首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic mice (Tg2576) overexpressing human beta-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer's disease-like amyloid beta protein (Abeta) deposits by 8 to 10 months of age. These mice show elevated levels of Abeta40 and Abeta42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased markedly after the age of 12 months. At 15 and 19 months of age, senile plaque load was significantly greater in females than in males; in 91 mice studied at 15 months of age, the area occupied by plaques in female Tg2576 mice was nearly three times that of males. By enzyme-linked immunosorbent assay, female mice also had more Abeta40 and Abeta42 in the brain than did males, although this difference was less pronounced than the difference in histological plaque load. These data show that senescent female Tg2576 mice deposit more amyloid in the brain than do male mice, and may provide an animal model in which the influence of sex differences on cerebral amyloid pathology can be evaluated.  相似文献   

2.
Deposition of amyloid beta-peptide (Abeta) in cerebral vessel walls (cerebral amyloid angiopathy, CAA) is very frequent in Alzheimer's disease and occurs also as a sporadic disorder. Here, we describe significant CAA in addition to amyloid plaques, in aging APP/Ld transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP) exclusively in neurons. The number of amyloid-bearing vessels increased with age, from approximately 10 to >50 per coronal brain section in APP/Ld transgenic mice, aged 13 to 24 months. Vascular amyloid was preferentially deposited in arterioles and ranged from small focal to large circumferential depositions. Ultrastructural analysis allowed us to identify specific features contributing to weakening of the vessel wall and aneurysm formation, ie, disruption of the external elastic lamina, thinning of the internal elastic lamina, interruption of the smooth muscle layer, and loss of smooth muscle cells. Biochemically, the much lower Abeta42:Abeta40 ratio evident in vascular relative to plaque amyloid, demonstrated that in blood vessel walls Abeta40 was the more abundant amyloid peptide. The exclusive neuronal origin of transgenic APP, the high levels of Abeta in cerebrospinal fluid compared to plasma, and the specific neuroanatomical localization of vascular amyloid strongly suggest specific drainage pathways, rather than local production or blood uptake of Abeta as the primary mechanism underlying CAA. The demonstration in APP/Ld mice of rare vascular amyloid deposits that immunostained only for Abeta42, suggests that, similar to senile plaque formation, Abeta42 may be the first amyloid to be deposited in the vessel walls and that it entraps the more soluble Abeta40. Its ability to diffuse for larger distances along perivascular drainage pathways would also explain the abundance of Abeta40 in vascular amyloid. Consistent with this hypothesis, incorporation of mutant presenilin-1 in APP/Ld mice, which resulted in selectively higher levels of Abeta42, caused an increase in CAA and senile plaques. This mouse model will be useful in further elucidating the pathogenesis of CAA and Alzheimer's disease, and will allow testing of diagnostic and therapeutic strategies.  相似文献   

3.
Alzheimer's disease (AD) is characterized by deposition of beta-amyloid (Abeta) in diffuse and senile plaques, and variably in vessels. Mutations in the Abeta-encoding region of the amyloid precursor protein (APP) gene are frequently associated with very severe forms of vascular Abeta deposition, sometimes also accompanied by AD pathology. We earlier described a Flemish APP (A692G) mutation causing a form of early-onset AD with a prominent cerebral amyloid angiopathy and unusually large senile plaque cores. The pathogenic basis of Flemish AD is unknown. By image and mass spectrometric Abeta analyses, we demonstrated that in contrast to other familial AD cases with predominant brain Abeta42, Flemish AD patients predominantly deposit Abeta40. On serial histological section analysis we further showed that the neuritic senile plaques in APP692 brains were centered on vessels. Of a total of 2400 senile plaque cores studied from various brain regions from three patients, 68% enclosed a vessel, whereas the remainder were associated with vascular walls. These observations were confirmed by electron microscopy coupled with examination of serial semi-thin plastic sections, as well as three-dimensional observations by confocal microscopy. Diffuse plaques did not associate with vessels, or with neuritic or inflammatory pathology. Together with earlier in vitro data on APP692, our analyses suggest that the altered biological properties of the Flemish APP and Abeta facilitate progressive Abeta deposition in vascular walls that in addition to causing strokes, initiates formation of dense-core senile plaques in the Flemish variant of AD.  相似文献   

