首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A scorpion alpha-toxin-sensitive background sodium channel was characterized in short-term cultured adult cockroach dorsal unpaired median (DUM) neurons using the cell-attached patch-clamp configuration. Under control conditions, spontaneous sodium currents were recorded at different steady-state holding potentials, including the range of normal resting membrane potential. At -50 mV, the sodium current was observed as unclustered, single openings. For potentials more negative than -70 mV, investigated patches contained large unitary current steps appearing generally in bursts. These background channels were blocked by tetrodotoxin (TTX, 100 nm), and replacing sodium with TMA-Cl led to a complete loss of channel activity. The current-voltage relationship has a slope conductance of 36 pS. At -50 mV, the mean open time constant was 0.22 +/- 0.05 ms (n = 5). The curve of the open probability versus holding potentials was bell-shaped, with its maximum (0.008 +/- 0.004; n = 5) at -50 mV. LqhalphaIT (10-8 m) altered the background channel activity in a time-dependent manner. At -50 mV, the channel activity appeared in bursts. The linear current-voltage relationship of the LqhalphaIT-modified sodium current determined for the first three well-resolved open states gave three conductance levels: 34, 69 and 104 pS, and reversed at the same extrapolated reversal potential (+52 mV). LqhalphaIT increased the open probability but did not affect either the bell-shaped voltage dependence or the open time constant. Mammal toxin AaHII induced very similar effects on background sodium channels but at a concentration 100 x higher than LqhalphaIT. At 10-7 m, LqhalphaIT produced longer silence periods interrupted by bursts of increased channel activity. Whole-cell experiments suggested that background sodium channels can provide the depolarizing drive for DUM neurons essential to maintain beating pacemaker activity, and revealed that 10-7 m LqhalphaIT transformed a beating pacemaker activity into a rhythmic bursting.  相似文献   

2.
The effects of 4 different pyrethroid insecticides on sodium channel gating in internally perfused, cultured mouse neuroblastoma cells (N1E-115) were studied using the suction pipette, voltage clamp technique. Pyrethroids increased the amplitude of the sodium current, sometimes by more than 200%. Activation of the sodium current occurred at more hyperpolarized potentials than under control conditions. The declining phase of the sodium current during depolarization was markedly slowed down and after repolarization of the membrane a large, slowly decaying sodium tail current developed. Pyrethroids did not affect the sodium current reversal potential, steady-state sodium inactivation or recovery from sodium channel inactivation. The amplitude of the pyrethroid-induced slow tail current was always proportional to the sodium current at the end of the preceding depolarizing pulse. The rate of decay of the slow tail current strongly depended on pyrethroid structure and increased in the order deltamethrin, cyphenothrin, fenfluthrin and phenothrin. The rate of decay further depended on membrane potential and temperature. Below -85 m V the instantaneous current-voltage relationship of the slow tail current showed a negative slope conductance. The tail current decayed more slowly at low temperatures. Arrhenius plots indicated that the relaxation of open sodium channels to a closed state involved a higher energy barrier for pyrethroid-affected than for normal channels. The energy barrier was higher after deltamethrin than after the non-cyano pyrethroid fenfluthrin. It is concluded that in mammalian neuronal membrane pyrethroids selectively reduce the rate of closing of sodium channels both during depolarization and after repolarization of the nerve membrane.  相似文献   

3.
Kinetics of pyrethroid-modified sodium channels and the interaction of N-octylguanidine with the modified channels have been studied with internally perfused and voltage-clamped squid giant axons. The pyrethroids used were 1R-cis-phenothrin; 1R-cis-permethrin; 1R-cis-cyphenothrin; and 1R-cis-deltamethrin. Modification of sodium channels by pyrethroids resulted in marked slowing of opening and closing kinetics. The rate at which sodium channels arrived at the open pyrethroid-modified state during a depolarizing step was independent of the concentration of pyrethroids applied. The time of exposure to pyrethroids required for the pyrethroid-induced sodium tail current following a step depolarization to reach a steady-state amplitude was independent of the frequency of short (5 ms) depolarizing pulses, and in the pronase-treated axons was independent of the membrane potential (0 mV or -90 mV). We conclude that sodium channels are modified by pyrethroids primarily in the closed resting state. A small fraction of sodium channels is modified in the open state. The dose-response curve for N-octylguanidine block of sodium channels was not shifted by pyrethroids. The rate at which the pyrethroid-modified sodium channels were blocked by octylguanidine during a depolarizing step depended neither on the concentration of pyrethroids nor on the depolarizing potential, but depended on the concentration of octylguanidine. The time course of the pyrethroid-induced slow sodium tail current was not altered by octylguanidine. We conclude that the actions of pyrethroids and N-octylguanidine on sodium channels are independent of each other.  相似文献   

