首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin-like immunoreactivity (SRIF-LI) content in 2 N acetic acid extracts of hypothalamus, gastric antrum, and pancreas was measured in genetically obese (C57BL/6J ob/ob and db/db) and diabetic (C57BL/KsJ db/db and ob/ob) mice and normal littermate controls from 5 to 24 wk to determine the relationship of previously reported changes to the development of metabolic abnormalities. Hypothalamic SRIF-L concentration was similar in control, diabetic, and obese mice at all ages and increased progressively with age in all groups. Gastric antrum SRIF-LI was similar in all groups of mice at all ages. Obese mice gained weight progressively and showed moderate hyperglycemia and marked hyperinsulinemia from 5 wk of age. Pancreatic SRIF-LI content in obese (C57BL/6J) animals was similar to that in lean littermate controls, but pancreatic SRIF-LI concentration (expressed by weight or protein content) was decreased until 8 (6J ob/ob) and 10 (6J db/db) wk. Diabetic (C57BL/KsJ) mice showed a similar metabolic pattern until 10 wk with no change in pancreatic SRIF-LI content or concentration. Thereafter a progressive fall in serum insulin and a marked rise in serum glucose was associated with increasing pancreatic SRIF-LI content and concentration. These studies suggest that the genetically hyperphagic syndromes are unassociated with any change in hypothalamic or gastric SRIF-LI; that pancreatic SRIF-LI increases occur in response to, rather than as the cause of, relative hypoinsulinemia; and that the genetic background of the mice (KsJ or 6J) rather than the mutant gene (db or ob) determines the defect in carbohydrate metabolism and the pancreatic SRIF-LI response.  相似文献   

2.
Dehydroepiandrosterone (DHEA) was fed at 0.1-0.4% in the diet to genetically diabetic (db/db) or obese (ob/ob) C57BL/KsJ (BL/Ks) or C57BL/6J (BL/6) mice. Treatment of BL/Ks-db/db or ob/ob mice with 0.4% DHEA prevented hyperglycemia, islet atrophy, and severe diabetes associated with this inbred background, but did not affect weight gain and food consumption. Homozygous obese (ob) or diabetes (db) mice on the BL/6 background were more sensitive to DHEA, and the mild, transient hyperglycemia associated with ob or db gene expression on the BL/6 inbred background could be prevented by 0.1% DHEA. Both body weight and food consumption were decreased in BL/6 mutants maintained on 0.1% DHEA whereas this effect was not seen in BL/Ks mutants fed up to 0.4% DHEA. Early therapy with 0.4% DHEA, initiated at 2 wk of age, prevented the development of most diabetes symptoms and decreased the rate of weight gain in pups of all genotypes. In addition to therapeutic effects on both obese mutants, DHEA effected significant changes in an aging study using normal BL/6 female mice. Four weeks of DHEA treatment initiated at 2 yr of age improved glucose tolerance and at the same time reduced plasma insulin to a "younger" level. This suggests that DHEA may act in insulin-resistant mutant mice and in aging normal mice to increase the sensitivity to insulin.  相似文献   

