首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The oesophagus, stomach, duodenum and sigmoid colon were electrically stimulated in 12 healthy volunteers with a thin nasal endoscope. The painful cortical evoked potentials (EPs) were recorded from 64 surface electrodes. The early EPs with latencies < 200 ms were studied and the corresponding dipole sources were calculated. The electrical current intensities needed to evoke pain were highest in the stomach and duodenum, compared to the other segments (F = 7.8; P < 0.001; post hoc analysis P < 0.05). The EP latencies after stimulation of the stomach and sigmoid colon were shorter compared with those to stimulation of the oesophagus and duodenum (all P values < 0.001). The EP amplitudes were higher to oesophagus stimulation (all P values < 0.001 except for the early positivity). The potential fields obtained after stimulation of the most distal segments (duodenum and sigmoid colon) were in general distributed more posteriorly compared to those recorded in the more proximal regions. The EP topographies to stimulation of all gut tracts were explained by a bilateral source in the second somatosensory (SII) area, by a dipole in the anterior cingulate cortex (ACC), and by a bilateral generator in the insular cortex. However, the position of the sources significantly changed depending on the stimulated gut tract. Moreover, while the SII and ACC sources were initially activated to oesophagus and stomach stimulation, the ACC and insular activities were the earliest ones after stimulation of the lower gut segments. The findings reflect differences in pathways and brain processing of visceral nociceptive inputs coming from either upper or lower gut and may improve our understanding of the brain-gut axis in health and disease.  相似文献   

2.
The dorsomedial frontal cortex (DMFC) of monkeys has been implicated in mediating visually guided saccadic eye movements. The purpose of this study was to determine whether the DMFC has a topographic map coding final eye position, and to ascertain whether this region subserves the maintenance of eye position. The DMFC was stimulated electrically while monkeys fixated a target presented somewhere in visual space. A series of parametric tests was conducted to ascertain the best stimulation parameters to evoke saccades. Electrical stimulation typically produced contraversive saccades that converged onto a region of space, the termination zone. For some stimulation sites, however, stimulation produced ipsiversive saccades. This occurred when the termination zone was located straight ahead of the monkey. Convergence onto an orbital position was never observed during stimulation of the frontal eye fields (FEF), stimulation of which evoked fixed-vector saccades. The latency to evoke a saccade from the DMFC varied with fixation position, such that it increased monotonically the closer the fix spot was to the termination zone. Moreover, the probability of evoking a saccade from the DMFC decreased the closer the fix spot was to the termination zone. The latency for evoking a saccade and the probability of evoking a saccade from the FEF did not vary with fixation position. Horizontal head movements were not evoked from the DMFC while a monkey fixated targets presented in different positions of visual space. Moveover, changing the position of the head with respect to the body did not change the location of a termination zone with respect to the head. The DMFC was found to contain a topographic coding of termination zones, with rostral sites representing zones in extreme contralateral visual space, and caudal sites representing zones straight ahead or ipsilaterally. Furthermore, lateral sites represented zones in upper visual space, whereas medial sites represented zones in lower visual space. Once the eyes were positioned within a termination zone, further stimulation fixed the gaze and inhibited visually evoked saccades. Following release from inhibition, which occurred shortly after the end of stimulation, the saccades reached the visual target accurately. This shows that the stimulation delayed the execution of the saccades without actually aborting their execution. We conclude that the DMFC contains a map representing eye position in craniotopic coordinates, and we argue that this map is utilized to maintain eye position.  相似文献   

3.
To explore the brain response to sacral surface therapeutic electrical stimulation (SSTES) for the treatment of refractory urinary incontinence and frequent micturition, evoked magnetic fields were measured in six healthy males. Electrical stimuli were applied between bilateral surface electrodes over the second through fourth posterior sacral foramens with intensity just below the pain threshold. Somatosensory evoked magnetic fields (SEFs) for the bilateral median (MN) and posterior tibial nerves (PTN) were also measured for the comparison. Sources of the early SEF peaks were superimposed on individual magnetic resonance images. The first peak latency for sacral stimuli, M30, occurred at 30.2 ± 0.8 ms (mean ± standard deviation, N = 6), with shorter latency than those for PTN stimulus (39.3 ± 1.4 ms, N = 12) and longer latency than those for MN stimulus (21.0 ± 0.9 ms, N = 12). The second peak latency for sacral stimuli, M50, occurred at 47.2 ± 2.9 ms (N = 6). Both M30 and M50 peaks showed a single dipole pattern over the vertex in the isofield maps. The equivalent current dipoles of M30 and M50 were both estimated near the medial end of the central sulcus with approximately posterior current direction. These results suggest that the sacral M30 and M50 are responses from the primary somatosensory cortex. The relatively long time lag between the onset and peak of M30 suggests that SSTES directly affects both the cauda equina and cutaneous nerve of the sacral surface.  相似文献   

