首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
We compared immunization of BALB/c mice with radiation-attenuated versus killed sporozoites of the rodent malaria parasite, Plasmodium yoelii. We employed a suboptimal schedule of only two immunizations, in expectation that some parasites might break through the resultant low level immunity and that it might thus be possible to study the response of the host against these 'breakthrough' schizonts. As a measure of protective immunity, we used histological means to determine the percentages of challenge sporozoites prevented from completing development into hepatic schizonts within the liver. Immunization with attenuated sporozoites led to almost complete protection, whereas immunization with similar dosages of killed sporozoites led to approximately a 75% protection. Fluorescent antibody titers against sporozoites were similar in both sets of immunized animals. However, serum from mice immunized with attenuated sporozoites had a protective effect upon passive transfer into immunologically naive mice subsequently challenged with normal sporozoites; serum from mice immunized with killed sporozoites had no such effect. When mice suboptimally immunized with attenuated sporozoites were challenged, we observed breakthrough schizonts being infiltrated with inflammatory cells, primarily mononuclear cells, and neutrophils; partial depletion of CD4+ or CD8+ cells within these mice prior to challenge prevented the infiltration of breakthrough schizonts. Thus, cellular infiltration of schizonts was apparently secondary to earlier action by lymphocytes. This infiltration was also not observed in mice immunized with killed sporozoites. The more effective protective immunity induced by attenuated sporozoites could be due to their ability to release antigen into the cytoplasm of hepatocytes that they invade or their ability to continue differentiating, thereby presenting new antigens that are not seen after immunization with killed sporozoites.  相似文献   

2.
Protective immune responses against malaria are induced by immunization with radiation-attenuated Plasmodium sporozoites. In contrast, non-viable, heat-killed sporozoites do not induce protection, emphasizing the requirement for live parasites to achieve effective immune responses. Using an experimental system with CD8+ T cells from T cell receptor-transgenic mice, we analyzed the primary CD8+ T cell responses elicited by heat-killed inactivated sporozoites. We found that the numbers of specific CD8+ T cells induced were much lower compared to when immunizing with attenuated sporozoites; however, the kinetics of activation and the phenotype of these T cells were similar in both groups. Despite their low frequency after priming, high numbers of specific CD8+ T cells were observed after boosting with a recombinant vaccinia virus. Upon induction of the recall response, the same level of protection was observed when either heat-killed or attenuated sporozoites were used for priming. We propose that live parasites are not critical for the induction of memory T cell populations against the malaria liver stages.  相似文献   

3.
Understanding protective immunity to malaria is essential for the design of an effective vaccine to prevent the large number of infections and deaths caused by this parasitic disease. To date, whole-parasite immunization with attenuated parasites is the most effective method to confer sterile protection against malaria infection in clinical trials. Mouse model studies have highlighted the essential role that CD8+ T cells play in protection against preerythrocytic stages of malaria; however, there is mounting evidence that antibodies are also important in these stages. Here, we show that experimental immunization of mice with Plasmodium yoelii fabb/f (Pyfabb/f), a genetically attenuated rodent malaria parasite that arrests late in the liver stage, induced functional antibodies that inhibited hepatocyte invasion in vitro and reduced liver-stage burden in vivo. These antibodies were sufficient to induce sterile protection from challenge by P. yoelii sporozoites in the absence of T cells in 50% of mice when sporozoites were administered by mosquito bite but not when they were administered by intravenous injection. Moreover, among mice challenged by mosquito bite, a higher proportion of BALB/c mice than C57BL/6 mice developed sterile protection (62.5% and 37.5%, respectively). Analysis of the antibody isotypes induced by immunization with Pyfabb/f showed that, overall, BALB/c mice developed an IgG1-biased response, whereas C57BL/6 mice developed an IgG2b/c-biased response. Our data demonstrate for the first time that antibodies induced by experimental immunization of mice with a genetically attenuated rodent parasite play a protective role during the preerythrocytic stages of malaria. Furthermore, they highlight the importance of considering both the route of challenge and the genetic background of the mouse strains used when interpreting vaccine efficacy studies in animal models of malaria infection.  相似文献   