3.
K Timmers  N R Voyles  C Zalenski  S Wilkins  L Recant 《Diabetes》1986,35(10):1143-1151
We have recently shown that in addition to beta-endorphin the opioid peptides Met- and Leu-enkephalin and their apparent precursors are localized in islet endocrine cells of the rat pancreas. To begin evaluating a possible role for these pancreatic opiates in the pathophysiology of genetic diabetes in rodents, immunoreactive beta-endorphin and Met- and Leu-enkephalins were measured in acetic acid extracts of pancreas and pituitary of C57BL/KsJ db/db mice and their lean littermates. Groups of animals were studied during three phases of development of the diabetic syndrome in the mutant mice: at 4 (hyperinsulinemic and prediabetic); 6, 9, and 12 (frankly obese and diabetic); and 30 (hypoinsulinemic) wk of age. Elevations or decreases (P less than .05) were found in db/db mice (vs. lean littermates) as follows: pituitary content of Met-enkephalin was twofold higher at all ages studied; pituitary free Leu-enkephalin was lower at 4 wk and reversed to higher at 6-30 wk; pancreatic beta-endorphin was 30% lower at 4 wk and reversed to threefold higher at 6-12 wk; Met- and Leu-enkephalin-containing larger peptides were elevated at one or more points between 6 and 12 wk in both the pancreas and the pituitary. Thus, the onset of overt obesity between 4 and 6 wk of age was accompanied by a marked rise in both pancreatic beta-endorphin and pituitary Leu-enkephalin; similar elevations in these parameters have been reported previously in C57BL/6J ob/ob mice at approximately 12 wk of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
T Hosokawa  K Ando  G Tamura 《Diabetes》1985,34(3):267-274
An ascochlorin derivative, AS-6, is a new hypoglycemic agent orally active in both obese hyperinsulinemic and insulin-deficient diabetic animal models. AS-6, when given as a 0.025-0.2% admixture in the diet, dose-dependently ameliorated polydipsia, polyuria, and glycosuria in the genetically obese diabetic mouse, C57BL/KsJ db/db, while neither insulin nor tolbutamide showed any beneficial effects. The amelioration by AS-6 was associated with a marked decrease in serum glucose and triglyceride. The effects persisted at least 10 wk, accompanied by a steady decrease in drinking water consumption. The chronic treatment prevented pancreatic islet degeneration, e.g., degranulation of the beta-cells, basophilic appearance of the exocrine border around the islets, and small round cell infiltration. The isolated islets from AS-6-treated mice released much more insulin in response to glucose than those from untreated controls. A significant correlation between serum immunoreactive insulin and glucose/triglyceride from both treated and untreated mice suggests that AS-6 restores sensitivity and responsiveness to insulin to the mice. In fact, the combined treatment with insulin synergistically decreased serum glucose by 50% below AS-6 treatment alone. Furthermore, the epididymal fat pad slices from AS-6-treated db/db mice increased CO2 generation and lipogenesis over the untreated controls, and the glucose metabolic rate (CO2 generation plus lipogenesis from U-[14C]-glucose) in the slices and the serum glucose level inversely correlated at r = 0.8799.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
M J Orland  M A Permutt 《Diabetes》1987,36(3):341-347
C57BL/KsJ db/db mice develop hyperphagic obesity and nonketotic diabetes similar to non-insulin-dependent diabetes mellitus in humans. Initially the mice demonstrate an abundant beta-cell mass and hyperinsulinemia, which is followed by apparent beta-cell loss. As an index of insulin synthesis, this study assesses pancreatic proinsulin mRNA, measured by dot hybridization to cloned cDNA, during the development of diabetes in the mice. Changes in proinsulin mRNA from 5 to 13 wk of age are compared with serum insulin, pancreatic insulin content, and blood glucose. In control (+/db) mice, total proinsulin mRNA and pancreatic insulin content increased with age. Both changes were proportional to an increase in body weight. Obesity, hyperglycemia, and hyperinsulinemia were evident in diabetic (db/db) mice at 5 wk of age. Although pancreatic insulin content was comparable to that in the +/db controls at 5 wk, a fourfold relative elevation of proinsulin mRNA was observed. Despite an increase in body weight, proinsulin mRNA concentration and total proinsulin mRNA fell to levels similar to those of the control mice at 10 and 13 wk, associated with a loss of hyperinsulinemia, a mild decrease in pancreatic insulin content, and a marked increased in fasting blood glucose. A separate group of db/db mice was pair fed with the +/db controls from 4 to 13 wk. These diet-restricted diabetic mice were heavier than control mice and gained weight with age, but they weighed less than the unrestricted mice at all ages. Compared with the unrestricted db/db mice, a more modest fasting hyperglycemia was apparent, and a persistent hyperinsulinemia was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ciglitazone, 5-[4-(1-methylcyclohexylmethoxy) benzyl]-thiazolidine-2,4-dione, is a new hypoglycemic agent orally active in the obese-hyperglycemic animal models. In C57BL/6J-ob/ob mice, treatment with 100 mg/kg ciglitazone for 2 days elicited a drastic fall in blood glucose. It also decreased plasma insulin, triglycerides, and free fatty acids and food intake without affecting the body weight. Its hypoglycemic activity was independent of its effect on food intake. Regranulation of islet beta-cells and increased pancreatic insulin content were observed in ob/ob mice treated for 41-44 days with 100 mg/kg/day ciglitazone. Ciglitazone showed no effect on food intake, blood glucose, or pancreatic islet beta-cells in a group of lean C57BL/6J-+/? mice concomitantly treated at a dose of 150 mg/kg/day. In C57BL/KsJ-db/db mice, ciglitazone decreased blood glucose and food intake. The untreated db/db mice lost weight despite hyperphagia, whereas the ciglitazone-treated db/db mice gained weight. In the spontaneously diabetic Chinese hamsters, ciglitazone showed no significant effect on food intake, body weight, blood glucose, or insulin content in either plasma or pancreas, but it lowered plasma lipids. In normal rats, ciglitazone failed to affect fasting blood glucose but improved glucose tolerance without increasing insulin secretory response to glucose. In streptozotocin-diabetic rats, it showed no effect on blood glucose or glycemic response to exogenous insulin. The hypoglycemic activity of ciglitazone was specific for obese-hyperglycemic and insulin-resistant animals.  相似文献   

