首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The accumulation of 3-methylindole (3MI) in uncastrated male pigs (boars) is a major cause of boar taint, which negatively affects the quality of meat from the animal. Previously, CYP2E1 and CYP2A have been identified as cytochrome P450 (P450) isoforms involved in the metabolism of 3MI using porcine liver microsomes. This study further examines the role of these isoforms in the metabolism of 3MI using a primary porcine hepatocyte model by examining metabolic profiles of 3MI after incubation with P450 inhibitors. Incubation of hepatocytes with 4-methylpyrazole resulted in a selective inhibition of CYP2E1 activity as determined by p-nitrophenol hydroxylase activity and an associated significant decrease in the production of the 3MI metabolites 3-hydroxy-3-methyloxindole and 3-methyloxindole. Furthermore, inhibition of CYP2A, as assayed by coumarin 7-hydroxylase activity, using 8-methoxypsoralen and diethyldithiocarbamate was not associated with any further significant inhibition of the production of 3MI metabolites. Treatment with general P450 inhibitors resulted in further decreases in CYP2E1 activity and a more dramatic decrease in the production of 3MI metabolites, suggesting that additional P450s may be involved in the phase 1 metabolism of 3-methylindole. In conclusion, CYP2E1 activity levels are more important than CYP2A activity levels for the metabolism of 3-methylindole in isolated pig hepatocytes.  相似文献   

2.
Porcine microsomes are able to hydroxylate chlorzoxazone and p-nitrophenol, the most commonly used human test substrates for CYP2E1. However, in pigs, CYP2E appears not to be the only enzyme involved in the hydroxylation of chlorzoxazone and p-nitrophenol, as the enzyme capacity and immunochemical level of the apoprotein do not correlate. The present study shows that the hydroxylation of chlorzoxazone and p-nitrophenol is inhibited 50-65% by anti-human CYP2A6, suggesting that these substrates are metabolized almost equally well by CYP2A and CYP2E in pigs. To find an alternative probe to porcine CYP2E, bupropion, another human substrate, was examined. Incubation with bupropion concentrations ranging from 0.05 to 20 mM and with various inhibitors revealed that this substrate is metabolized by both CYP2A and CYP2E. At the high substrate concentration (5 mM), however, the CYP2A6 inhibition decreased compared to inhibition percentages found using the low substrate concentration (0.5 mM). The opposite was found for CYP2E, as inhibition studies with antibodies and diethyldithiocarbamate indicate that it catalysed a negligible part of the reaction at the low substrate concentration and up to 84% at the high concentration. Thus, hydroxylation of bupropion follows the same pattern in pigs as in human beings and the activity measured in pigs is comparable with the human counterpart. Furthermore, bupropion is a more specific substrate for CYP2E than chlorzoxazone and p-nitrophenol although not perfect.  相似文献   

3.
Constitutive expression levels of hepatic CYP1A subfamily enzymes, CYP1A1 and CYP1A2, in male and female Meishan pigs were examined at levels of the mRNA, protein, and enzyme activity. In mature (5-month-old) pigs, levels of hepatic CYP1A1 and CYP1A2 mRNAs, as determined by RT-PCR, were much higher in females than in males, but those of castrated male pigs were equivalent to female pigs. The gender-related differences in the levels of CYP1A mRNAs closely correlated with those of the corresponding apoproteins determined by Western blotting. Hepatic enzyme activities not only for the O-dealkylation of ethoxyresorufin and methoxyresorufin (typical substrates for CYP1A1 and CYP1A2, respectively) but also for the mutagenic activation of benzo[a]pyrene and 2-amino-6-methyl-dipyrido[1,2-a; 3',2'-d]imidazole (typical substrates for CYP1A1 and CYP1A2, respectively) were also much greater in female and castrated male pigs than in male pigs. In immature (1-month-old) pigs, no such gender-related differences were observed, and their gene expression levels of the CYP1A subfamily enzymes were almost the same as those of mature female pigs. Furthermore, treatment of immature pigs with testosterone resulted in a drastic decrease in the levels of the CYP1A1 and CYP1A2 mRNAs in both sexes. The present findings demonstrate a gender-related difference in the constitutive expression of hepatic CYP1A subfamily enzymes in Meishan pigs and further indicate that androgen down-regulates the constitutive gene expression of the enzymes.  相似文献   