4.
The irradiated-sporozoite vaccine elicits sterile immunity against Plasmodium parasites in experimental rodent hosts and human volunteers. Based on rodent malaria models, it has been proposed that CD8+ T cells are the key protective effector mechanism required in sporozoite-induced immunity. To investigate the role of class II-restricted immunity in protective immunity, we immunized beta2-microglobulin knockout (beta2M-/-) mice with irradiated Plasmodium yoelii or P. berghei sporozoites. Sterile immunity was obtained in the CD8+-T-cell-deficient mice immunized with either P. berghei or P. yoelii sporozoites. beta2M-/- mice with the BALB/c (H-2d) genetic background as well as those with the C57BL (H-2b) genetic background were protected. Effector mechanisms included CD4+ T cells, mediated in part through the production of gamma interferon, and neutralizing antibodies that targeted the extracellular sporozoites. We conclude that in the absence of class I-restricted CD8+ T cells, sporozoite-induced protective immunity can be effectively mediated by class II-restricted immune effector mechanisms. These results support efforts to develop subunit vaccines that effectively elicit high levels of antibody and CD4+ T cells to target Plasmodium pre-erythrocytic stages.  相似文献   

5.
目的探讨pFLAG CMV8 gp96NTD-CSP重组DNA疟疾疫苗免疫能否诱导小鼠产生保护性免疫及其效应机制。方法以pFLAG CMV8质粒为载体,构建免疫用重组质粒,按照DNA疫苗免疫方法免疫小鼠;野生子孢子进行攻击后,采用Real-time PCR和吉氏染色观察被攻击小鼠的肝脏虫荷和原虫血症,即免疫小鼠抵御野生子孢子攻击的能力;并通过ELISA和ELISPOT方法探讨免疫小鼠保护性免疫的可能机制。结果核酸疫苗pFLAG CMV8 gp96NTD-CSP免疫小鼠能显著抵御野生子孢子的攻击,并且能诱导小鼠产生较高的抗体水平和较高的CSP特异的CD8+T细胞频率。结论 pFLAG CMV8 gp96NTD-CSP重组DNA疫苗可能通过诱导小鼠CSP特异抗体和CSP特异的CD8+T细胞的产生,一定程度上抵御野生子孢子的攻击。  相似文献   

6.
7.
Natural exposure to Plasmodium parasites induces short-lived protective immunity. In contrast, exposure to radiation-attenuated sporozoites (gamma spz) promotes long-lasting protection that is in part mediated by CD8(+) T cells that target exoerythrocytic stage antigens. The mechanisms underlying the maintenance of long-lasting protection are currently unclear. The liver is a repository of Plasmodium antigens and may support the development and / or homing of memory T cells. While activated CD8(+) T cells are presumed to die in the liver, the fate of anti-Plasmodium CD8(+) T cells remains unknown. We propose that inflammatory conditions in the liver caused by Plasmodium parasites may allow some effector CD8(+) T cells to survive and develop into memory cells. To support this hypothesis, in this initial study we demonstrate that liver mononuclear cells from P. berghei gamma spz-immune mice transferred protection to naive recipients and moreover, that CD4(+) and CD8(+) T cells responded to Plasmodium antigens by up-regulating activation / memory markers. While CD4(+) T cells under went a transient activation following immunization with gamma spz, CD8(+) T cells expanded robustly after spz challenge and exhibited stable expression of CD44(hi) and CD45RB(lo) during protracted protection. These results establish a key role for intrahepatic T cells in long-lasting protection against malaria.  相似文献   