7.
Endocrine-cell populations in the islets of Langerhans of mutant mice with a severe hypoinsulinemic diabetes (ob/ob or db/db on the C57BL/KsJ background) or with a mild hyperinsulinemic diabetes (ob/ob or db/db on the C57BL/6J background) were studied quantitatively by immunofluorescence and morphometry. In severely diabetic mice, islets presented a reduced proportion of insulin containing cells but increased glucagon-, somatostatin-, and pancreatic polypeptide (PP)-containing cells, as compared with islets of control (+/+) mice. An inverse change was observed in islets of mildly diabetic mice: islets were hypertrophic and composed mostly of insulin-containing cells, with decreased proportions of glucagon-, somatostatin-, and PP-containing cells. In both types of diabetic syndromes, the changes in cell populations induced a qualitative alteration of cellular interrelationships in the affected islets.  相似文献   

8.
Hyperglycemia induced in animals by beta cell toxins or by pancreatectomy can be reversed by pancreatic islet transplantation. Abnormal carbohydrate metabolism in juvenile onset human diabetics has also been corrected, albeit temporarily because of graft rejection, by pancreatic transplantation. It does not necessarily follow that naturally occurring diabetes in animals or adult onset diabetes in man would respond to similar treatment. Islet transplantation was studied in mice with chemically induced or genetically determined diabetes. Streptozotocin-induced diabetic mice were permanently cured by syngeneic islets and, when immunosuppressed, were rendered normoglycemic for six weeks after receiving xenogeneic rat islets. In contrast, histocompatible islets from normoglycemic coisogenic donors were ineffective in hyperglycemic db/db recipients as were xenogeneic rat islets in immunosuppressed db/db hosts. However, when islets were isolated from db/db donors and transplated to genetically normal coisogenic mice, which had been rendered hyperglycemic with streptozotocin, they became normoglycemic. Apparently the metabolic defect in the db/db mice, which is similar in some ways to human maturity onset diabetes, does not reside in their islets as these cells can function normally if transplanted to genetically nondiabetic hosts. In two other types of genetic diabetes (ob/ob and NZO) islet transplantation was more effective. Pancreatic transplantation is unlikely to be the proper treatment for all types of diabetes even if technical and immunological problems are overcome.  相似文献   