4.
Currents through batrachotoxin (BTX)-modified sodium channels in frog myelinated nerve were measured under voltage-clamp conditions. Nonlinearity of "instantaneous" current-voltage relations was taken into account when determining steady-state parameters of channel activation. BTX induces the shift of voltage dependence of channel activation towards more negative potentials by 67 mV, without changes in its steepness. Current kinetics and effect of preceding depolarization on current size suggest that BTX-modified channels are capable for partial inactivation. High level of steady-state conductance of BTX-modified channels can be explained by suggestion that open state of the channel is energetically more profitable than inactivated one. It is concluded that effect of BTX on inactivation is different in principle from that of pronase and protein reagents.  相似文献   

5.
We have used single-channel recording techniques to investigate the properties of sodium-activated potassium channels (KNa channels) in cultured rat olfactory bulb neurons, and in large neurons in the mitral cell layer of thin slices of olfactory bulb. Ion channels highly selective for potassium over sodium and chloride, and requiring 10-180 mM internal sodium (Nai) for their activation, were present in approximately 75% of inside-out membrane patches detached from cultured olfactory bulb neurons. Most of these patches contained several KNa channels. KNa channels were seen in cell-attached patches only when Nai was raised by including veratridine in the extracellular medium. Preincubation of the cell in TTX or removal of extracellular sodium prevented this effect of veratridine, confirming that the channels observed under these conditions were indeed KNa channels. Lithium did not substitute for Nai in activating these channels. With 150 mM potassium on both sides of the membrane, KNa channels had a single-channel conductance of 172 pS, and at least two subconducting states were observed in addition to this fully open state. Under these ionic conditions, the channels exhibited linear fully open channel current-voltage curves over the potential range of -100 to 0 mV. At voltages more positive than the potassium equilibrium potential, the single-channel currents exhibited inward rectification as a result of sodium block of outward potassium current. The channels opened in bursts, during which they fluctuated between the fully open and closed states, and the substates. Between bursts they sometimes entered a long-lived inactive state that could last for up to several minutes. In addition, KNa channels in the detached patches exhibited rundown, a progressive irreversible loss in activity, over a time course that varied from less than 1 min to longer than 1 hr. Rundown of KNa channel activity in cell-attached patches (in the presence of veratridine) did not occur, suggesting that some intracellular factor necessary for KNa channel activity is lost when the membrane patch is detached from the cell.  相似文献   

6.
Depolarization of nerve membranes is an important component of the mode of action of pyrethroids, and its negative temperature dependence parallels that of insecticidal activity. We studied the mechanism and temperature dependence of depolarization of crayfish giant axons by pyrethroids, using intracellular microelectrode and voltage clamp techniques. Membrane depolarization caused by tetramethrin and fenvalerate was greater at 10 degrees C than at 21 degrees C, and was reversible upon changing the temperature. Short-duration depolarizing pulses in voltage-clamped fenvalerate-treated axons induced prolonged sodium currents that are typical of other pyrethroids, but the decay of the tail current following repolarization was extremely slow, lasting several minutes at the large negative holding potential of -120 mV. At the normal resting potential, the tail current did not decay completely, and even without stimulation, a steady-state sodium current developed, which could account for the depolarization. The steady-state current induced by fenvalerate at the resting potential was much larger at 8 degrees C than at 21 degrees C, accounting for the negative temperature dependence of the depolarization. The negative temperature dependence of the steady-state current seems to be due ultimately to the great stabilizing effect of low temperature on the open-modified channel. When the steady-state current was induced at the resting potential, hyperpolarization to more negative potentials caused it to decay with exactly the same time course as tail currents induced by short-duration depolarizing pulses, indicating that both types of currents are carried by identically-modified channels. The modified channels were shown to be inactivated very slowly at potentials more positive than - 100 mV, accounting for the limited depolarization observed in micro-electrode experiments. Even when applied directly to the internal face of the membrane, the effect of fenvalerate on the sodium channel developed slowly, taking more than 90 min to reach its final level. Fenvalerate did not significantly affect potassium currents.  相似文献   

7.
The properties of rat and rabbit brain sodium (Na) channels expressed in Xenopus oocytes following either unfractionated or high-molecular-weight mRNA injections were compared to assess the relative contribution of different size messages to channel function. RNA was size-fractionated on a sucrose gradient and a high-molecular-weight fraction (7-10 kilobase) encoding the alpha-subunit gave rise to functional voltage-dependent Na channels in the oocyte membrane. Single-channel conductance, mean open time, and time to first opening were all similar to the values for channels following injection of unfractionated RNA. In contrast, inactivation properties were markedly different; Na currents from high-molecular-weight RNA inactivated with a several-fold smaller macroscopic inactivation rate and showed a steady-state voltage dependence that was shifted in the depolarizing direction by at least 10 mV relative to that for unfractionated RNA. Single-channel recording revealed that the kinetic difference arose from a greater probability for high-molecular-weight RNA induced channels to reopen during a depolarizing voltage step. Pooling all gradient fractions and injecting this RNA into oocytes led to the appearance of Na channels with inactivation properties indistinguishable from those following injection of unfractionated RNA. These results suggest that mRNA species not present in the high-molecular-weight fraction can influence the inactivation process of rat brain Na channels expressed in Xenopus oocytes. This mRNA may encode beta-subunits or other proteins that are involved in posttranslational processing of voltage-dependent Na channels.  相似文献   