4.
beta-amyloid: friend or foe   总被引:2,自引:0,他引:2  
The function of the amyloid precursor protein (APP) and its product, beta-amyloid, (Abeta) is at present unknown. The deposition of Abeta in senile plaques as well as meningeal and cerebral vessels has led many researchers to discount the possibility of a beneficial protective function for the protein. Thus it is generally believed that the aberrant processing of APP leads to increased beta-amyloid secretion that in turn leads to subsequent plaque formation and Alzheimer's disease. Here, a hypothesis is presented that the protein may indeed be protective and that a potential role for beta amyloid in innate immunity may exist.  相似文献   

5.
Mitochondrial dysfunction, oxidative stress and reductions in thiamine-dependent enzymes have been implicated in multiple neurological disorders including Alzheimer's disease (AD). Experimental thiamine deficiency (TD) is an established model for reducing the activities of thiamine-dependent enzymes in brain. TD diminishes thiamine-dependent enzymes throughout the brain, but produces a time-dependent selective neuronal loss, glial activation, inflammation, abnormalities in oxidative metabolism and clusters of degenerating neurites in only specific thalamic regions. The present studies tested how TD alters brain pathology in Tg19959 transgenic mice over expressing a double mutant form of the amyloid precursor protein (APP). TD exacerbated amyloid plaque pathology in transgenic mice and enlarged the area occupied by plaques in cortex, hippocampus and thalamus by 50%, 200% and 200%, respectively. TD increased Abeta(1-42) levels by about three fold, beta-CTF (C99) levels by 33% and beta-secretase (BACE1) protein levels by 43%. TD-induced inflammation in areas of plaque formation. Thus, the induction of mild impairment of oxidative metabolism, oxidative stress and inflammation induced by TD alters metabolism of APP and/or Abeta and promotes accumulation of plaques independent of neuron loss or neuritic clusters.  相似文献   

6.
Previously, we reported that the stress associated with chronic isolation was associated with increased beta-amyloid (Abeta) plaque deposition and memory deficits in the Tg2576 transgenic animal model of Alzheimer's disease (AD) [Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Effects of isolation stress on hippocampal neurogenesis, memory, and amyloid plaque deposition in APP (Tg2576) mutant mice. Neuroscience 127:601-609]. In this study, we investigated the potential mechanisms of stress-accelerated Abeta plaque deposition in this Tg2576 mice by examining the relationship between plasma corticosterone levels, expression of glucocorticoid receptor (GR) and corticotropin-releasing factor receptor-1 (CRFR1) in the brain, brain tissue Abeta levels and Abeta plaque deposition during isolation or group housing from weaning (i.e. 3 weeks of age) until 27 weeks of age. We found that isolation housing significantly increased plasma corticosterone levels as compared with group-housing in both Tg+ mice (which contain and overexpress human amyloid precursor protein (hAPP) gene) and Tg- mice (which do not contain hAPP gene as control). Also, isolated, but not group-housed animals showed increases in the expression of GR in the cortex. Furthermore, the expression of CRFR1 was increased in isolated Tg+ mice, but decreased in isolated Tg- mice in both cortex and hippocampus. Changes in the components of hypothalamic-pituitary-adrenal (HPA) axis were accompanied by increases in brain tissue Abeta levels and Abeta plaque deposition in the hippocampus and overlying cortex in isolated Tg+ mice. These results suggest that isolation stress increases corticosterone levels and GR and CRFR1 expression in conjunction with increases in brain tissue Abeta levels and Abeta plaque deposition in the Tg2576 mouse model of AD.  相似文献   