9.
The role of GIP in the pathogenesis of spontaneous syndromes of obesity-diabetes was examined in ob/ob mice of the Aston stock and db/db mice of the C57BL/KsJ background. Compared with lean controls, fed adult ob/ob and db/db mice, respectively, exhibited 1.8-fold and 2.1-fold increases in body weight, 1.8-fold and 2.8-fold elevations of plasma glucose, and 15.4-fold and 5.6-fold elevations of plasma insulin. As indicated by the relative magnitude of the hyperglycemia and hyperinsulinemia, db/db mice displayed a particularly severe form of diabetes. Plasma GIP concentrations of ob/ob and db/db mice were elevated 15.1-fold and 6.2-fold, respectively; the increments closely corresponded with the degrees of hyperinsulinemia. Small intestinal weight was increased 1.4-fold and 1.8-fold in ob/ob and db/db mice, respectively, but the intestinal GIP content expressed as microgram/g intestine or microgram/intestine was raised only in ob/ob mice (1.9-fold and 2.8-fold, respectively). Since glucose stimulation of insulin release is defective in both mutant strains, the results strongly implicate pathologically raised GIP concentrations in the hyperinsulinemia and related metabolic abnormalities of the obesity-diabetes syndromes. It is suggested that hypersecretion of GIP results in part from loss of normal feedback inhibition by endogenous insulin.  相似文献   

10.
Sandu O  Song K  Cai W  Zheng F  Uribarri J  Vlassara H 《Diabetes》2005,54(8):2314-2319
Dietary advanced glycosylation end products (AGEs) have been linked to insulin resistance in db/db(++) mice. To test whether dietary AGEs play a role in the progression of insulin resistance in normal mice fed high-fat diets, normal C57/BL6 mice were randomly assigned to high-fat diets (35% g fat), either high (HAGE-HF group; 995.4 units/mg AGE) or low (by 2.4-fold LAGE-HF group; 329.6 units/mg AGE) in AGE content for 6 months. Age-matched C57/BL6 and db/db(++) mice fed regular diet (5% g fat, 117.4 units/mg AGE) served as controls. After 6 months, 75% of HAGE-HF mice were diabetic and exhibited higher body weight (P < 0.001), fasting glucose (P < 0.001), insulin (P < 0.001), and serum AGEs (P < 0.01) than control mice, while none of the LAGE-HF mice were diabetic despite a similar rise in body weight and plasma lipids. The HAGE-HF group displayed markedly impaired glucose and insulin responses during glucose tolerance tests and euglycemic and hyperglycemic clamps and altered pancreatic islet structure and function compared with those of LAGE-HF mice, in which findings resembled those of control mice. The HAGE-HF group had more visceral fat (by two- and fourfold) and more AGE-modified fat (by two- and fivefold) than LAGE-HF and control mice, respectively. In the HAGE-HF group, plasma 8-isoprostane was higher (P < 0.01) and adiponectin lower (P < 0.001) than control mice, while in the LAGE-HF group, these were more modestly affected (P < 0.05). These results demonstrate that the development of insulin resistance and type 2 diabetes during prolonged high-fat feeding are linked to the excess AGEs/advanced lipoxidation end products inherent in fatty diets.  相似文献   

11.
Hepatic glycogen metabolism was investigated in genetically diabetic C57BL/KsJ-db/db mice during their development. Initially, the development of obesity, hyperglycemia, hyperinsulinemia, and hyperglucagonemia in these mice was examined, which illustrated that the diabetes progressed normally. Little difference in hepatic glycogen concentrations was observed, averaging approximately 50 and 60 mg/g liver in diabetic (db/db) and control heterozygote (db/+) mice, respectively. Glycogen synthase activity (total and a-form) was significantly elevated by 5 wk in the diabetic mice relative to controls and reached maximum levels (two-fold higher than controls) around 8-9 wk. This activity then slowly declined during the rest of the 15-wk period examined. Both phosphorylase a and total phosphorylase activities were also elevated by 5 wk, reaching levels twofold higher than controls. These activities did not decline at the end of this 15-wk period, but instead continued to slowly increase. Glycogen synthase a activity showed a positive correlation (r = 0.54, N = 144) with circulating levels of insulin, and a similar correlation was seen for phosphorylase a activity and plasma glucagon levels (r = 0.64, N = 72). Protein kinase and phosphoprotein phosphatase activities were also measured, but no differences were detected between diabetic and control mice. This longitudinal study clarifies some of the changes in hepatic glycogen metabolism that occur during the progression of diabetes in the db/db mouse and indicates a role for circulating insulin and glucagon concentrations on the steady-state activities of glycogen synthase and phosphorylase, respectively.  相似文献   