8.
We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation. Tetramethrin and permethrin both bind to the closed state of the channel as suggested by the presence of an obvious tail current after the first single depolarization applied in the presence of either compounds. Moreover, at first sight, channel opening seems to promote tetramethrin and permethrin binding as evidenced by the progressive tail current summation along with trains of stimulations, tetramethrin being more potent at modifying channels than permethrin. However, a use-dependent increase in the sodium peak current along with stimulations suggests that the tail current accumulation could also be a consequence of progressively unmasked silent channels. Experiments with the sea anemone toxin ATX-II that suppresses sodium channels fast inactivation are consistent with the hypothesis that these silent channels are either in an inactivated state at rest, or that they normally inactivate before they open so that they do not participate to the control sodium current. In honeybee ORNs, three processes lead to a use-dependent pyrethroid-induced tail current accumulation: (i) a recruitment of silent channels that produces an increase in the peak sodium current, (ii) a slowing down of the sodium current inactivation produced by prolongation of channels opening and (iii) a typical deceleration in current deactivation. The use-dependent recruitment of silent sodium channels in honeybee ORNs makes pyrethroids more potent at modifying neuronal excitability.  相似文献   

9.
Expression of "fast", TTX-sensitive sodium and high-threshold calcium channels in the membrane of Xenopus oocytes following mRNA injection from the rat brain has been detected using two microelectrode voltage clamp technique. Barium current through expressed calcium channels was blocked by 200 mumol/l Cd2+ and was insensitive to D-600 (20 mumol/l) and nitrendipine (50 mumol/l). Expressed barium current was inhibited within 20-40 min by omega-conotoxin, a peptide neurotoxin known to block high-threshold calcium channels of the neuronal membrane, in 1 mumol/l concentration. A steady-state inactivation curve for this current could be fitted by the Boltzmann relation with V1/2 = -50 mV and k = 14 mV. Voltage-dependent and pharmacological properties of calcium channels which appeared in the oocyte membrane following mRNA injection from the mammalian brain resembled most of all those of high-threshold inactivating (HTI- or N-type) calcium channels of neurons in spite they did not demonstrate prominent time-dependent inactivation. Evidences in favour of expressed calcium channels heterogeneity were not obtained.  相似文献   

10.
Interweaving strategies of electrophysiology, calcium imaging and immunocytochemistry bring new insights into the mode of action of the Brazilian scorpion Tityus serrulatusbeta-toxin VII. Pacemaker dorsal unpaired median neurons isolated from the cockroach central nervous system were used to study the effects of toxin VII. In current-clamp, 50 nm toxin VII produced a membrane depolarization and reduced spiking. At 200 nM, depolarization associated with multiphasic effects was seen. After artificial hyperpolarization, plateau potentials on which spontaneous electrical activity appeared were observed. In voltage clamp, toxin VII induced a negative shift of the voltage dependence of sodium current activation without significant effect on steady-state inactivation. In addition, toxin VII produced a permanent TTX-sensitive holding inward current, indicating that background sodium channels were targeted by beta-toxin. Cell-attached patch recordings indicated that these channels were switched from unclustered single openings to current fluctuating between distinct subconductance levels exhibiting increased open probability and open-time distribution. Toxin VII also produced a TTX-sensitive [Ca2+]i rise. Immunostaining with Cav2.2(alpha1b) antibodies and calcium imaging data obtained with omega-CgTx GVIA indicated that N-type high-voltage-activated calcium channels initiated calcium influx and were an essential intermediate in the pathway linking toxin VII-modified sodium channels to the activation of an additional route for calcium entry. By using inhibitors of (i) noncapacitative calcium entry (inhibitor LOE-908), (ii) NO-sensitive guanylyl cyclase (ODQ) and (iii) phosphodiesterase 2 (EHNA), together with cGMP antibodies, we demonstrated that noncapacitative calcium entry was the final step in a complex combination of events that was initiated by toxin VII-alteration of sodium channels and then involved successive activation of other membrane ion channels.  相似文献   