7.
Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-beta peptide (Abeta) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Abeta deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Abeta-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Abeta (an indicator of fibrillar Abeta) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Abeta deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Abeta deposition by reducing Abeta clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer's disease and positively affect disease outcomes.  相似文献   

8.
The generation of amyloid peptides (Abeta) from the amyloid precursor protein (APP) is initiated by beta-secretase (BACE), whereas subsequent gamma-secretase cleavage mediated by presenilin-1, produces Abeta peptides mainly of 40 or 42 amino acids long. In addition, alternative beta'-cleavage of APP at position 11 of the amyloid sequence results in N-truncated Abeta(11-40/42) peptides, but the functional significance or pathological impact is unknown. Here we demonstrate that in the brain of BACE x APP[V717I] double-transgenic mice, amyloidogenic processing at both Asp1 and Glu11 is increased resulting in more and different Abeta species and APP C-terminal fragments. Pathologically, BACE significantly increased the number of diffuse and senile amyloid plaques in old double-transgenic mice. Unexpectedly, vascular amyloid deposition was dramatically lower in the same BACE x APP[V717I] double-transgenic mice, relative to sex- and age-matched APP[V717I] single-transgenic mice in the same genetic background. The tight inverse relation of vascular amyloid to the levels of the less soluble N-terminally truncated Abeta peptides is consistent with the hypothesis that vascular amyloid deposition depends on drainage of excess tissue Abeta. This provides biochemical evidence in vivo for the preferential contribution of N-truncated Abeta to parenchymal amyloid deposition in contrast to vascular amyloid pathology.  相似文献   

9.
Ultrastructural reconstruction of 27 fibrillar plaques in different stages of formation and maturation was undertaken to characterize the development of fibrillar plaques in the brains of human APP(SW) transgenic mice (Tg2576). The study suggests that microglial cells are not engaged in Abeta removal and plaque degradation, but in contrast, are a driving force in plaque formation and development. Fibrillar Abeta deposition at the amyloid pole of microglial cells appears to initiate three types of neuropil response: degeneration of neurons, protective activation of astrocytes, and attraction and activation of microglial cells sustaining plaque growth. Enlargement of neuronal processes and synapses with accumulation of degenerated mitochondria, dense bodies, and Hirano-type bodies is the marker of toxic injury of neurons by fibrillar Abeta. Separation of amyloid cores from neurons and degradation of amyloid cores by cytoplasmic processes of hypertrophic astrocytes suggest the protective and defensive character of astrocytic response to fibrillar Abeta. The growth of cored plaque from a small plaque with one microglial cell with an amyloid star and a few dystrophic neurites to a large plaque formed by several dozen microglial cells seen in old mice is the effect of attraction and activation of microglial cells residing outside of the plaque perimeter. This mechanism of growth of plaques appears to be characteristic of cored plaques in transgenic mice. Other features in mouse microglial cells that are absent in human brain are clusters of vacuoles, probably of lysosomal origin. They evolve into circular cisternae and finally into large vacuoles filled with osmiophilic, amorphous material and bundles of fibrils that are poorly labeled with antibody to Abeta. Microglial cells appear to release large amounts of fibrillar Abeta and accumulate traces of fibrillar Abeta in a lysosomal pathway.  相似文献   

10.
Several epidemiologic studies have reported that cyclooxygenase (COX) inhibitors prevent/delay the onset of Alzheimer's disease (AD). Recent experimental studies suggest that these compounds can also diminish amyloid-beta (Abeta) neuropathology in rodent models of AD. To explore the relationship of COX expression to Abeta neuropathology, we crossed mice expressing both mutant amyloid precursor protein [K670N/M671L (APP(swe)] and mutant PS1 (A246E) with mice expressing human COX-2 selectively in neurons. We show here that human COX-2 expression in APP(swe)/PS1/COX-2 mice induces potentiation of brain parenchymal amyloid plaque formation and a greater than twofold increase in prostaglandin E2 production, at 24 months of age. This increased amyloid plaque formation coincided with a preferential elevation of Abeta1-40 and Abeta1-42 with no change in total amyloid precursor protein (APP) expression/content in the brain. Collectively these data suggest that COX-2 influences APP processing and promotes amyloidosis in the brain.  相似文献   

