首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Background Escitalopram is a dual serotonin reuptake inhibitor (SSRI) approved for the treatment of depression and anxiety disorders. It is the S-enantiomer of citalopram, and is responsible for the serotonin reuptake activity, and thus for its pharmacological effects. Previous studies pointed out that clinically efficacious doses of other SSRIs produce an occupancy of the serotonin reuptake transporter (SERT) of about 80% or more. The novel radioligand [123I]ADAM and single photon emission computer tomography (SPECT) were used to measure midbrain SERT occupancies for different doses of escitalopram and citalopram.Methods Twenty-five healthy subjects received a single dose of escitalopram [5 mg (n=5), 10 mg (n=5), and 20 mg (n=5)] or citalopram [(10 mg (n=5) and 20 mg (n=5)]. Midbrain SERT binding was measured with [123I]ADAM and SPECT on two study days, once without study drug and once 6 h after single dose administration of the study drug. The ratio of midbrain-cerebellum/cerebellum was the outcome measure (V3”) for specific binding to SERT in midbrain. Subsequently, SERT occupancy levels were calculated using the untreated baseline level for each subject. An E max model was used to describe the relationship between S-citalopram concentrations and SERT occupancy values. Additionally, four subjects received placebo to determine test–retest variability.Results Single doses of 5, 10, or 20 mg escitalopram led to a mean SERT occupancy of 60±6, 64±6, and 75±5%, respectively. SERT occupancies for subjects treated with single doses of 10 and 20 mg citalopram were 65±10 and 70±6%, respectively. A statistically significant difference was found between SERT occupancies after application of 10 and 20 mg escitalopram, but not for 10 and 20 mg citalopram. There was no statistically significant difference between the SERT occupancies of either 10 mg citalopram or 10 mg escitalopram, or between 20 mg citalopram and 20 mg escitalopram. E max was slightly higher after administration of citalopram (84%) than escitalopram (79%). In the test–retest study, a mean SERT “occupancy” of 4% was found after administration of placebo, the intraclass correlation coefficient was 0.92, and the repeatability coefficient was 0.25.Conclusion SPECT and [123I]ADAM were used to investigate SERT occupancies after single doses of escitalopram or citalopram. The test–retest study revealed good reproducibility of SERT quantification. Similar SERT occupancies were found after administration of equal doses (in respect to mg) of escitalopram and citalopram, giving indirect evidence for a fractional blockade of SERT by the inactive R-citalopram.  相似文献   

2.
Objectives Previous studies have investigated the occupancy of the serotonin reuptake transporter (SERT) after clinical doses of citalopram and other selective serotonin reuptake inhibitors. In the present study, the occupancies of SERT after multiple doses of escitalopram and citalopram were compared using the radioligand [123I]ADAM and single photon emission computed tomography (SPECT). Methods Fifteen healthy subjects received escitalopram 10 mg/day (n = 6) or citalopram 20 mg/day (n = 9) for a total of 10 days. SERT occupancies in midbrain were determined with SPECT and [123I]ADAM at three different time points: at baseline (no medication) and at 6 and 54 h after last drug intake. Results At 6 h after the last dose, mean SERT occupancies were 81.5 ± 5.4% (mean±SD) for escitalopram and 64.0 ± 12.7% for citalopram (p < 0.01). At 54 h after the last dose, mean SERT occupancies were 63.3 ± 12.1% for escitalopram and 49.0 ± 11.7% for citalopram (p < 0.05). The plasma concentrations of the S-enantiomer were of the same magnitude in both substances. For both drugs, the elimination rate of the S-enantiomer in plasma was markedly higher than the occupancy decline rate in the midbrain. Conclusion The significantly higher occupancy of SERT after multiple doses of escitalopram compared to citalopram indicates an increased inhibition of SERT by escitalopram. The results can also be explained by an attenuating effect of R-citalopram on the occupancy of S-citalopram at the SERT.  相似文献   