4.
While almost anesthetics are metabolized by the cytochrome P450 (CYP) 3A4, some major volatile ones such as halothane and sevoflurane are metabolized by CYP2E1 in humans. To determine whether 2,6-diisopropylphenol (propofol), a widely used intravenous anesthetic agent, known to inhibit CYP3A4 and CYP1A2, also inhibits CYP2E1, 6-OH hydroxylation of chlorzoxazone, a prototypical CYP2E1 substrate, was estimated using two pools of human microsomes and one pool of porcine microsomes from seven livers. Basal human enzyme activities were characterized by a V(max) of 1426+/-230 and 288+/-29 pmol min(-1)mg(-1) protein and a K(m) of 122+/-47 and 149+/-42 microM, while the corresponding porcine activities were associated with a V(max) of 352+/-42 pmol min(-1)mg(-1) protein and a K(m) of 167+/-38 microM. A competitive inhibition of CYP2E1 by propofol was observed with low inhibition constants in the therapeutic range in both porcine (19 microM) and human (48 microM) liver microsomes. These in vitro results suggest that propofol could have a protective effect on toxic metabolite activation of compounds catalyzed by CYP2E1.  相似文献   

5.
Organic solvents used for solubilization of the substrates/NCEs are known to affect the activity of cytochrome P450 enzymes. Further, this effect varies with the solvents used, the substrates and CYP450 isoforms in question. In the present study, we have investigated the effect of ten commonly used water miscible organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, acetone, dimethyl sulphoxide, N,N-dimethyl formamide, dioxane and polyethylene glycol 400) on p-nitrophenol hydroxylase activity at 0, 0.1, 0.25, 0.5, 0.75 and 1% v/v concentration in rat liver microsomes. All the solvents studied showed concentration dependent inhibition of the p-nitrophenol hydroxylase activity except acetonitrile which showed activation of the activity at concentration range studied. Out of ten solvents studied, dioxane was found to be the most inhibitory solvent (inhibition >90% at 0.25% v/v concentration). Overall, solvents like dimethyl sulphoxide, dimethyl formamide and dioxane appeared to be unsuitable for characterizing p-nitrophenol hydroxylase (CYP2E1-mediated) reactions due to a high degree of inhibition. On the other hand, methanol and acetonitrile at concentrations <0.5% v/v appeared to be appropriate solvents for substrate solubilization while evaluating CYP2E1-mediated catalysis. The results of this study imply that caution should be exercised while choosing solvents for dissolution of substrate during enzyme studies in liver microsomes.  相似文献   

6.
染料木黄酮在雌雄大鼠肝微粒体中的代谢差异   总被引:1,自引:0,他引:1  
目的研究染料木黄酮在♀、♂大鼠肝微粒体中的代谢差异。方法制备♀、♂大鼠肝微粒体,确定染料木黄酮代谢的酶动力学条件,分别用CYP1A2抗体和选择性CYP1A2抑制剂呋喃茶碱与大鼠肝微粒体和染料木黄酮共同温孵,测定染料木黄酮在♀、♂大鼠肝微粒体中的代谢速率,评价♀、♂大鼠CYP1A2的相对百分比活性。结果在CYP1A2抗体浓度为1∶400,孵育时间为30 m in条件下,♂大鼠肝微粒体代谢染料木黄酮的相对代谢率为(20.95±2.13)%,♀动物为(13.73±1.26)%。在选择性CYP1A2抑制剂呋喃茶碱浓度为3.125μmol.L-1,孵育时间为30 m in条件下,♂动物为(58.02±3.35)%,而♀大鼠肝微粒体代谢染料木黄酮的相对代谢率为(43.82±2.65)%,两者之间差异有显著性(P<0.01)。结论染料木黄酮在♂大鼠肝微粒体中代谢较♀大鼠快,提示♂大鼠肝微粒体CYP1A2酶活性高于♀大鼠。  相似文献   