11.
Transgenic mice with brain amyloid-beta (Abeta) plaques immunized with aggregated Abeta1-42 have reduced cerebral amyloid burden. However, the use of Abeta1-42 in humans may not be appropriate because it crosses the blood brain barrier, forms toxic fibrils, and can seed fibril formation. We report that immunization in transgenic APP mice (Tg2576) for 7 months with a soluble nonamyloidogenic, nontoxic Abeta homologous peptide reduced cortical and hippocampal brain amyloid burden by 89% (P = 0.0002) and 81% (P = 0.0001), respectively. Concurrently, brain levels of soluble Abeta1-42 were reduced by 57% (P = 0.0019). Ramified microglia expressing interleukin-1beta associated with the Abeta plaques were absent in the immunized mice indicating reduced inflammation in these animals. These promising findings suggest that immunization with nonamyloidogenic Abeta derivatives represents a potentially safer therapeutic approach to reduce amyloid burden in Alzheimer's disease, instead of using toxic Abeta fibrils.  相似文献   

12.
Diversity and intensity of intellectual and physical activities seem to have an inverse relationship with the extent of cognitive decline in Alzheimer's disease (AD). To study the interaction between an active lifestyle and AD pathology, female TgCRND8 mice carrying human APPswe+ind were transferred into enriched housing. Four months of continuous and diversified environmental stimulation resulted in a significant reduction of beta-amyloid (Abeta) plaques and in a lower extent of amyloid angiopathy. Neither human amyloid precursor protein (APP) mRNA/protein levels nor the level of carboxy-terminal fragments of APP nor soluble Abeta content differed between both groups, making alterations in APP expression or processing unlikely as a cause of reduced Abeta deposition. Moreover, DNA microarray analysis revealed simultaneous down-regulation of proinflammatory genes as well as up-regulation of molecules involved in anti-inflammatory processes, proteasomal degradation, and cholesterol binding, possibly explaining reduced Abeta burden by lower aggregation and enhanced clearance of Abeta. Additionally, immunoblotting against F4/80 antigen and morphometric analysis of microglia (Mac-3) revealed significantly elevated microgliosis in the enriched brains, which suggests increased amyloid phagocytosis. In summary, this study demonstrates that the environment interacts with AD pathology at dif-ferent levels.  相似文献   

13.
Phenotypes produced by expression of human amyloid precursor protein (APP) transgenes vary depending on the genetic background of the mouse. FVB/N mice overexpressing human APP695 develop a central nervous system disorder and die prematurely, precluding development of Abeta peptide amyloid plaques. 129S6 mice are resistant to the lethal effects of APP overexpression, allowing sufficient levels of Abeta expression for the development of amyloid plaques and age-dependent memory deficits. To identify the genes that determine susceptibility or resistance to APP we analyzed crosses involving FVB/NCr and 129S6.Tg2576 mice that overexpress 'Swedish' mutant (K670N, M671L) APP695. APP transgene-positive FVB129S6F1 (F1) mice are resistant to the lethal effects of APP overexpression, so FVBxF1 backcross and F2 intercross offspring were produced. Analysis of age of death as a quantitative trait revealed significant linkage to loci on proximal chromosome 14 and on chromosome 9; 129S6 alleles protect against the lethal effects of APP. Within the chromosome 14 interval are segments homologous to regions on human chromosome 10 that have been linked to late onset Alzheimer's disease or to levels of Abeta peptide in plasma. However, analysis of plasma Abeta peptide concentrations at 6 weeks in backcross offspring produced no significant linkage. Similarly, elevation of human Abeta peptide concentrations by expression of mutant presenilin transgenes did not increase the proportion of mice dying prematurely, suggesting that early death reflects effects of APP or fragments other than Abeta.  相似文献   