4.
Electrical and mechanical stimulation of the oesophagus has been recently proposed to examine the physiological effects of autonomic stimulation in humans. Cortical evoked potentials (EPs) to oesophageal stimulation provide an assessment of afferent fibres and central processing. However, habituation takes place during averaging of cortical EPs and reduces the signal-to-noise ratio (SNR) as the number of stimuli increases. The SNR of cortical EPs to oesophageal stimulation is computed for 15 normal subjects. Habituation is characterised by the Euclidean distance between the EEG response to single stimuli and the averaged EP, to serve as an objective measure of similarity between the averaged EP and the single-stimulus EEG. With electrical stimulation, the SNR is highest (0.41±0.21) for 1–12 stimuli and then significantly decreases to 0.2±0.08 for 13–24 stimuli (p<0.001). With balloon distension (BD), the SNR is highest (0.22±0.16) for 1–12 stimuli and lowest (0.12±0.14) for 13–24 stimuli, but these SNRs are not significantly different from each other. Both electrical and mechanical stimulation of the oesophagus produce rapidly adapting EPs. The SNR of the EPs is higher with electrical stimulation than with BD. The EPs response to BD has a higher variability and is more noisy. Consequently, these results suggest that the overall cortical EP response to electrical stimulation of the oesophagus is more reproducible than that due to balloon distension.  相似文献   

5.
Summary In the alert monkey we have compared the properties of saccades elicited by a visual stimulus (V-saccades) with those generated by electrical stimulation in the superior colliculus (E-saccades). We found that whereas there exists a graded relation betweenE-saccade amplitude and current strength,E-saccade direction is remarkably independent of electrical stimulation parameters. At sufficiently high current strengths (about 20 A),E-saccades are consistently directed toward the center of the movement field of nearby cells, except when stimulation is performed at sites near the collicular borders. Further interesting differences between the amplitude and direction behaviour were observed when the variability inE-saccade vectors, obtained with fixed stimulation parameters, was analyzed. In all cases,E-saccade amplitude scatter exceeds direction scatter, suggesting the possibility of a polar coordinate organization for the coding of saccade metrics. These data are compared withV-saccade scatter data, recently obtained in the human (Van Opstal and Van Gisbergen 1989 c). Finally, an analysis of saccade dynamics shows thatE-saccades can reachV-saccadic velocities at higher current strengths. However, at near-threshold current strengths, whereE-saccade amplitude decreases (see above), we found at most stimulation sites (22/37) thatE-saccades are consistently slower thanV-saccades of the same amplitude. Possible mechanisms underlying the collicular role in saccade generation are discussed.  相似文献   

6.
Pupillary response to noxious stimulation was investigated in men (n = 11) and women (n = 9). Subjects experienced repeated trials of noxious electrical fingertip stimulation at four intensities, ranging from faint to barely tolerable pain. Measures included pupil dilation response (PDR), pain report (PR), and brain evoked potentials (EPs). The PDR began at 0.33 s and peaked at 1.25 s after the stimulus. Multivariate mixed-effects analyses revealed that (a) the PDR increased significantly in peak amplitude as stimulus intensity increased, (b) EP peaks at 150 and 250 ms differed significantly in both amplitude and latency across stimulus intensity, and (c) PR increased significantly with increasing stimulus intensity. Men demonstrated a significantly greater EP peak amplitude and peak latency at 150 ms than did women. With sex and stimulus intensity effects partialled out, the EP peak latency at 150 ms significantly predicted PR, and EP peak amplitude at 150 ms significantly predicted the PDR peak amplitude.  相似文献   