7.
The role of different cytochrome P450 enzymes on the metabolism of 3-methylindole (3MI) was investigated using selective chemical inhibitors. Eight chemical inhibitors of P450 enzymes were screened for their inhibitory specificity towards 3MI metabolism in porcine microsomes: alpha-naphthoflavone (CYP1A1/2), 8-methoxypsoralen (CYP2A6), menthofuran (CYP2A6), diethyldithiocarbamate (CYP2A6), 4-methylpyrazole (CYP2E1), sulphaphenazole (CYP2C9), quinidine (CYP2D6), and troleandomycin (CYP3A4). The production of 3MI metabolites was only affected by the presence of inhibitors of CYP2A6 and CYP2E1 in the microsomal incubations. In a second experiment, a set of porcine microsomes (n = 30) was analyzed for CYP2A6 content by protein immunoblot analysis and for their coumarin 7-hydroxylation activity (CYP2A6 activity). Both CYP2A6 content and enzymatic activity were found to be highly and negatively correlated with 3MI fat content. The results of the present study indicate that the CYP2A6 porcine ortholog plays an important role in the metabolism of 3MI and that measurement of CYP2A6 levels and/or activity could be a useful marker for 3MI-induced boar taint.  相似文献   

8.
The purpose of this paper is to characterize the cytochrome P450 (CYP) enzymes involved in the metabolism of a new oral erectogenic, mirodenafil, to a major circulating active metabolite, N-dehydroxyethyl-mirodenafil, and to investigate the inhibitory potential of mirodenafil on seven CYP enzymes in human liver microsomes. CYP3A4 was identified as the major enzyme and CYP2C8 as a minor enzyme responsible for mirodenafil N-dealkylation based on correlation analysis, inhibition studies, and cDNA-expressed CYP enzyme activities. Plasma concentrations of mirodenafil and its N-dealkylated metabolite could therefore change with co-administration of known CYP3A4 inducers or inhibitors. Mirodenafil inhibited CYP3A4, CYP2C19 and CYP2D6 activities with IC50 values of 15.6, 38.2 and 77.0 µM, respectively, in human liver microsomes. However, it is very unlikely that mirodenafil will significantly alter the clearance of other compounds metabolized by CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6 and 3A4 because the maximum plasma concentration of mirodenafil is 0.55 µM after oral dosing of mirodenafil (100 mg) in male volunteers.  相似文献   

9.
Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.  相似文献   

10.
Although cytochrome P450 inhibition is the major drug–drug interaction (DDI) mechanism in clinical pharmacotherapy, DDI of a number of well-established drugs have not been investigated. Rifampicin, isoniazid, pyrazinamide and ethambutol combination therapy inhibits clearance of theophylline in patients with tuberculosis. We determined the inhibitory effects of ethambutol on the activities of nine CYP isoforms including CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4 in pooled human liver microsomes (HLM). As measured by liquid chromatography–electrospray ionization tandem mass spectrometry, ethambutol exhibited strong inhibitory potential against CYP1A2 and CYP2E1, moderate against CYP2C19 and CYP2D6 and weak against CYP2A6, CYP2C9 and CYP3A4, based on the IC50 values. The Ki value of ethambutol for CYP1A2 was 1.4 μM and for CYP2E1 was 2.9 μM. Inhibition of CYP1A2 and CYP2E1 was not increased by preincubation with ethambutol and β-nicotinamideadenine dinucleotide phosphate (NADPH), suggesting that the ethambutol-induced CYP inhibition may not be metabolism-dependent. Kinetic analysis showed that the inhibition of CYP1A2 and CYP2E1 by ethambutol was best fit to a competitive inhibition model. Formation of 1-methylxanthene and 1,3-dimethyluric acid from theophylline in HLM was decreased to 47% and 36%, respectively, by 3.0 μM ethambutol, which is comparable to its IC50 value against CYP1A2. Considering its maximal plasma concentrations of ∼10 μM and long half-life of ∼22 h, our findings raise the possibility that ethambutol causes significant DDIs in clinical situations with drugs with narrow therapeutic index, such as theophylline, in clinical situations.  相似文献   