8.
The observation that protective immunity induced by immunization with radiation attenuated Plasmodium berghei and Plasmodium yoelii sporozoites is dependent on CD8+ T lymphocytes in some strains of mice led us to speculate that immunization with sporozoites induces cytotoxic T lymphocytes (CTL) that recognize malaria antigens on the surface of malaria-infected hepatocytes. In this report we summarize a series of experiments that confirm this hypothesis. We first showed that when immune mice are challenged with live sporozoites they develop malaria-specific, CD8+ T cell-dependent infiltrates in their livers. Next we demonstrated that spleen cells from immune mice eliminate malaria infected hepatocytes from in vitro culture in an antigen specific and genetically restricted manner, indicating that these immune cells recognize malaria antigens on the surface of infected hepatocytes. Finally we defined a CTL epitope of the P. yoelii CS protein, and demonstrated that CTL against this 16-amino-acid peptide (PYCTL1) eliminate infected hepatocytes from culture in an antigenic specific, and MHC restricted manner, indicating that this 16-amino-acid peptide from the CS protein is present on the surface of the infected hepatocytes. We are currently working on constructing vaccines that induce protective CTL against PYCTL1, and identifying additional pre-erythrocytic stage targets of CTL mediated protective immunity.  相似文献   

9.
BALB/c mice immunized with irradiated Plasmodium yoelii sporozoites produce antibodies and cytotoxic T lymphocytes against the circumsporozoite protein and against a 140-kDa protein, sporozoite surface protein 2 (PySSP2). Approximately 50% of mice immunized with P815 cells transfected with the gene encoding PySSP2 are protected against malaria, and this protection is reversed by in vivo depletion of CD8+ T cells. To determine if CD8+ T cells against PySSP2 are adequate to protect against malaria in the absence of other malaria-specific immune responses, we produced three CD8+ T-cell clones by stimulating spleen cells from mice immunized with irradiated P. yoelii sporozoites with a mitomycin-treated P815 cell clone transfected with the PySSP2 gene. Adoptive transfer of clone TSLB7 protected 100% of mice against P. yoelii. The second clone protected 58% of mice, and the third clone provided no protection. Clone TSLB7 protected even when administered 3 h after sporozoite inoculation at a time when sporozoites had entered hepatocytes, suggesting that it is recognizing and eliminating infected hepatocytes. These studies demonstrate that cytotoxic T lymphocytes against PySSP2 can protect against P. yoelii sporozoite challenge in the absence of other parasite-specific immune responses.  相似文献   

10.
Most work on protective immunity against the pre-erythrocytic stages of malaria has focused on induction of antibodies that prevent sporozoite invasion of hepatocytes, and CD8(+) T-cell responses that eliminate infected hepatocytes. We recently reported that immunization of A/J mice with an 18-amino-acid synthetic linear peptide from Plasmodium yoelii sporozoite surface protein 2 (SSP2) in TiterMax adjuvant induces sterile protection that is dependent on CD4(+) T cells and gamma interferon (IFN-gamma). We now report that immunization of inbred A/J mice and outbred CD1 mice with each of two linear synthetic peptides from the 17-kDa P. yoelii hepatocyte erythrocyte protein (HEP17) in the same adjuvant also induces protection against sporozoite challenge that is dependent on CD4(+) T cells and IFN-gamma. The SSP2 peptide and the two HEP17 peptides are recognized by B cells as well as T cells, and the protection induced by these peptides appears to be directed against the infected hepatocytes. In contrast to the peptide-induced protection, immunization of eight different strains of mice with radiation-attenuated sporozoites induces protection that is absolutely dependent on CD8(+) T cells. Data represented here demonstrate that CD4(+) T-cell-dependent protection can be induced by immunization with linear synthetic peptides. These studies therefore provide the foundation for an approach to pre-erythrocytic-stage malaria vaccine development, based on the induction of protective CD4(+) T-cell responses, which will complement efforts to induce protective antibody and CD8(+) T-cell responses.  相似文献   

11.
Protective immunity against malaria is induced by immunization with irradiation-attenuated sporozoites. Here we report the isolation of cytolytic T-cell (CTL) clones from BALB/c (H-2d) mice immunized with either Plasmodium berghei or Plasmodium yoelii sporozoites. The epitopes recognized by these CTL can be mimicked by synthetic peptides corresponding to a homologous region in the CS proteins of both rodent malaria species. Both peptides are recognized by the CTL in the context of the same MHC class I molecule, H-2 Kd. In vivo adoptive transfer of the CTL clones into non-immune syngeneic mice protected them from a lethal challenge of infectious sporozoites.  相似文献   