12.
The insulin release from isolated pancreatic islets grafted under the kidney capsule was examined by means of a modified kidney-perfusion technique. The grafts, consisting of 150 C57BL/6 or 250 C57BL/Ks mouse islets, were implanted syngeneically under the left kidney capsule of normoglycemic or alloxan-induced diabetic recipients 4 wk before the perfusion. In both mouse strains, islets grafted to normoglycemic animals showed an immediate distinct peak of insulin release when challenged with high glucose, whereas no response was observed from islets grafted to hyperglycemic mice. In a similar way in C57BL/Ks mice, arginine stimulated insulin release from the islet grafts in normoglycemic but not in hyperglycemic recipients. Insulin treatment of the diabetic recipients, however, partially normalized the insulin response to glucose. Islet grafts were removed in toto and analyzed for contents of insulin, glucagon, somatostatin, and DNA or rates of glucose-stimulated (pro)insulin biosynthesis. In both mouse strains, islets implanted into hyperglycemic animals contained significantly less insulin, and their rates of (pro)insulin biosynthesis were markedly decreased. Insulin treatment only marginally affected these parameters. The glucagon content of the grafted islets was unaffected by the hyperglycemia in both strains of mice, whereas a significant decrease in the somatostatin content was observed in the C57BL/Ks mice. We concluded that grafted islets exposed to prolonged hyperglycemic stress become functionally impaired in mice of both strains. Our perfusion technique of islet-graft-bearing kidneys in combination with biochemical studies on the removed grafts provides a suitable model for studies of the effects of prolonged hyperglycemia on islet beta-cell function.  相似文献   

13.
We previously reported that brain-derived neurotrophic factor (BDNF) regulates both food intake and blood glucose metabolism in rodent obese diabetic models such as C57BL/KsJ-lepr(db)/lepr(db) (db/db) mice. To elucidate the effect of BDNF on glucose metabolism, we designed a novel pellet pair-feeding apparatus to eliminate the effect of appetite alteration on glucose metabolism. The apparatus was used to synchronize food intake precisely between BDNF-treated and vehicle-treated db/db mice. It was shown using this pellet pair-feeding apparatus that BDNF administered daily (20 mg x kg(-1) x day(-1)) to db/db mice significantly lowered blood glucose compared with pellet pair-fed db/db mice. To evaluate the effect of BDNF on insulin action, we used streptozotocin-induced type 1 diabetic mice. In this case, BDNF did not lower blood glucose concentration but rather enhanced the hypoglycemic action of insulin. In hyperglycemic db/db mice, pancreatic insulin content was reduced and glucagon content was increased compared with normoglycemic db/m mice. BDNF administered to db/db mice significantly restored both pancreatic insulin and glucagon content. Histological observations of aldehyde-fuchsin staining and immunostaining with anti-insulin indicated that insulin-positive pancreatic beta-cells were extensively regranulated by BDNF administration. We also studied the effect of BDNF on KK mice, normoglycemic animals with impaired glucose tolerance. In these mice, BDNF administration improved insulin resistance in the oral glucose tolerance test. To elucidate how blood glucose was metabolized in BDNF-treated animals, we investigated the effect of BDNF on the energy metabolism of db/db mice. Body temperature and oxygen consumption of the pellet pair-fed vehicle-treated mice were remarkably lower than the ad libitum-fed vehicle-treated mice. Daily BDNF administration for 3 weeks completely ameliorated both of the reductions. Finally, to clarify its action mechanism, the effect of intracerebroventricular administration of BDNF on db/db mice was examined. Here, a small dose of BDNF was found to be effective in lowering blood glucose concentration. This indicates that BDNF regulates glucose metabolism by acting directly on the brain.  相似文献   