7.
There is some discrepancy over the extent to which reflex pathways from different cutaneous nerves in the hand and foot link the cervical and lumbar spinal cord in neurologically intact humans. The present experiments were designed to determine whether stimulation of a cutaneous nerve in the foot or in the hand evoked reflexes in the non-stimulated limbs (interlimb reflexes). Reflexes were elicited by stimulating (5x1-ms pulses at 300 Hz) the superficial peroneal (SP; innervates the foot dorsum) or superficial radial (SR; innervates the dorsolateral portion of the hand) nerve while subjects (n=10) performed focused contractions of different upper and lower limb muscles. Reflex responses were divided into early (<75 ms), middle (75-120 ms), and late (>120 ms) epochs as determined from averages of 50 sweeps of stimulus-locked electromyographic activity. Significant interlimb reflexes were found at the early latency in 44/106 and 44/103 muscles sampled after SP and SR nerve stimulation, respectively. At the middle latency, significant interlimb reflexes were seen in 89/106 and 87/103 muscles sampled after SP and SR nerve stimulation, respectively. Interlimb reflexes were seen when stimulating at the wrist (i.e. SR nerve) and when stimulating at the ankle (i.e. SP nerve) with an equal probability. The results show that interlimb cutaneous reflexes are widely distributed in humans. The mean latency of the earliest response was quite short and may be mediated by a propriospinal pathway. Functionally, these pathways may provide a substrate for transferring information to coordinate movements between the limb segments.  相似文献   

8.
Characterization and control of muscle response to electrical stimulation   总被引:3,自引:0,他引:3  
The maintenance of upright posture in neurologically intact human subjects is mediated by two major nervous pathways. The first, leading from the cerebral cortex through the spinal cord to motor neurons, activates muscles which produce postural movements. The second, leading from various sensory organs to higher centers, provides sensory feedback regarding the postural state. The path through the spinal cord is no longer intact in victims of spinal cord injury and loss of normal control of muscle activity results. Functional neuromuscular stimulation (FNS) has been shown as a feasible method for obtaining muscle contraction in paraplegic and has been proposed as a means for control of antero-posterior sway to make upright posture possible for these individuals. Before muscle can be controlled through the use of FNS, the response of muscle to electrical stimulation must be understood. In past studies, linear control theory has been applied to the analysis of this response and to the testing of various controllers. The aim of this study was to demonstrate some control issues in FNS using linear control theory, as it applies to electrical stimulation of muscle for stabilization of posture. The linearity of the muscle response was improved through closed-loop control using pole compensation techniques. The excess phase shift of the system due to the time delay in the muscle response, however, limits the ability to increase the open-loop gain in order to obtain improved performance. A suggestion for further study is the application of this methodology for uses in posture control.  相似文献   

9.
 The spinal volleys evoked by electric anodal and cathodal stimulation over the cerebral motor cortex hand area were recorded from a bipolar electrode inserted into the cervical epidural space of two conscious human subjects. We measured the size of volleys elicited by electric stimulation at active motor threshold and at 3% of maximum stimulator output above this value with subjects at rest and during maximum voluntary contraction of the contralateral first dorsal interosseous muscle. Surface EMG activity was recorded at the same time. Electrical anodal stimulation evoked a single negative wave that we termed D-wave in analogy with data in experimental animals. Cathodal stimulation evoked a single negative wave with a latency of 0.2 ms longer than the D-wave recruited by anodal stimulation. At both intensities tested, voluntary contraction did not modify the amplitude of the descending waves. We conclude that changes in cortical excitability induced by voluntary activity do not modify the corticospinal volley evoked by electric stimulation and that the D-waves evoked by both anodal and cathodal electric stimulation are probably initiated several nodes distant to the cell body. Received: 9 September 1998 / Accepted: 21 October 1998  相似文献   

10.
Head-fixed gaze shifts were evoked by electrical stimulation of the deeper layers of the cat superior colliculus (SC). After a short latency, saccades were triggered with kinematics similar to those of visually guided saccades. When electrical stimulation was maintained for more than 150–200 ms, postsaccadic smooth eye movements (SEMs) were observed. These movements were characterized by a period of approximately constant velocity following the evoked saccade. Depending on electrode position, a single saccade followed by a slow displacement or a staircase of saccades interspersed by SEMs were evoked. Mean velocity decreased with increasing deviation of the eye in the orbit in the direction of the movement. In the situation where a single evoked saccade was followed by a smooth movement, the duration of the latter depended on the duration of the stimulation train. In the situation where evoked saccades converged towards a restricted region of the visual field (goal-directed or craniocentric saccades), the SEMs were directed towards the centre of this region and their mean velocity decreased as the eye approached the goal. The direction of induced SEMs depended on the site of stimulation, as is the case for saccadic eye movements, and was not modified by stimulation parameters (place code). On the other hand, mean velocity of the movements depended on the site of stimulation and on the frequency and intensity of the current (rate code), as reported for saccades in the cat. The kinematics of these postsaccadic SEMs are similar to the kinematics of slow, postsaccadic correction observed during visually triggered gaze shifts of the alert cat. These results support the hypothesis that the SC is not exclusively implicated in the control of fast refixation of gaze but also in controlling postsaccadic conjugate slow eye movements in the cat.  相似文献   