3.
Both positron emission tomography and single photon emission computed tomography (SPECT) studies suggest that saturation of serotonin transporters (SERT) is present during treatment with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). Selective serotonin reuptake inhibitors also appear to increase the availability of dopamine transporters (DAT). The current study measured SERT occupancy and modulation of DAT by the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine using [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane SPECT. Eight healthy subjects were administered open-label venlafaxine extended release capsules (75 mg/d for 4 days followed by 150 mg/d for 5 days). Venlafaxine significantly inhibited [123I]beta-CIT binding to SERT in the brainstem (55.4%) and the diencephalon (54.1%). In contrast, venlafaxine increased [123I]beta-CIT binding to DAT in the striatum (10.1%) after 5 days of administration of 150 mg/d. The displacement of [123I]beta-CIT from brain SERT and the increase in striatal [123I]beta-CIT binding to DAT appear similar to previous work with the SSRI citalopram (40 mg/d). A literature review of SERT occupancy by marketed SSRIs and the SNRI venlafaxine using SPECT ([123I]beta-CIT) or positron emission tomography ([11C](N, N-Dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine) imaging suggests that therapeutic doses of SNRI are associated with virtual saturation of the serotonin transporter.  相似文献   

4.
Serotonin and dopamine transporter (SERT, DAT) availabilities have prospectively been investigated using [123I]beta-CIT and single photon emission computed tomography in subjects with obsessive-compulsive disorder under treatment with the selective serotonin reuptake inhibitor citalopram. SERT availability decreased by a mean 36.5%, whereas DAT availability increased by about 40%. The data point at a citalopram induced modulation of both serotonergic and dopaminergic activity and support the notion of functional interactions of monoaminergic systems in the human brain.  相似文献   

5.
Few studies have demonstrated in vivo alterations of human serotonin and dopamine transporters (SERTS and DATS) during antidepressant treatment. The current study measured these transporter availabilities with [(123)I]beta-CIT single photon emission computed tomography (SPECT) during administration of selective serotonin reuptake inhibitors (SSRIs) or a non-SSRI, bupropion. A total of 17 healthy human subjects were randomly assigned to two different treatment protocols: (1). citalopram (40 mg/day) followed by augmentation with bupropion (100 mg/day) or (2). bupropion (100-200 mg/day) for 16 days. Citalopram significantly inhibited [(123)I]beta-CIT binding to SERT in brainstem (51.4%) and diencephalon (39.4%) after 8 days of administration, which was similarly observed after 16 days. In contrast, citalopram significantly increased striatal DAT binding by 15-17% after 8 and 16 days of administration. Bupropion and its augmentation to citalopram did not have a significant effect on DAT or SERT. In 10 depressed patients who were treated with paroxetine (20 mg/day), a similar increase in DAT and inhibition of SERT were observed during 6 weeks treatment. The results demonstrated the inhibition of SERT by SSRI in human in vivo during the chronic treatment and, unexpectedly, an elevation of DAT. This apparent SSRI-induced modulation of the dopamine system may be associated with the side effects of these agents, including sexual dysfunction.  相似文献   

6.
BACKGROUND AND PURPOSE: The pharmacokinetic-pharmacodynamic (PK-PD) correlation of fluvoxamine 5-HT transporter (SERT) occupancy was determined in rat frontal cortex ex vivo. EXPERIMENTAL APPROACH: Rats (n=47) with permanent arterial and venous cannulas received a 30 min intravenous infusion of fluvoxamine (1 or 7.3 mg kg(-1)). At various time points after dosing, brains were collected for determination of fluvoxamine concentration and SERT occupancy. In addition, the time course of fluvoxamine concentration in plasma was determined up to the time of brain collection. In a separate study (n=26), the time course of fluvoxamine concentration in brain extracellular fluid (ECF) and plasma was determined. The results of the investigations were interpreted by nonlinear mixed effects modeling. KEY RESULTS: Highest SERT occupancy was reached at the first time point (10 or 15 min) and maintained for 1.5 and 7 h after 1 and 7.3 mg kg(-1), respectively. Thereafter, SERT occupancy decreased linearly at a rate of 8% h(-1). SERT occupancy could be directly related to plasma, brain ECF and brain tissue concentrations by a hyperbolic function (Bmax model). Maximal SERT occupancy (Bmax) was 95%. Estimated concentrations at half-maximal SERT occupancy (EC50) in plasma, ECF and brain tissue were 0.48, 0.22 and 14.8 ng mL(-1) respectively. The minimum value of the objective function decreased 12 points for ECF and brain tissue concentrations relative to plasma (P<0.01), presumably as a result of nonlinear brain distribution. CONCLUSIONS AND IMPLICATIONS: The proposed PK-PD model constitutes a useful basis for prediction of the time course of ex vivo SERT occupancy in behavioural studies with selective serotonin reuptake inhibitors.  相似文献   