14.
S M Brichard  C J Bailey  J C Henquin 《Diabetes》1990,39(11):1326-1332
The trace element vanadium exerts insulinlike effects in vitro and decreases hyperglycemia in insulin-deficient animals. This study examined whether vanadate can improve glucose homeostasis in genetically obese hyperglycemic insulin-resistant ob/ob mice, which present metabolic abnormalities similar to those of human non-insulin-dependent diabetes. Sodium orthovanadate (0.3 mg/ml) was administered for 7 wk in H2O. Vanadate treatment induced a fall in fed and fasted plasma glucose and insulin levels and improved tolerance to oral glucose; the stimulated glucose area was decreased by 65%, and an early peak of insulin secretion was restored. During an intravenous glucose tolerance test, the glucose disappearance rate was twofold higher in vanadate-treated mice, and the reappearance of a significant insulin response was also observed. Moreover, vanadate produced a twofold increase in hepatic glycogen content and prevented the exhaustion of pancreatic insulin stores. The hypoglycemic response to exogenous insulin was similar in control and treated mice. In vitro experiments showed that basal glucose oxidation by hemidiaphragms was 32% higher in vanadate-treated mice than in controls, although stimulation by insulin was similar in both groups. In conclusion, oral vanadate caused a marked and sustained improvement of glucose homeostasis in diabetic insulin-resistant mice by exerting an insulinlike effect on peripheral tissues and apparently preventing the exhaustion of pancreatic insulin stores.  相似文献   

15.
Enzyme-linked immunosorbent assay (ELISA) was used to study temporal development of murine autoantibodies against insulin and both type C and intracisternal type A retroviral antigens. The nonobese diabetic (NOD) mouse, a model for autoimmune, insulin-dependent diabetes, was compared with a related, but diabetes-resistant, strain, nonobese normal (NON). Similarly, C57BL/KsJ db/db mice (insulin-resistant model of insulin-dependent diabetes and obesity) were compared with diabetes-resistant C57BL/6 db/db mice. NOD mice developed much higher autoantibody titers than did NON mice. Whereas type C autoantibodies in NOD developed to peak titer shortly after mice were weaned, autoantibodies against insulin and p73 (group-specific antigen of the intracisternal type A particle) did not develop until shortly before, or concomitant with, the development of hyperglycemia. Two NOD mice not developing hyperglycemia during the 40-wk study period were distinguished from the mice developing diabetes by a delayed onset of insulin (but not p73) autoantibodies. Our findings suggest that in NOD mice, the appearance of insulin and p73 autoantibodies signifies that extensive underlying necrosis of beta-cells occurred. C57BL/KsJ db/db mice (with extensive beta-cell necrosis and early hyperglycemia) developed much higher autoantibody titers to insulin and p73 than did the diabetes-resistant C57BL/6 db/db mice. However, the presence of autoantibodies in normoglycemic C57BL/KsJ +/db controls demonstrated that elevated autoantibody titers alone were insufficient to produce diabetes in this model. Absorption studies indicated that autoantibodies against p73 recognized a common epitope on insulin and IgE-binding factor. The potential significance of this molecular mimicry is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
L N Berti-Mattera  J Eichberg 《Diabetes》1988,37(12):1703-1707
The incorporation of [32P]orthophosphate into phospholipids and proteins of sciatic nerve from genetically diabetic (db/db) and littermate control (db/m) C57BL/KsJ mice was studied. Nerves from animals of ages 12, 16, 22, 26, and 38 wk were incubated in vitro. Among phospholipids, the uptake of isotope into phosphatidic acid was higher at nearly all ages examined. Phosphorylation of several proteins, including the major myelin glycoprotein, P0, and the small myelin basic proteins Pr + P2, was significantly enhanced in nerves from both 12- and 38-wk-old diabetic mice. The altered pattern of protein phosphorylation, but not that of phospholipid metabolism, was similar to changes observed in sciatic nerve from streptozocin-induced diabetic rats. The relationship of the results to reported levels of myo-inositol, sorbitol, and Na+-K+-ATPase activity and to functional abnormalities in nerves of db/db mice is discussed. The findings suggest that caution should be exercised in reaching conclusions concerning which biochemical alterations observed in different animal models of diabetic neuropathy are invariably associated with the development of this disorder.  相似文献   

