin stimulation, they could penetrate the platelets and mimick a rise in cytoplasmic Ca2+.  相似文献   

13.
The influence of granulocyte elastase-like proteinase (ELP) on platelet functions was investigated. ELP inhibited the platelet aggregations induced by a wide variety of agonists. The inhibition was marked in the case of receptor-mediated agonists such as thrombin, ristocetin, etc. It was moderate with the pervading agonist, arachidonic acid, and mild with the bypassing agonist, Ca2+ ionophore A23187. ELP inhibited the release of thromboxane A2 from platelets in the case of the platelet aggregation induced by thrombin. On the other hand, ELP did not inhibit the release of thromboxane A2 from platelets in the platelet aggregation induced by arachidonic acid or Ca2+ ionophore A23187. ELP suppressed the release of serotonin from platelets induced by thrombin, while it did not markedly suppress the release of serotonin induced by Ca2+-ionophore A23187. Treatment of platelets with ELP resulted in a slight increase of intraplatelet cAMP levels. These results suggest that ELP acts on receptors and inhibits platelet functions. As a results, ELP markedly inhibits the platelet functions such as aggregation or release of serotonin or thromboxane A2 stimulated by receptor-mediated agonists. ELP slightly elevates the CAMP level in the platelets, resulting in the mild inhibition of the platelet functions stimulated by the pervading agonist, arachidonic acid, or the bypassing agonist, Ca2+-ionophore A23187.  相似文献   

14.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase thought to play a major role in transducing extracellular matrix (ECM)-derived survival signals into cells. Thus, modulation of FAK activity may affect the linkage between ECM and signaling cascade to which it is connected and may participate in a variety of pathological settings. In the present study, we investigated the effect of neonatal cerebral hypoxia-ischemia (HI) on levels and tyrosine phosphorylation of focal adhesion kinase and the interaction of this enzyme with Src protein tyrosine kinase and adapter protein p130Cas, involved in FAK-mediated signaling pathway. The total amount of focal adhesion kinase as well as its phosphorylated form declined substantially to about 50% of the control between 24 and 48 h after the insult. Concomitantly a decreased association of FAK with its investigated molecular partners, Src kinase and p130Cas protein has been observed. This early response to brain hypoxia-ischemia was attenuated during prolonged recovery with almost complete return to control values at 7 days. These data are indicative of an involvement of FAK-dependent signaling pathway in the evolution of HI-induced neuronal degeneration.  相似文献   

15.
Transient cerebral ischemia results in an increase in the tyrosine phosphorylation of proteins associated with postsynaptic densities (PSDs). The authors investigated the possible mechanisms behind this increase by analyzing isolated PSDs for protein tyrosine kinase activity and for the presence of specific tyrosine kinases. Transient (15 minutes) global ischemia was produced in adult rats by four-vessel occlusion, and PSDs were isolated immediately after ischemia or after 20 minutes or 6 hours of reperfusion. Tyrosine phosphorylation of several PSD proteins, including the N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, was enhanced relative to shams after 20 minutes of reperfusion and underwent a further increase between 20 minutes and 6 hours. The ability of intrinsic PSD tyrosine kinase to phosphorylate PSD proteins, including the NMDA receptor, increased threefold after ischemia. Whereas PSD-associated proline-rich tyrosine kinase 2 (PYK2) and gp145TrkB were elevated immediately after the ischemic event, increases in Src and Fyn were not apparent until 6 hours of reperfusion. The level of PSD-associated pp125FAK decreased after ischemia. The results demonstrate that ischemia results in selective changes in the association of protein tyrosine kinases with the PSD which may account for ischemia-induced increases in the tyrosine phosphorylation of PSD proteins.  相似文献   

16.
The integrin alpha(IIb)beta(3) plays a critical role in mediating clot retraction by platelets which is important in vivo in consolidating thrombus formation. Actin-myosin interaction is essential for clot retraction. In the present study, we demonstrate that the structurally distinct Src kinase inhibitors, PP2 and PD173952, significantly reduced the rate of clot retraction, but did not prevent it reaching completion. This effect was accompanied by abolition of alpha(IIb)beta(3)-dependent protein tyrosine phosphorylation, including PLCgamma2. A role for PLCgamma2 in mediating clot retraction was demonstrated using PLCgamma2-deficient murine platelets. Furthermore, platelet adhesion to fibrinogen leads to MLC phosphorylation through a pathway that is inhibited by PP2 and by the PLC inhibitor, U73122. These results demonstrate a partial role for Src kinase-dependent activation of PLCgamma2 and MLC phosphorylation in mediating clot retraction downstream of integrin alpha(IIb)beta(3).  相似文献   