12.
We previously reported the identification of a T cell epitope in the N- terminal part of the circumsporozoite protein (CSP) of Plasmodium yoelii yoelii (Pyy). CD4+ T cell clones derived from mice immunized with a 21-mer peptide (amino acids 59-79, referred to as Py1) containing this epitope confer complete protection after passive transfer in mice. These clones proliferate in vitro in the presence of a 13-mer peptide (amino acids 59-71, referred to as Py1T). This shorter peptide was found to behave as a Th epitope in vivo, allowing overcoming of the genetic restriction for production of anti-repeat antibodies in BALB/c mice, when cross-linked to three (QGPGAP) repeats of the Pyy CSP. In this study, we report protection in BALB/c mice, against a challenge with Pyy sporozoites after immunization with linear and multiple antigen peptides containing Py1T as T epitope and three repeats QGPGAP (Py3) as B epitope. Multiple antigen peptide (MAP4-Py1T- Py3)-induced immunity was shown to be more effective than immunity induced by the linear form of the conjugate (Py1T-Py3), protecting against challenges with higher numbers of sporozoites. In both cases, levels of anti-repeat antibodies were strongly correlated with anti- parasite antibodies and protection. When tested in vitro, sera from mice immunized with the protective constructs strongly inhibited Pyy liver stages, while lymph node T cells displayed no cytotoxicity. In vivo, depletion of CD4+ or CD8+ T cells did not affect protection. Furthermore, MAP4-Py1T-Py3-immunized mice were not protected against a challenge with P. yoelii nigeriensis sporozoites, a parasite which has the same Py1T sequence but differs from Pyy in its repeated sequence. These results demonstrate that anti-repeat antibodies raised by immunization with the linear or the MAP form are exclusively responsible for the protection. Furthermore, this antibody response is boosted by a sporozoite challenge, allowing protection against a second challenge.   相似文献   

13.
L Rnia  M M Rodrigues    V Nussenzweig 《Immunology》1994,82(1):164-168
Malaria liver forms are the target of antibody or T-cell-mediated immune mechanisms induced by previous or subsequent developmental stages of the parasite. The potential for vaccine development of antigens expressed exclusively in the liver stages has not been fully explored partly because of the lack of an experimental animal model. Here we show that protective immunity against sporozoite-induced infection with Plasmodium yoelii and P. berghei can be obtained by intrasplenic injection of a small number of liver stages of the parasites. The serum of the protected animals did not contain antibodies against sporozoites, liver or blood stage malaria parasites. Protective immunity was abolished by depletion of either CD4+ or CD8+ T cells from the vaccinated mice before challenge.  相似文献   

14.
We have previously reported the design and expression of chimeric recombinant proteins as an effective platform to deliver malaria vaccines. The erythrocytic and exoerythrocytic protein chimeras described included autologous T helper epitopes genetically linked to defined B cell epitopes. Proof-of-principle studies using vaccine constructs based on the Plasmodium yoelii circumsporozoite protein (CSP) and P. yoelii merozoite surface protein-1 (MSP-1) showed encouraging results when tested individually in this mouse malaria model. To evaluate the potential synergistic or additive effect of combining these chimeric antigens, we constructed a synthetic gene encoding a hybrid protein that combined both polypeptides in a single immunogen. The multistage vaccine was expressed in soluble form in Escherichia coli at high yield. Here we report that the multistage protein induced robust immune responses to individual components, with no evidence of vaccine interference. Passive immunization using purified IgG from rabbits immunized with the hybrid protein conferred more robust protection against the experimental challenge with P. yoelii sporozoites than passive immunization with purified IgG from rabbits immunized with the individual proteins. High antibody titers and high frequencies of CD4(+)- and CD8(+)-specific cytokine-secreting T cells were elicited by vaccination. T cells were multifunctional and able to simultaneously produce interleukin-2 (IL-2), gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). The mechanism of vaccine-induced protection involved neutralizing antibodies and effector CD4(+) T cells and resulted in the control of hyperparasitemia and protection against malarial anemia. These data support our strategy of using an array of autologous T helper epitopes to maximize the response to multistage malaria vaccines.  相似文献   