11.
Electrical stimulation of the lateral hypothalamus (ESLH) has been shown to produce individual response differences that cannot be attributed to the neuroanatomical locus of the electrode. The purpose of the present experiment was to investigate strain differences in the incidence of eating and drinking evoked by ESLH. The responses of 49 Long-Evans and 51 Sprague-Dawley male rats implanted with bilateral hypothalamic electrodes were studied. Animals from these two strains do not differ in their normal food or water consumption. Analysis of the responses to ESLH demonstrated that a significantly greater number of Long-Evans rats ate food and/or drank water during ESLH than did the Sprague-Dawley rats. These results could not be attributed to differences in electrode placements, or rearing conditions. In addition to strain differences, the importance of individual differences within each strain was demonstrated by the fact that both electrodes in a given animal commonly evoked the same behavior. Hypotheses to explain these results are discussed.  相似文献   

12.
Electromechanical delay (EMD) in isometric contractions of knee extensors evoked by voluntary, tendon reflex (TR) and electrical stimulation (ES) was investigated in 21 healthy young subjects. The subject performed voluntary knee extensions with maximum effort (maximal voluntary contraction, MVC), and at 30%, 60% and 80% MVC. Patellar tendon reflexes were evoked with the reflex hammer being dropped from 60°, 75° and 90° positions. In the percutaneous ES evoked contractions, single switches were triggered with pulses of duration 1.0 ms and of intensities 90, 120 and 150 V. Electromyograms of the vastus lateralis and rectus femoris muscles were recorded using surface electrodes. The isometric knee extension force was recorded using a load cell force transducer connected to the subject's lower leg. The major finding of this study was that EMD of the involuntary contractions [e.g. mean 22.1 (SEM 1.32) ms in TR 90°; mean 17.2 (SEM 0.62) ms in ES 150 V] was significantly shorter than that of the voluntary contractions [e.g. mean 38.7 (SEM 1.18) ms in MVC,P < 0.05]. The relationships between EMD, muscle contractile properties and muscle fibre conduction velocity were also investigated. Further study is needed to explain fully the EMD differences found between the voluntary and involuntary contractions.  相似文献   

13.
The aim of this study was to test the hypothesis that low intensity exercise-induced low frequency fatigue is caused by failure of excitation-contraction coupling. Changes in knee extension torque at 5, 10, 15, 20 and 50 Hz electrical stimulation of quadriceps muscle in ten healthy, young, male subjects were recorded during 20-min voluntary exercise followed by 60-min recovery. In seven of the ten subjects, changes in torque during 3 min of 10-Hz stimulation were recorded 2 min and 20 min after 20 min voluntary exercise. Exercise was performed at 30% of maximal voluntary contraction with a contraction plus relaxation period of 6 plus 4 s. Torque at 5, 10, 15, 20 and 50-Hz stimulation at the end of exercise was reduced to mean 91.0 (SEM 5.4)%, 68.7 (SEM 5.4)%, 67.2 (SEM 3.9)%, 66.5 (SEM 4.5)% and 74.7 (SEM 4.3)% of control values, respectively. During the first 30 s of the 3 min 10-Hz stimulation, torque was reduced in exercised muscle and increased in nonfatigued muscle. The reduction in torque was more marked 20 min after exercise than after 2 min. In conclusion, the pattern of depression and recovery of muscle force observed was in agreement with the hypothesis that the main cause of low intensity exercise-induced low frequency fatigue is an impairment of excitation-contraction coupling.  相似文献   