7.
Evidence that the widely used methamphetamine analog MDMA (3,4-methylenedioxymethamphetamine, ecstasy) might damage brain serotonin neurones in humans is derived from imaging investigations showing variably decreased binding of radioligands to the serotonin transporter (SERT), a marker of serotonin neurones. However, in humans, it is not known whether low SERT binding reflects actual loss of SERT protein itself. As this question can only be answered in post-mortem brain, we measured protein levels of SERT and that of the rate-limiting serotonin-synthesizing enzyme tryptophan hydroxylase (TPH) in autopsied brain of a high-dose MDMA user. As compared with control values, SERT protein levels were markedly (-48% to -58%) reduced in striatum (caudate, putamen) and occipital cortex and less affected (-25%) in frontal and temporal cortices, whereas TPH protein was severely decreased in caudate and putamen (-68% and -95%, respectively). The magnitude of the striatal SERT protein reduction was greater than the SERT binding decrease typically reported in imaging studies. Although acknowledging limitations of a case study, these findings extend imaging data based on SERT binding and suggest that high-dose MDMA exposure could cause loss of two key protein markers of brain serotonin neurones, a finding compatible with either physical damage to serotonin neurones or downregulation of components therein.  相似文献   

8.
We describe the synthesis and the pharmacological characterization of a new quaternary selective serotonin reuptake inhibitor (SSRI) N-methyl-citalopram (NMC) with periphery restricted action due to its inability to cross the blood brain barrier. NMC recognized and blocked the human platelet serotonin transporter (SERT) with similar affinity to that of citalopram as was evident from competition binding studies with [3H]citalopram and uptake studies with [3H]5-HT. In contrast, the affinity of NMC to rat brain SERT was 10-fold lower than its parent compound citalopram. Similarly to citalopram, NMC did not inhibit dopamine and noradrenaline uptake in rat brain synaptosomes at 10−7 M as well as [3H]ketanserin binding to rat brain membranes at 10−5 M, demonstrating its SSRI profile. A comparison of radioactivity retained in perfused mice brain following in vivo intraperitoneal injections of tritium-labeled NMC or citalopram showed that unlike citalopram, NMC did not penetrate the brain. Taken together, our observations suggest that N-methyl-citalopram is a selective serotonin reuptake inhibitor that does not penetrate the mouse brain. Epidemiological studies have suggested that chronic use of SSRI drugs may confer a protective effect against myocardial infarction (MI) apparently reflecting reduced platelet aggregation secondary to reduced platelet serotonin levels. N-methyl-citalopram may therefore have a potential as a new anti-platelet drug that does not cross the blood brain barrier and is thus devoid of the adverse CNS effects of SSRI drugs.  相似文献   

9.
Abstract Rationale. Although selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of anxiety and depressive disorders, the occupancy of the serotonin reuptake transporter (SERT) achieved in humans at typical clinical doses by these agents remains poorly characterized. Objective. The purpose of this study was to determine the occupancy of the SERT achieved in vivo by the SSRI paroxetine in social phobia patients at typical antianxiety doses. Methods. Measures of SERT availability were obtained with positron emission tomography and the SERT radiotracer [11C](+)-McN 5652 in five patients with social phobia before and during treatment with paroxetine at usual therapeutic doses (20–40 mg per day). Results. Occupancy of the SERT by paroxetine was high in all subjects and in all regions measured after 3–6 months of continuous treatment. Conclusions. The results of this study in an anxiety disorder sample are consistent with previously reported results in a depressed sample and suggest that paroxetine at therapeutic doses achieves very high occupancy levels of the SERT. Electronic Publication  相似文献   