15.
Immunization with attenuated Plasmodium sporozoites or viral vectored vaccines can induce protective CD8+ T cells that can find and eliminate liver-stage malaria parasites. A key question is whether CD8+ T cells must recognize and eliminate each parasite in the liver or whether bystander killing can occur. To test this, we transferred antigen-specific effector CD8+ T cells to mice that were then coinfected with two Plasmodium berghei strains, only one of which could be recognized directly by the transferred T cells. We found that the noncognate parasites developed normally in these mice, demonstrating that bystander killing of parasites does not occur during the CD8+ T cell response to malaria parasites. Rather, elimination of infected parasites is likely mediated by direct recognition of infected hepatocytes by antigen-specific CD8+ T cells.  相似文献   

16.
The elimination of liver-stage malaria parasites by nitric oxide (NO)-producing hepatocytes is regulated by T cells. Both CD8+ and CD4+ T cells, which surround infected hepatocytes, are evident by 24 h after sporozoite challenge in Brown Norway rats previously immunized with irradiated Plasmodium berghei sporozoites. While the number of CD4+ T cells remained the same beyond 24 h postchallenge, the number of CD8+ T cells increased three- and sixfold by 31 and 44 h, respectively. This increase in the number of CD8+ T cells correlated with a decrease in the number of intrahepatic parasites. In immunized rats, intrahepatic parasites were reduced in number by 31 h after sporozoite challenge and cleared from the liver by 44 h, as visualized by P. berghei-specific DNA in situ hybridization. If immunized rats were treated with aminoguanidine, a substrate inhibitor of NO synthase, at the time of challenge, liver-stage protection was blocked, as shown by the increase in parasite liver burden. Further histological examination of infected livers from immunized animals treated with aminoguanidine revealed fewer and smaller cellular infiltrates surrounding the infected hepatocytes, and the number of CD8+ T cells that normally accumulate within the infiltrates was drastically reduced. Consequently, the infected hepatocytes were not cleared from the liver. We hypothesize that the early production of NO may promote the influx and/or enhance local proliferation of malaria parasite-specific CD8+ T cells or a CD8+ T-cell subset which is required for parasite clearance.  相似文献   

17.
Following Anopheles mosquito-mediated introduction into a human host, Plasmodium parasites infect hepatocytes and undergo intensive replication. Accumulating evidence indicates that CD8+ T cells induced by immunization with attenuated Plasmodium sporozoites can confer sterile immunity at the liver stage of infection; however, the mechanisms underlying this protection are not clearly understood. To address this, we generated recombinant Plasmodium berghei ANKA expressing a fusion protein of an ovalbumin epitope and green fluorescent protein in the cytoplasm of the parasite. We have shown that the ovalbumin epitope is presented by infected liver cells in a manner dependent on a transporter associated with antigen processing and becomes a target of specific CD8+ T cells from the T cell receptor transgenic mouse line OT-I, leading to protection at the liver stage of Plasmodium infection. We visualized the interaction between OT-I cells and infected hepatocytes by intravital imaging using two-photon microscopy. OT-I cells formed clusters around infected hepatocytes, leading to the elimination of the intrahepatic parasites and subsequent formation of large clusters of OT-I cells in the liver. Gamma interferon expressed in CD8+ T cells was dispensable for this protective response. Additionally, we found that polyclonal ovalbumin-specific memory CD8+ T cells induced by de novo immunization were able to confer sterile protection, although the threshold frequency of the protection was relatively high. These studies revealed a novel mechanism of specific CD8+ T cell-mediated protective immunity and demonstrated that proteins expressed in the cytoplasm of Plasmodium parasites can become targets of specific CD8+ T cells during liver-stage infection.  相似文献   