17.
Lauri SE  Taira T  Rauvala H 《Neuroreport》2000,11(5):997-1000
Signaling via tyrosine kinases appears necessary for regulation of synaptic efficacy. Interactions of the src-family kinases with phosphorylated proteins were studied in area CAI of rat hippocampal slices 10 min after induction of long-term potentiation (LTP) by 100 Hz/l s stimulation (HFS). HFS enhanced association of the src-family kinases fyn and c-src with an approximately 120 kDa tyrosine phosphorylated component containing the focal adhesion kinase (FAK) and its homologue PYK2. Association of fyn with FAK and of c-src with PYK2 was increased following the HFS. Further, increase in tyrosine phosphorylation of PYK2 was detected following the HFS. These results suggest that fyn and c-src are involved in distinct signaling pathways and provide evidence for activation of FAK and PYK2 following synaptic stimulation inducing LTP in vitro.  相似文献   

18.
Ekinci FJ  Shea TB 《Brain research》1999,850(1-2):207-216
Protein kinase C (PKC) is reversibly activated at the plasma membrane by the generation of diacylglycerol (DAG) coupled with the release of Ca2+ from intracellular stores. PKC is also irreversibly activated by calpain-mediated PKC cleavage of the regulatory and catalytic subunits; resultant free PKC catalytic subunits are termed “PKM”. Unlike PKC, PKM is co-factor-independent, remains active following diffusion away from the membrane, and can theoretically phosphorylate targets inaccessible to, and inappropriate for, PKC. We examined the downstream consequences of PKC activation by the phorbol ester TPA and by ionophore A23187-mediated calcium influx (which experimentally correspond to DAG-mediated and calpain-mediated activation, respectively) on phosphorylation of the microtubule-associated protein tau. Both methods increased phospho-tau immunoreactivity, and neither was inhibited by lithium or olomoucin (inhibitors of tau kinases GSK-3β and cdk5, respectively). The TPA-mediated increase, and not the ionophore-mediated increase, was blocked by co-treatment with the mitogen-activated protein (MAP) kinase kinase inhibitor PD98059. These findings indicate that PKC phosphorylates tau via the MAP kinase pathway, but that PKM can bypass this requirement, therefore demonstrating that distinct intracellular pathways can be mediated by PKC and PKM. PKM generation may therefore trigger one or more additional pathways contributing to tau phosphorylation following inappropriate calcium influx.  相似文献   

19.
Potassium chloride (KCl)-depolarization has been used to study the properties of L-type Ca2+ channel-mediated signal transduction in hippocampal neurons. Calcium influx through L-type Ca2+ channels stimulates a second messenger pathway that transactivates genes under the regulatory control of the Ca2+- and cyclic AMP-responsive element (CRE). Here, we show that in striatal neurons, but not in hippocampal neurons, CRE binding protein (CREB) phosphorylation and CRE-mediated gene expression after KCl-depolarization depends on functional NMDA receptors. This difference in NMDA receptor dependence is not due to different properties of L-type Ca2+ channels in either neuronal type, but rather to different neuron-intrinsic properties. Despite this variation, the second messenger pathway activated by KCl requires Ca2+/calmodulin (CaM) kinase for CREB phosphorylation in both neuronal types. We conclude that depolarization by KCl works differently in striatal and hippocampal neurons.  相似文献   

20.
During the last decades it has been shown that trophic molecules released by target, afferent and glial cells play a pivotal role controlling neuronal cell death. Trophic molecules are able to inhibit this regressive event during development as well as during degenerative diseases. One of the mechanisms involved in the control of neuronal survival by afferent cells requires the release of trophic molecules stimulated by electrical activity. It has been demonstrated that veratridine (a depolarizing agent that keeps the Na+ channels opened) induces an increase in neuronal survival. In the present work we show that 3 μM veratridine induced a two-fold increase on the survival of retinal ganglion cells after 48 h in culture. The veratridine effect was inhibited by 50 μM amiloride (an inhibitor of Ca2+ channels), 25 μM benzamil (an inhibitor of Na+ channels), 30 μM dantrolene and 7.5 μM caffeine (both inhibitors of Ca2+ release from the endoplasmatic reticulum) and 10 μM BAPTA-AM (an intracellular Ca2+ chelator). However, 5 μM nifedipine (a selective inhibitor of voltage-dependent -type Ca2+ channels) and 100 μM MK 801 (an inhibitor of NMDA receptors) did not block the veratridine effect. On the other hand, treatment with 10 μM genistein (an inhibitor of tyrosine kinase enzymes), 20 μM fluorodeoxyuridine (an inhibitor of cell proliferation) or 10 μM atropine (an antagonist of muscarinic receptors) completely abolished the effect of veratridine. Taken together, our results indicate that veratridine increases the survival of rat retinal ganglion cells through mechanisms involving Na+ influx, intracellular Ca2+ release, activation of tyrosine kinase enzymes and cellular proliferation. They also indicate that cholinergic activity plays an important role in the veratridine effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号