11.
12.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

13.
评估淫羊藿总黄酮对大鼠肝细胞色素P450及其主要亚型活性的潜在影响。淫羊藿总黄酮以300mg/kg/d的剂量对SD大鼠进行连续灌胃处理15天,测定肝微粒体中cYP450含量与CYP1A2、CYP3A4和CYP2E1亚型活性,观察淫羊藿总黄酮的效应。CYP1A2的活性用荧光比色法进行测定,CYP3A4和CYP2E1的活性用紫外可见分光光度法测定。淫羊藿总黄酮处理后的大鼠肝脏CYP450含量及CYP1A2、CYP3A4和CYP2E1亚型活性均明显增高,其中CYP1A2和CYP2E1活性升高显著(P〈0.01)。淫羊藿总黄酮对大鼠肝脏CYP450及主要亚型CYP1A2、CYP3A4和CYP2E1活性均有诱导效应。  相似文献   

14.
AIMS: To evaluate the potency and specificity of valproic acid as an inhibitor of the activity of different human CYP isoforms in liver microsomes. METHODS: Using pooled human liver microsomes, the effects of valproic acid on seven CYP isoform specific marker reactions were measured: phenacetin O-deethylase (CYP1A2), coumarin 7-hydroxylase (CYP2A6), tolbutamide hydroxylase (CYP2C9), S-mephenytoin 4'-hydroxylase (CYP2C19), dextromethorphan O-demethylase (CYP2D6), chlorzoxazone 6-hydroxylase (CYP2E1) and midazolam 1'-hydroxylase (CYP3A4). RESULTS: Valproic acid competitively inhibited CYP2C9 activity with a Ki value of 600 microM. In addition, valproic acid slightly inhibited CYP2C19 activity (Ki = 8553 microM, mixed inhibition) and CYP3A4 activity (Ki = 7975 microM, competitive inhibition). The inhibition of CYP2A6 activity by valproic acid was time-, concentration- and NADPH-dependent (KI = 9150 microM, Kinact=0.048 min(-1)), consistent with mechanism-based inhibition of CYP2A6. However, minimal inhibition of CYP1A2, CYP2D6 and CYP2E1 activities was observed. CONCLUSIONS: Valproic acid inhibits the activity of CYP2C9 at clinically relevant concentrations in human liver microsomes. Inhibition of CYP2C9 can explain some of the effects of valproic acid on the pharmacokinetics of other drugs, such as phenytoin. Co-administration of high doses of valproic acid with drugs that are primarily metabolized by CYP2C9 may result in significant drug interactions.  相似文献   

15.
Abstract: It is essential to establish the activity and regulation of the cytochrome P450 system of species selected for toxicological and pharmacological studies. The minipig has become a popular substitute for the traditional non-rodent species although little information is available on its P450 system. The total P450 and the enzyme activity of the most important drug-metabolizing isoenzymes: CYP1A2, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 were measured in liver microsomes from 4 minipigs and 8 conventional pigs of both sexes. Immunochemical levels were determined for 4 of the isoenzymes. The total P450 activity was slightly higher in minipigs compared to conventional pigs but no sex difference was detected. CYP1A2 activity (7-ethoxyresorufin) was 4 times higher in female minipigs than in male minipigs. The activity in male minipigs was almost identical to the activity in conventional pigs. The activity of CYP2E1 (chlorzoxazone) was 4 times higher in female than in male minipigs and 2 times higher in female than in male conventional pigs. No activity of CYP2D6 (debrisoquine) and CYP2C19 (mephenytoin) could be detected. The CYP3A4 activity (testosterone) detected in minipigs was higher than the activity in conventional pigs. A weak sex difference was seen in both strains. Western blotting using anti-human CYP2E1 and CYP3A4 confirmed the results obtained in the enzyme activity assays, while only CYP1A2 correlated with the activity in the conventional strain. The total P450 enzyme activity was close to the levels reported for human beings, as were the activities of CYP2E1 and CYP3A4.  相似文献   