14.
Alzheimer's disease (AD) is a complex, neurodegenerative disease characterized by the impairment of cognitive function in elderly individuals. In a recent global gene expression study of APP transgenic mice, we found elevated expression of mitochondrial genes, which we hypothesize represents a compensatory response because of mitochondrial oxidative damage caused by the over-expression of mutant APP and/or amyloid beta (Abeta). We investigated this hypothesis in a series of experiments examining what forms of APP and Abeta localize to the mitochondria, and whether the presence of these species is associated with mitochondrial dysfunction and oxidative damage. Using immunoblotting, digitonin fractionation, immunofluorescence, and electron microscopy techniques, we found a relationship between mutant APP derivatives and mitochondria in brain slices from Tg2576 mice and in mouse neuroblastoma cells expressing mutant human APP. Further, to determine the functional relationship between mutant APP/Abeta and oxidative damage, we quantified Abeta levels, hydrogen peroxide production, cytochrome oxidase activity and carbonyl proteins in Tg2576 mice and age-matched wild-type (WT) littermates. Hydrogen peroxide levels were found to be significantly increased in Tg2576 mice when compared with age-matched WT littermates and directly correlated with levels of soluble Abeta in Tg2576 mice, suggesting that soluble Abeta may be responsible for the production of hydrogen peroxide in AD progression in Tg2576 mice. Cytochrome c oxidase activity was found to be decreased in Tg2576 mice when compared with age-matched WT littermates, suggesting that mutant APP and soluble Abeta impair mitochondrial metabolism in AD development and progression. An increase in hydrogen peroxide and a decrease in cytochrome oxidase activity were found in young Tg2576 mice, prior to the appearance of Abeta plaques. These findings suggest that early mitochondrially targeted therapeutic interventions may be effective in delaying AD progression in elderly individuals and in treating AD patients.  相似文献   

15.
We and others have recently demonstrated that cognitive and physical stimulation in form of environmental enrichment reduces cerebral beta-amyloid (Abeta) deposition in transgenic mouse models of Alzheimer's disease. This effect was independent from amyloid precursor protein (APP) expression or processing and rather a consequence of enhanced clearance of Abeta. However, the detailed mechanisms remain unclear. In the present study, we show that environmental enrichment in TgCRND8 mice (carrying human APP(Swedish+Indiana)) affect the neurovascular unit by increased angiogenesis and differential regulation of Abeta receptor/transporter molecules, namely up-regulation of LRP1, ApoE and A2M as well as down-regulation of RAGE so that brain to blood Abeta clearance is facilitated. These results suggest a hitherto unknown effect of environmental enrichment counteracting the vascular dysfunction in Alzheimer diseased brain.  相似文献   

16.
Lesné S  Kotilinek L  Ashe KH 《Neuroscience》2008,151(3):745-749
The amyloid-beta (Abeta) protein exists in the aging mammalian brain in diverse assembly states, including amyloid plaques and soluble Abeta oligomers. Both forms of Abeta have been shown to impair neuronal function, but their precise roles in Alzheimer's disease (AD) -associated memory loss remain unclear. Both types of Abeta are usually present at the same time in the brain, which has made it difficult to evaluate the effects of plaques and oligomers individually on memory function. Recently, a particular oligomeric Abeta assembly, Abeta 56, was found to impair memory function in the absence of amyloid plaques. Until now it has not been possible to determine the effects of plaques, in the absence of Abeta oligomers, on memory function. We have identified Tg2576 mice with plaques but markedly reduced levels of Abeta oligomers, which enabled us to study the effects of plaques alone on memory function. We found that animals with amyloid plaques have normal memory function throughout an episode of reduced Abeta oligomers, which occurs during a period of accelerated amyloid plaque formation. These observations support the importance of Abeta oligomers in memory loss and indicate that, at least initially, amyloid plaques do not impair memory.  相似文献   