17.
Fibroblast growth factor-21 (FGF-21) is a recently discovered metabolic regulator. Here, we investigated the effects of FGF-21 in the pancreatic beta-cell. In rat islets and INS-1E cells, FGF-21 activated extracellular signal-regulated kinase 1/2 and Akt signaling pathways. In islets isolated from healthy rats, FGF-21 increased insulin mRNA and protein levels but did not potentiate glucose-induced insulin secretion. Islets and INS-1E cells treated with FGF-21 were partially protected from glucolipotoxicity and cytokine-induced apoptosis. In islets isolated from diabetic rodents, FGF-21 treatment increased islet insulin content and glucose-induced insulin secretion. Short-term treatment of normal or db/db mice with FGF-21 lowered plasma levels of insulin and improved glucose clearance compared with vehicle after oral glucose tolerance testing. Constant infusion of FGF-21 for 8 weeks in db/db mice nearly normalized fed blood glucose levels and increased plasma insulin levels. Immunohistochemistry of pancreata from db/db mice showed a substantial increase in the intensity of insulin staining in islets from FGF-21-treated animals as well as a higher number of islets per pancreas section and of insulin-positive cells per islet compared with control. No effect of FGF-21 was observed on islet cell proliferation. In conclusion, preservation of beta-cell function and survival by FGF-21 may contribute to the beneficial effects of this protein on glucose homeostasis observed in diabetic animals.  相似文献   

18.
The minor hemoglobins AIa, AIb, and AIc were studied in mice with either genetic or chemically induced diabetes. Hemoglobin AIc was elevated approximately twofold in all the phenotypically diabetic mice studied (C57BL/KsJ-db/db, C57BL/KsJ-ob/ob, C57BL/6J-db/db, and alloxan- and streptozotocin-treated mice). Elevation of the hemoglobin AIc in C57BL/6J-db/db mice was of short duration, reflecting the transitory diabetes characteristic of these mice. The degree of increase of hemoglobin AIc levels was unrelated to severity of hyperglycemia, duration of diabetes, age of mouse, or body weight. It is not known what factor(s) dictates the steady-state concentration of hemoglobin AIc.  相似文献   

19.
Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes.  相似文献   

20.
Inbred strains of mice exhibited genetic and sex-dependent differences in spontaneous production of organ-reactive autoantibodies detected by indirect immunofluorescence. Antitestis autoreactivity was found primarily in sera from C57BL/6J (B6) mice, whereas antigastric autoreactivity was common to both CBA/J and 129/J strains. Autoantibodies against islet cell cytoplasmic antigens (ICAs) were uniquely expressed by C57BL/KsJ (BKs) males. Introduction of the diabetes (db) mutation into these various inbred-strain backgrounds induced expression of ICA, with stronger induction observed in males. The stress imposed by the db or obesity (ob) mutation induced ICA in BKs mice at a higher frequency than in B6 mice; this differential sensitivity was somehow related to a gene linked to the H-2 complex because BKs.B6 H-2b congenic mice resembled B6 mice. The db3J mutation increased the expression of these autoantibodies in 129/J mice, which, like B6, were H-2b and therefore presumably possessed the same H-2-linked inducibility allele as BKs. Cytotoxic autoantibodies against islet cell surface antigens were only observed in C3HeB/FeJ db/db males, and their presence was correlated with beta-cell necrosis. It is concluded that db and/or ob genes appear to play an important role in the production of autoantibodies to islet cells, and sex-linked factor(s) may modify the phenotypic expression of the autoantibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号