10.
Pharmacological imaging of the effects of selective serotonin reuptake inhibitors (SSRI) may aid the clarification of their mechanism of action and influence treatment of highly prevalent neuropsychiatric conditions if the detected effects could be related to patient outcomes. In a randomized double-blind design, 38 healthy participants received a constant infusion of 8 mg citalopram or saline during either their first or second of two PET/MR scans. Resting-state functional MRI (fMRI) was acquired simultaneously with PET data on the binding of serotonin transporters (5-HTT) using [11C]DASB. Three different approaches for modeling of pharmacological fMRI response were tested separately. These relied on the use of regressors corresponding to (1) the drug infusion paradigm, (2) time courses of citalopram plasma concentrations and (3) changes in 5-HTT binding measured in each individual, respectively. Furthermore, the replication of results of a widely used model-free analysis method was attempted which assesses the deviation of signal in discrete time bins of fMRI data acquired after start of drug infusion. Following drug challenge, average 5-HTT occupancy was 69±7% and peak citalopram plasma levels were 111.8 ± 21.1 ng/ml. None of the applied methods could detect significant differences in the pharmacological response between SSRI and placebo scans. The failed replication of SSRI effects reported in the literature despite a threefold larger sample size highlights the importance of appropriate correction for family-wise error in order to avoid spurious results in pharmacological imaging. This calls for the development of analysis methods which take regional specialization and the dynamics of brain activity into account.  相似文献   

11.
3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to induce loss of brain serotonin (5-HT) neurons. The purpose of this study was to determine the usefulness of pharmacological magnetic resonance imaging (phMRI) in assessing 5-HT dysfunction by examining the hemodynamic response evoked by infusion with the selective 5-HT reuptake inhibitor citalopram. We studied the effects of MDMA on brain hemodynamics using arterial spin labeling (ASL) based phMRI following a citalopram challenge (7.5mg/kg, i.v.), combined with [(123)I]β-CIT SPECT imaging in ten male MDMA users and seven healthy non-users. Single photon emission computed tomography (SPECT) imaging was used to assess the availability of 5-HT transporters (SERT). Imaging results were compared with the results of behavioral measures and mood changes following drug administration, in both groups (using the Beck Depression Inventory, Barratt Impulsiveness Scale and a visual analog scale). Reductions in SERT binding were observed in the occipital cortex of MDMA users. In line with this, citalopram induced decreases in cerebral blood flow (CBF) in the occipital cortex of MDMA users. ASL based phMRI also detected a CBF decrease in the thalamus of MDMA users. In concordance with imaging findings, behavioral measures differed significantly between MDMA users and controls. MDMA users had higher impulsivity scores and felt more uncomfortable after citalopram infusion, compared with control subjects. Our findings indicate that phMRI is very well suited for in-vivo assessment of 5-HT dysfunction.  相似文献   

12.
Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN.  相似文献   

13.

Rationale

Selective serotonin reuptake inhibitors (SSRIs), in addition to being able to enhance serotonergic neurotransmission, are able to modulate other brain systems involved in depression.

Objectives

This study evaluates the neurochemical effect of the SSRI citalopram on brain noradrenergic activity and the serotonin receptor involved in this effect.

Methods

Dual-probe microdialysis in the locus coeruleus (LC) and prefrontal cortex (PFC) was performed in freely awake rats.