17.
Reports suggest that Alzheimer's disease (AD) patients show a high life-time prevalence of seizure-like disorders. The transgenic CRND8 (TgCRDN8) is a mouse model of AD-like amyloid pathogenesis that expresses a double-mutant form of human amyloid precursor protein 695 (K670N/M671L and V717F). We have previously reported that post-plaque TgCRND8 mice exhibited a lower threshold to seizure with a more severe seizure type when challenged with pentylenetetrazole (PTZ) intravenously. Here, we now report that pre-plaque TgCRND8 mice also demonstrate an increased sensitivity to PTZ-induced seizures with a more severe seizure type over age-matched littermate controls. A lower threshold and more severe seizure type in TgCRND8 mice prior to and after plaque deposition suggest that this genotype difference may be due to beta-amyloid (Abeta) toxicity rather than plaque formation. Thus, the TgCRND8 mice are not only a model for Abeta production and plaque deposition, but may also be useful for AD associated seizure.  相似文献   

18.
Alzheimer's disease is characterized in part by extracellular aggregation of the amyloid-β peptide in the form of diffuse and fibrillar plaques in the brain. Electron microscopy (EM) has made an important contribution in understanding of the structure of amyloid plaques in humans. Classical EM studies have revealed the architecture of the fibrillar core, characterized the progression of neuritic changes, and have identified the neurofibrillary tangles formed by paired helical filaments (PHF) in degenerating neurons. Clinical data has strongly correlated cognitive impairment in AD with the substantial synapse loss observed in these early ultrastructural studies. Animal models of AD-type brain amyloidosis have provided excellent opportunities to study amyloid and neuritic pathology in detail and establish the role of neurons and glia in plaque formation. Transgenic mice overexpressing mutant amyloid precursor protein (APP) alone with or without mutant presenilin 1 (PS1), have shown that brain amyloid plaque development and structure grossly recapitulate classical findings in humans. Transgenic APP/PS1 mice expressing human apolioprotein E isoforms also develop amyloid plaque deposition. However no ultrastructural data has been reported for these animals. Here we show results from detailed EM analysis of amyloid plaques in APP/PS1 mice expressing human isoforms of ApoE and compare these findings with EM data in other transgenic models and in human AD. Our results show that similar to other transgenic animals, APP/PS1 mice expressing human ApoE isoforms share all major cellular and subcellular degenerative features and highlight the identity of the cellular elements involved in Aβ deposition and neuronal degeneration.  相似文献   

19.
Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human diseases, the use of animal models is a valuable tool. Several transgenic mouse models of AD amyloid deposits are currently available. These models express human beta-amyloid precursor protein (AbetaPP) carrying different mutations that subsequently result in a varied pattern of beta-amyloid (Abeta) deposition within the brain. We have evaluated the expression of MT-I and MT-III mRNA by in situ hybridization in three different transgenic mice models of AD: Tg2576 (carrying AbetaPP harboring the Swedish K670N/M671L mutations), TgCRND8 (Swedish and the Indiana V717F mutations), and Tg-SwDI (Swedish and Dutch/Iowa E693Q/D694N mutations). MT-I mRNA levels were induced in all transgenic lines studied, although the pattern of induction differed between the models. In the Tg2576 mice MT-I was weakly upregulated in cells surrounding Congo Red-positive plaques in the cortex and hippocampus. A more potent induction of MT-I was observed in the cortex and hippocampus of the TgCRND8 mice, likely reflecting their higher amyloid plaques content. MT-I upregulation was also more significant in Tg-SwDI mice, especially in the subiculum and hippocampus CA1 area. Immunofluorescence stainings demonstrate that astrocytes and microglia/macrophages surrounding the plaques express MT-I&II. In general, MT-I regulation follows a similar but less potent response than glial fibrillary acidic protein (GFAP) expression. In contrast to MT-I, MT-III mRNA expression was not significantly altered in any of the models examined suggesting that the various MT isoforms may have different roles in these experimental systems, and perhaps also in human AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号