14.
The behavior of the female hamster toward the male is altered radically by estrogen and progesterone. Her aggression gives way to sexual receptivity, and the lordosis posture will commonly be maintained in the presence of a sexually active male for greater than 10 min at a time. The septal area is one of the limbic and hypothalamic areas which preferentially accumulate radioactive estradiol in the female hamster. In order to determine whether this region is involved in lordosis control, we examined the effects of electrical stimulation (ES) there on the copulatory behavior of ovariectomized, hormone-primed, sexually receptive females in the presence of sexually active males. Sixty second trains of 100 Hz, 0.2 msec, biphasic, square-wave pulses at either 80 or 90 μA were effective in suppressing the lordosis response in 8 of 13 animals with electrodes in the septal area. In the most effective cases ES would prevent lordosis even during persistent contacts and mount attempts by the male. Some neurons in the septal area may be part of a network acting to inhibit the display of lordosis. One of the ways ovarian hormones could facilitate lordosis is through reduction of the suppressive activity in such a network.  相似文献   

15.
The present study was initiated to determine the role of somatic A (myelinated) and C (unmyelinated) afferent fibers in both responses of increases and decreases in adrenal sympathetic nerve activities during repetitive mechanical pinching and brushing stimulations of the skin in anesthetized rats with central nervous system (CNS) intact. Accordingly, changes in adrenal sympathetic nerve activity resulting from repetitive and single shock electrical stimulation of various spinal afferent nerves, especially the 13th thoracic (Th13) spinal nerve and the sural nerve, were examined in urethane/chloralose-anesthetized rats. Repetitive electrical stimulation of A afferent fibers in Th13 spinal or sural nerve decreased the adrenal nerve activity similarly as brushing stimulation of skin of the lower chest or hindlimb did, while repetitive stimulation of A plus C afferent fibers of those nerves increased the adrenal nerve activity as pinching stimulation of those skins did. Single shock stimulation of spinal afferent nerves evoked various reflex components in the adrenal nerve: an initial depression of spontaneous activity (the early depression); the following reflex discharge due to activation of A afferent fibers (the A-reflex); a subsequent reflex discharge due to activation of C afferent fibers (the C-reflex); and following post-excitatory depressions. These reflexes seem to be mediated mainly via supraspinal pathways since they were abolished by spinal transection at the C1-2 level. Although the supraspinal A- and C-reflexes could be elicited from stimulation of a wide variety of spinal segmental afferent levels, the early depression was more prominent when afferents at spinal segments closer to the level of adrenal nerve outflow were excited. It is suggested that the decreased responses of the adrenal nerve during repetitive electrical stimulation of A afferent nerve fibers are attributable to summation of both the early depression and post-excitatory depression evoked by single shock stimulation, while the increased responses during repetitive stimulation of A plus C afferent fibers are attributable to summation of the C-reflex after single shock stimulation. In spinalized rats, repetitive stimulation of Th13 always increased the adrenal nerve activities regardless of whether A fibers alone or A plus C fibers were stimulated, just as brushing and pinching of the lower chest skin always increased them. The increased responses in spinal animals seem to be related to the fact that single electrical stimuli of Th13 produced A- and C-reflexes of spinal origin without clear depressions.  相似文献   

16.
Summary Electrical stimulation of the frontal eye fields of the rhesus monkey evokes saccadic eye movements. Both the amplitude of electrically elicited saccades and the threshold current for eliciting them are primarily determined by the location of the stimulating electrode within the frontal eye fields; however, threshold and amplitude also are systematically affected by the monkey's behavioral state when the stimulation is applied. If the monkey is alert, but not performing a task, saccade amplitudes are largest and thresholds are lowest. Conversely, if the monkey actively fixates a visual target, elicited saccades are smaller and threshold currents are higher. Saccades evoked during fixation have slower velocities appropriate for their reduced amplitude. Phase plane plots of eye velocity versus eye position indicate that these saccades are originally programmed to be smaller and slower, and hence are not large saccades voluntarily braked in mid-flight. As opposed to their amplitude and threshold, the direction of electrically evoked saccades is unaffected by the state of fixation. The state of attentive fixation, but not the visual fixation target itself, is the responsible factor for these effects. These results suggest that there is a difference between the state of active fixation and the state of having the eye still in the orbit without active fixation. The oculomotor system in the latter case is relatively more susceptible to signals from the cerebral cortex.  相似文献   