16.
目的:研究刺五加注射液在大鼠体外肝微粒体中对CYP2C9、CYP2D6、CYP2E1和CYP3A4活性的影响,为临床合理联合用药提供参考。方法:在大鼠体外肝微粒体中分别加入四种亚型酶的探针药物甲苯磺丁脲(TB)、右美沙芬(DM)、氯唑沙宗(CLZ)、睾酮(TS)和低、中、高剂量的刺五加注射液,温孵后用HPLC法测定各空白对照组和不同剂量刺五加注射液给药组中各探针药物代谢产物的浓度并比较代谢率的差异,以评价刺五加注射液对各亚型酶活性的影响;中剂量组活性显著降低的亚型酶进一步考察抑制作用的强弱(即IC50和Ki值)。结果:与空白对照组比较,刺五加注射液低、中、高剂量给药组对CYP3A4活性的影响均有统计学意义(P<0.01),抑制率分别为10.22%、19.00%、30.29%,其IC50和Ki值分别为3.96%和2.74%(V/V);低、中、高剂量给药组对CYP2D6活性的影响均无统计学差异(P>0.05);低剂量给药组对CYP2C9、CYP2E1活性的影响无统计学差异(P>0.05),中、高剂量给药组对两个亚型的抑制作用有统计学差异(P<0.05),但中剂量给药组抑制率均小于8.50%,高剂量给药组抑制率均小于12.00%。结论:刺五加注射液对大鼠体外肝微粒体CYP3A4有抑制作用,且符合混合型抑制模型;对CYP2C9、CYP2E1抑制作用较弱;对CYP2D6活性无影响。  相似文献   

17.
18.
目的 探讨大黄素对大鼠肝脏细胞色素P450酶(CYP450)及其主要亚型的影响。方法 20只雄性SD大鼠, 随机分成4组, 每组5只, 分别为溶剂对照组, 170、500和1 500 mg/kg大黄素染毒组, 大黄素蒸馏水混悬后连续经口给药16 d, 结束后次日取大鼠肝脏组织制作微粒体, 分别采用CO还原差示光谱法、分光光度法及化学发光法检测大鼠肝脏微粒体总CYP450水平, 红霉素脱甲基酶(CYP3A)、氨基比啉-N-脱甲基酶, CYP1A、CYP2B和CYP2E1酶活性变化。结果 大黄素连续经口给药16 d, 能够引起大鼠肝脏微粒体总CYP450显著升高、可轻度诱导CYP3A、CYP1A、CYP2E1和CYP2B酶, 500 mg/kg剂量组最明显。结论 大黄素对大鼠肝脏中CYP3A、CYP1A、CYP2B和CYP2E1酶均有诱导作用。  相似文献   

19.
Abstract

1. Catalpol possesses numerous pharmacological activities, and however, little data available for the effects of catalpol on the activity of human liver cytochrome P450 (CYP) enzymes.

2. This study investigates the inhibitory effects of catalpol on the main human liver CYP isoforms. In this study, the inhibitory effects of catalpol on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8 and 3A4 were investigated in human liver microsomes.

3. The results indicated that catalpol could inhibit the activity of CYP3A4, CYP2E1 and CYP2C9, with IC50 values of 14.27, 22.4 and 14.69?μM, respectively, but those other CYP isoforms were not affected. Enzyme kinetic studies showed that catalpol was not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1 and CYP2C9, with Ki values of 7.40, 10.75 and 7.37?μM, respectively. In addition, catalpol is a time-dependent inhibitor for CYP3A4, with maximum inactivation (kinact) and 50% maximum inactivation (KI) values of 0.02?min?1 and 1.86?μM, respectively.

4. The in vitro studies of catalpol with CYP isoforms suggest that catalpol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2C9. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

20.
1. The type of human P450 enzymes involved in the in vitro metabolism of Org 4060 and Org 30659, two synthetic steroidal hormones currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was investigated. 2. Both steroids were mainly hydroxylated at the 6 β -position in incubations with human liver microsomes. 3. The results from experiments with supersomes, correlation studies as well as inhibition studies with ketoconazole, a selective inhibitor of CYP3A, strongly suggest that the CYP3A family plays a significant role in the 6 β -hydroxylation of both steroids. 4. Measurements of kinetic parameters of P450 enzymes that could metabolize both steroids, combined with the fact that CYP3A4 is known to be the most abundant P450 enzyme in the human liver, indicate that CYP3A4 will be of major importance for the in vivo human metabolism of Org 4060 and Org 30659.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号