Results

Systemic citalopram (10 mg/kg, i.p.) increased noradrenaline (NA) in the LC (E max?=?141?±?13 %) and simultaneously decreased NA in the PFC (Emax?=??46?±?7 %). In the local presence into the LC of the α2-adrenoceptor antagonist RS79948 (1 μM), systemic citalopram increased NA in the LC (Emax?=?157?±?25 %) and PFC (Emax?=?175?±?24 %). Local citalopram (0.1–100 μM) into the LC induced NA increase in the LC (Emax?=?210?±?25 %) and decrease in the PFC (Emax?=??38?±?9 %). Local LC citalopram effect was abolished by LC presence of the 5-HT3 receptor antagonist MDL72222 (1 μM) but not the 5-HT1/2 receptor antagonist methiothepin (1 μM). Systemic citalopram in the LC presence of MDL72222 did not modify NA in the LC but increased NA in the PFC (Emax?=?158?±?26 %). Local citalopram into the PFC enhanced NA (Emax?=?376?±?18 %) in the area, which was prevented by MDL72222.

Conclusions

The SSRI citalopram modulates central noradrenergic neurotransmission by activation, through endogenous serotonin, of 5-HT3 receptors expressed in the somatodendritic (LC) and terminal (PFC) areas, which subsequently promote an enhancement of local NA. Therefore, 5-HT3 receptors and somatodendritic α2-adrenoceptors in the LC play an important role in the global effect of SSRIs.  相似文献   

14.
Disrupted functional asymmetry has been implicated in schizophrenia. However, it remains unknown whether disrupted functional asymmetry originates from intra-hemispheric and/or inter-hemispheric functional connectivity (FC) in the patients, and whether it starts at very early stage of psychosis. Seventy-six patients with first-episode, drug-naive schizophrenia, 74 subjects at ultra-high risk for psychosis (UHR), and 71 healthy controls underwent resting-state functional magnetic resonance imaging. The ‘Parameter of asymmetry’ (PAS) metric was calculated and support vector machine (SVM) classification analysis was applied to analyze the data. Compared with healthy controls, patients exhibited decreased PAS in the left thalamus/pallidum, right hippocampus/parahippocampus, right inferior frontal gyrus/insula, right thalamus, and left inferior parietal lobule, and increased PAS in the left calcarine, right superior occipital gyrus/middle occipital gyrus, and right precentral gyrus/postcentral gyrus. By contrast, UHR subjects showed decreased PAS in the left thalamus relative to healthy controls. A negative correlation was observed between decreased PAS in the right hippocampus/parahippocampus and Brief Visuospatial Memory Test-Revised (BVMT-R) scores in the patients (r = −0.364, p = 0.002). Moreover, the PAS values in the left thalamus could discriminate the patients/UHR subjects from the controls with acceptable sensitivities (68.42%/81.08%). First-episode patients and UHR subjects shared decreased PAS in the left thalamus. This observed pattern of functional asymmetry highlights the involvement of the thalamus in the pathophysiology of psychosis and may also be applied as a very early marker for psychosis.  相似文献   

15.
Background and purpose:Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to evaluate the predictive validity of 5-hydroxytryptamine (5-HT; serotonin) transporter (SERT) occupancy and 5-hydroxytryptophan (5-HTP)-potentiated behavioral syndrome induced by 5-HT reuptake inhibitor (SRI) antidepressants in mice.Experimental approach:Serum and whole brain drug concentrations, cortical SERT occupancy and 5-HTP-potentiated behavioral syndrome were measured over 6 h after a single subcutaneous injection of escitalopram, paroxetine or sertraline. [(3)H]2-(2-dimethylaminomethylphenylsulphanyl)-5-methyl-phenylamine ([(3)H]MADAM) was used to assess SERT occupancy. For PK/PD modelling, an effect-compartment model was applied to collapse the hysteresis and predict the steady-state relationship between drug exposure and PD response.Key results:The predicted Css for escitalopram, paroxetine and sertraline at 80% SERT occupancy in mice are 18 ng mL(-1), 18 ng mL(-1) and 24 ng mL(-1), respectively, with corresponding responses in the 5-HTP behavioral model being between 20-40% of the maximum.Conclusions and implications:Therapeutically effective SERT occupancy for SRIs in depressed patients is approximately 80%, and the corresponding plasma Css are 6-21 ng mL(-1), 21-95 ng mL(-1) and 20-48 ng mL(-1) for escitalopram, paroxetine and sertraline, respectively. Thus, PK/PD modelling using SERT occupancy and 5-HTP-potentiated behavioral syndrome as response markers in mice may be a useful tool to predict clinically relevant plasma Css values.British Journal of Pharmacology (2008) 155, 276-284; doi:10.1038/bjp.2008.243; published online 16 June 2008.  相似文献   