18.
Infection with the blood stage of the malaria parasite Plasmodium vinckei is uniformly lethal in mice. We found that immunization of BALB/c mice with a combination of killed P. vinckei antigens and an attenuated (aroA) Salmonella typhimurium strain induces high levels of protection against challenge with live P. vinckei. This is especially significant because, in our previous studies, immunization of mice with killed P. vinckei antigens and adjuvants such as Bordetella pertussis, complete Freund adjuvant, and saponin failed to induce protective immunity. Immunization with attenuated S. typhimurium alone did not provide any nonspecific immunity. In vivo depletion of CD4+ T cells in the mice immunized with attenuated S. typhimurium and P. vinckei antigens caused the loss of their immunity. Expression of this immunity required the presence of a spleen. These results support our previous hypothesis that a blood stage malaria vaccine may need both induction of CD4+ T cells specific for the parasite and modification of the spleen with a vaccine vehicle. Therefore, attenuated Salmonella strains such as the one used in this study, when expressing recombinant malarial antigens, might fulfill this requirement.  相似文献   

19.
Unmethylated CpG dinucleotides in bacterial DNA or synthetic oligodeoxynucleotides (ODNs) cause B-cell proliferation and immunoglobulin secretion, monocyte cytokine secretion, and activation of natural killer (NK) cell lytic activity and gamma interferon (IFN-gamma) secretion in vivo and in vitro. The potent Th1-like immune activation by CpG ODNs suggests a possible utility for enhancing innate immunity against infectious pathogens. We therefore investigated whether the innate immune response could protect against malaria. Treatment of mice with CpG ODN 1826 (TCCATGACGTTCCTGACGTT, with the CpG dinucleotides underlined) or 1585 (ggGGTCAACGTTGAgggggG, with g representing diester linkages and phosphorothioate linkages being to the right of lowercase letters) in the absence of antigen 1 to 2 days prior to challenge with Plasmodium yoelii sporozoites conferred sterile protection against infection. A higher level of protection was consistently induced by CpG ODN 1826 compared with CpG ODN 1585. The protective effects of both CpG ODNs were dependent on interleukin-12, as well as IFN-gamma. Moreover, CD8+ T cells (but not CD4+ T cells), NK cells, and nitric oxide were implicated in the CpG ODN 1585-induced protection. These data establish that the protective mechanism induced by administration of CpG ODN 1585 in the absence of parasite antigen is similar in nature to the mechanism induced by immunization with radiation-attenuated P. yoelii sporozoites or with plasmid DNA encoding preerythrocytic-stage P. yoelii antigens. We were unable to confirm whether CD8+ T cells, NK cells, or nitric oxide were required for the CpG ODN 1826-induced protection, but this may reflect differences in the potency of the ODNs rather than a real difference in the mechanism of action of the two ODNs. This is the first report that stimulation of the innate immune system by CpG immunostimulatory motifs can confer sterile protection against malaria.  相似文献   

20.
Immunization of BALB/c mice with radiation-attenuated Plasmodium yoelii sporozoites induces cytotoxic T lymphocytes (CTL) specific for an epitope located within the amino acid sequence 277-288 of the P. yoelii circumsporozoite (CS) protein. Several CD8+ CTL clones were derived from the spleen cells of sporozoite-immunized mice, all displaying an apparently identical epitope specificity. All the clones induced high levels of cytolysis in vitro upon exposure to peptide-incubated MHC-compatible target cells. The adoptive transfer of two of these clones conferred complete protection against sporozoite challenge to naive mice. This protection is species and stage specific. Using P. yoelii specific ribosomal RNA probes to monitor the in vivo effects of the CTL clones, we found that their target was the intrahepatocytic stage of the parasite. The protective clones completely inhibited the development of the liver stages of P. yoelii. Some CTL clones were only partially inhibitory in vivo, while others failed completely to alter liver stage development and to confer any detectable degree of protection. The elucidation of the effector mechanism of this CTL mediated protection against rodent malaria should facilitate the design of an effective malaria vaccine. From a broader perspective this model may provide further insight into the mechanism(s) of CTL mediated killing of intracellular non-viral pathogens in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号