17.
18.
The changes in muscle force associated with varying degrees of lower-limb ischaemia were investigated. Isometric torque production by the triceps surae muscle was measured during a 5-min continuous train of 2-Hz electrical stimulation in six healthy young adults under different thigh cuff occlusion pressures. The reproducibility of this protocol when performed under complete ischaemia (tested five times over a 2-week period) was assessed as having a coefficient of variation (CV) for fatigue (end/initial force) of [mean (SEM) 12 (1)%; n=5]. This compares favourably with that obtained for maximum voluntary contraction torque [CV 9 (1)%]. In six subjects, triceps surae muscle fatigue was assessed under thigh cuff pressures of 0, 6.7 kPa (50 mmHg, venous occlusion) and 28 kPa (210 mmHg, complete ischaemia), as well as two intermediate levels of occlusion that were established by cuff pressures of 13.4 (0.5) and 20.3 (1.1) kPa [103 (4) and 152 (8) mmHg, respectively]. These corresponded to ankle-brachial pressure indices of 1.3 and 0.8, respectively when subjects were seated, or 0.8 and 0.36 when supine. With undisturbed lower-leg circulation, force potentiated steadily over the 5 min of stimulation such that the final force was 135 (8)% of the initial value. With complete ischaemia, force fell to 47 (2)% of the initial value. Stimulation under thigh occlusion pressures of 6.7, 13.4 and 20.3 kPa elicited intermediate levels of reduction in force, graded according to the increasing restriction of perfusion. The results show that low-force twitch contractions, which themselves do not occlude blood flow, are extremely sensitive to impaired perfusion and may represent a viable alternative to established methods of muscle performance assessment in patients with blood flow insufficiency. Accepted: 5 November 1999  相似文献   

19.
The present study reports on the direction of saccadic and smooth eye movements, which were induced electrically from the human dorsolateral frontal cortex including the human frontal eye field (FEF). The eye position prior to stimulation was varied in order to examine its effect on induced eye movement direction. The five patients of the study underwent invasive presurgical evaluation for pharmacoresistant epilepsy. The present data show that the direction of electrically induced eye movements was always contralateral and either horizontal or oblique upward if the eye started from the primary position. The elicited direction was changed if the eyes started from an eccentric position. The frequency of oblique eye movements was increased and oblique downward responses were induced, which were not observed if the eye started from the primary position. This was found for saccades and, especially, for smooth eye movements. Head movements, which were almost exclusively induced with saccades, did not depend on initial orbital position. Four conclusions can be drawn. Firstly, saccades and smooth eye movements induced from the human dorsolateral cortex including the human FEF have the same directional bias. Secondly, the frequent upward responses and the absence of downward responses induced from the primary position suggests either a more numerous or a more superficial representation of neurons that code for the former direction. Thirdly, at some sites the direction of saccades and smooth eye movements varies depending on the initial orbital position. Since these directional changes were observed without changes in eye-head coordination, our data suggest that stimulation of the FEF might evoke goal-directed saccades or interferes with a resettable saccade integrator. Fourthly, human studies that investigate eye movements induced from the lateral frontal cortex need to control eye position prior to stimulation. Electronic Publication  相似文献   

20.
The effects of spaceflight on triceps surae muscle torque and cross-sectional area (CSA) were investigated on four astronauts using electrically evoked contractions to by-pass neural control. Muscle twitch characteristics, ankle joint angle–twitch torque relation, frequency–torque relation, tetanic torque and fatigability were assessed before, during and after a 17-day Space Shuttle flight (STS-78). Muscle plus bone cross-sectional area (CSAm+b) was evaluated before and after the flight. Whereas no changes in muscle function were observed during the flight, marked alterations were found during the recovery period. Peak twitch (PTw) and tetanic torques at 50 Hz (PT50) continued to fall up to the 8th recovery day (R+8) on which losses in PTw and PT50 were 24.4% (P<0.01) and 22.0% (P<0.01), respectively. The decline in PTw was not joint-angle-specific. Post-flight, especially on R+8, torque decreased at all stimulation frequencies (1, 20, 30 and 50 Hz); however the shape of the frequency–torque curve, normalised for PT50, was not modified. Similarly, no changes in twitch kinetics were observed. Post- flight, an 8% (P<0.01) reduction in CSAm+b was found on R+2. Normalisation of PT50 values for CSAm+b showed a progressive loss in specific torque (PT50/CSAm+b), which was maximal on R+2 (19.5%, P<0.05). Also, fatigability during 2-min intermittent stimulation at 20 Hz increased throughout recovery, reaching a nadir of 16.4% (P<0.01) on R+15. In conclusion, 17 days of spaceflight resulted in significant changes in muscle function during the recovery phase, but not in microgravity. The disproportionate loss of torque compared with that of muscle size suggests the presence of muscle damage due to reloading in 1 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号