16.
The radiolabeled serotonin transporter (SERT) ligand [(11)C](+)-McN5652 has recently been used in clinical positron emission tomography (PET) studies for SERT imaging. However, this radioligand offers disadvantages in routine clinical settings because of its short radioisotope half-life (eg PET facilities within hospitals without a cyclotron need to acquire such radioligands from distant cyclotron units for clinical use). S-([(18)F]fluoromethyl)-(+)-McN5652 ([(18)F](+)-FMe-McN5652) is an analogue which has been synthesized newly, and has a significantly longer radioisotope half-life. In the porcine brain, it demonstrates the same characteristic distribution pattern of serotonin-uptake sites like the (11)C-labeled congener with the highest binding in the midbrain and thalamus and the lowest in the cerebellum and occipital cortex. It shows a 30% higher blood-brain transfer and a slower peripheral metabolism than [(11)C](+)-McN5652. Rather uniform brain binding was observed after injection of the pharmacologically inactive radiolabeled enantiomer, or after pretreatment with the highly selective SERT inhibitor citalopram. The norepinephrine uptake inhibitor maprotiline did not show any inhibitory effect. Using a one-tissue compartment model (K(1), k"(2)) or a two-tissue compartment model (K(1) to k(4)) with or without constraints for calculation, the regional binding parameters of [(11)C](+)-McN5652 and [(18)F](+)-FMe-McN5652 are highly correlated among each other and with the SERT density, as determined by in vitro binding of [(3)H]citalopram. Using constraints to correct for the free fraction and nonspecific binding of the radiotracers, a considerable increase of the midbrain-occipital cortex ratios with higher values for [(18)F](+)-FMe-McN5652 compared to [(11)C](+)McN5652 was revealed. It is concluded that [(18)F](+)-FMe-McN5652 has better features than [(11)C](+)McN5652 for SERT imaging with PET.  相似文献   

17.
RATIONALE: Partial or complete ablation of serotonin transporter (SERT) expression in mice leads to altered responses to serotonin receptor agonists and other classes of drugs. OBJECTIVES: In the current report, we review and integrate many of the major behavioral, physiological, and neurochemical findings in the current literature regarding pharmacological assessments made in SERT mutant mice. RESULTS: The absence of normal responses to serotonin reuptake inhibiting (SRI) antidepressants in SERT knockout (-/-) mice demonstrates that actions on SERT are a critical principle mechanism of action of members of this class of antidepressants. Drugs transported by SERT, (+)-3,4-methylenedioxymethamphetamine (MDMA) and 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH(2)-MPTP), are also inactive in SERT -/- mice. Temperature, locomotor, and electrophysiological responses to various serotonin receptor agonists, including 8-hydroxy-2-(di-n-propylamino)-tetraline (8-OH-DPAT), ipsapirone, and RU24969, are reduced in SERT -/- mice, despite comparatively lesser reductions in Htr1a and Htr1b binding sites, G-proteins, and other signaling molecules. SERT -/- mice exhibit an approximately 90% reduction in head twitches in response to the Htr2a/2c agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), associated with a profound reduction in arachidonic acid signaling, yet only modest changes in Htr2a and Htr2c binding sites. SERT -/- mice also exhibit altered behavioral responses to cocaine and ethanol, related to abnormal serotonin, and possibly dopamine and norepinephrine, homeostasis. CONCLUSIONS: Together, these studies demonstrate a complex and varied array of modified drug responses after constitutive deletion of SERT and provide insight into the role of serotonin, and in particular, its transporter, in the modulation of complex behavior and in the pharmacological actions of therapeutic agents and drugs of abuse.  相似文献   

18.

Background:

Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters.

Methods:

We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor.

Results:

TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters. TD-9855 engaged norepinephrine transporters (NET) and serotonin transporters (SERT) in rat spinal cord, with a plasma EC50 of 11.7ng/mL and 50.8ng/mL, respectively, consistent with modest selectivity for NET in vivo.Accounting for species differences in protein binding, the projected human NET and SERT plasma EC50 values were 5.5ng/mL and 23.9ng/mL, respectively. A single-dose, open-label PET study (4–20mg TD-9855, oral) was conducted in eight healthy males using the radiotracers [11C]-3-amino-4- [2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzonitrile for SERT and [11C]-(S,S)-methylreboxetine for NET. The long pharmacokinetic half-life (30–40h) of TD-9855 allowed for sequential assessment of SERT and NET occupancy in the same subject. The plasma EC50 for NET was estimated to be 1.21ng/mL, and at doses of greater than 4mg the projected steady-state NET occupancy is high (>75%). After a single oral dose of 20mg, SERT occupancy was 25 (±8)% at a plasma level of 6.35ng/mL.

Conclusions:

These data establish the CNS penetration and transporter profile of TD-9855 and inform the selection of potential doses for future clinical evaluation.  相似文献   

19.

Background:

Major depressive disorder has been associated with abnormal resting-state functional connectivity (FC), especially in cognitive processing and emotional regulation networks. Although studies have found abnormal FC in regions of the default mode network (DMN), no study has investigated the FC of specific regions within the anterior DMN based on cytoarchitectonic subdivisions of the antero-medial pre-frontal cortex (PFC). Studies from different areas in the field have shown regions within the anterior DMN to be involved in emotional intelligence. Although abnormalities in this region have been observed in depression, the relationship between the ventromedial PFC (vmPFC) function and emotional intelligence has yet to be investigated in depressed individuals.

Methods:

Twenty-one medication-free, non–treatment resistant, depressed patients and 21 healthy controls underwent a resting state functional magnetic resonance imaging session. The participants also completed an ability-based measure of emotional intelligence: the Mayer-Salovey-Caruso Emotional Intelligence Test. FC maps of Brodmann areas (BA) 25, 10m, 10r, and 10p were created and compared between the two groups.

Results:

Mixed-effects analyses showed that the more anterior seeds encompassed larger areas of the DMN. Compared to healthy controls, depressed patients had significantly lower connectivity between BA10p and the right insula and between BA25 and the perigenual anterior cingulate cortex. Exploratory analyses showed an association between vmPFC connectivity and emotional intelligence.

Conclusions:

These results suggest that individuals with depression have reduced FC between antero-medial PFC regions and regions involved in emotional regulation compared to control subjects. Moreover, vmPFC functional connectivity appears linked to emotional intelligence.  相似文献   

20.
Ex vivo receptor occupancy measurements were performed in order to study the effects of the serotonin reuptake inhibitors fluoxetine and citalopram on serotonin 5-HT(2C) receptors. To determine the degree of 5-HT(2C) receptor occupancy, [(3)H]mesulergine binding in brain sections containing rat choroid plexus was measured at various time-points after drug injection. For comparison, [(3)H]ketanserin binding to frontal cortex 5-HT(2A) receptors was measured. Fluoxetine treatments (10 and 20 mg/kg) resulted in 5-HT(2C) receptor occupancy of up to 25 and 43%, respectively. Fluoxetine (20 mg/kg) caused a persistent effect: at the 24 h time-point, 23% of 5-HT(2C) receptors were still occupied. Citalopram treatment did not result in marked 5-HT(2C) receptor occupancy. Neither drug caused significant 5-HT(2A) receptor occupancy. In conclusion, the results demonstrate pharmacodynamic differences between fluoxetine and citalopram at the level of 5-HT(2C) receptors. These findings provide evidence that direct occupancy of 5-HT(2C) receptors may contribute to the mechanism of action of fluoxetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号