11.
Riluzole is a neuroprotective drug that modulates glutamergic transmission but also blocks the inactivated state of voltage-gated neuronal sodium channels at very low concentrations (about 0.1 microM). After nausea, the most common adverse effect of riluzole is asthenia, which could be due to a block of muscle sodium channels or acetylcholine receptor channels. Using the patch-clamp technique, we applied riluzole on recombinant voltage-gated skeletal muscle sodium and adult nicotinic acetylcholine receptor channels expressed in a mammalian cell line (HEK 293). Riluzole blocked the inactivated state of voltage-gated skeletal muscle sodium channels, shifting the midpoint of the steady-state inactivation curve to more negative potentials, but only in comparatively high concentrations (> or = 0.1 mM). At these concentrations, riluzole also caused an open-channel block at acetylcholine receptor channels. We conclude that riluzole has only a mild blocking effect on the inactivated state of voltage-gated skeletal muscle sodium channels and nicotinic acetylcholine receptor channels. As the plasma concentration of riluzole in amyotrophic lateral sclerosis (ALS) patients approximates 2 microM, it seems unlikely that asthenia is caused by a block of skeletal muscle sodium channels or acetylcholine receptor channels by riluzole.  相似文献   

12.
The interaction of pyrethroids with the voltage-dependent sodium channel was studied in voltage-clamped nodes of Ranvier and isolated spinal ganglion neurons of the clawed frog, Xenopus laevis. In the node, pyrethroids prolonged the sodium tail current associated with a step repolarization of the membrane. It was found that the amplitude of the slow, pyrethroid-induced, sodium tail current (PIT) first increased and then decreased as a function of the duration of membrane depolarization (to -5 mV). This decrease of the PIT amplitude was absent when depolarizations to the sodium equilibrium potential (+40 mV) were used. Measurements of changes in sodium reversal potential indicated that sodium ion depletion in the perinodal space is largely responsible for the inactivation of the pyrethroid-modified sodium current. Inactivation is not completely abolished by pyrethroid treatment since the probability of channel opening, measured in membrane patches excised from spinal ganglion cells, decreased slowly during prolonged depolarization. Analysis of unitary currents indicated that both activation and inactivation are retarded by pyrethroids. The arrival of sodium channels in the pyrethroid-modified open state followed a time course that was slower than both activation and inactivation of unmodified sodium channels. Our findings indicate that sodium channels are modified when in the closed resting state and that both opening and closing kinetics are delayed by pyrethroids.  相似文献   

13.
Song J  Jang YY  Shin YK  Lee C  Chung S 《Brain research》2000,855(2):267-273
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of -80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below -10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance-voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.  相似文献   

14.
The effects of the dihydropyrazole insecticide RH-3421 on the retrodotoxin-resistant (TTX-R) voltage-gated sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole-cell patch clamp technique. RH-3421 at 10 nM to 1 microM completely blocked action potentials. The sodium currents were irreversibly suppressed by 1 microM RH-3421 in a time- and a dose-dependent manner and the IC50 value of RH-3421 was estimated to be 0.7 microM after 10 min of application. RH-3421 blocked the sodium currents to the same extent over the entire range of test potentials. The sodium conductance-voltage curve was not shifted along the voltage axis by 1 microM RH-3421 application In contrast, both fast and slow steady-state sodium channel inactivation curves were shifted in the hyperpolarizing direction in the presence of 1 microM RH-3421. It was concluded that RH-3421 bound to the resting and inactivated sodium channels to cause block with a higher affinity for the latter state.  相似文献   

15.
Sodium currents were recorded in CA1 hippocampal cells from new-born (P(4-10)) and older (P(>22)) rats, using whole-cell voltage clamp techniques. The effects of local anaesthetics (procaine and lidocaine) were studied in both cell populations. Parameters defining steady-state inactivation, removal of inactivation and the affinity of the anaesthetic molecules to the inactivated state were determined at both stages of maturation. Procaine and lidocaine induced a hyperpolarizing shift in steady-state inactivation curves, and slowed the rate of recovery from the inactivated state. Procaine disclosed differences between immature and older cells in what concerns block of the closed (resting) channels, drug affinity and binding to the inactivated state, i.e. the binding rate of procaine was found higher and the affinity lower in younger cells. The characteristics of procaine and lidocaine block on CA1 sodium currents differed in some particular aspects: magnitude of block on resting channels, shift in the voltage dependence and voltage sensitivity of steady-state inactivation, slow recovery from inactivation and use-dependent block.  相似文献   

16.
The effect of external pH on the amplitude of currents through single sodium channels in cultured mouse neuroblastoma cells C 1300, clone N18A-1 was studied. Currents through single sodium channels in outside-out membrane patches were measured at normal (7.2) and low (5.4) pH of the external solution. With a decrease of the external pH to 5.4, about two-fold reversible reduction of the amplitude of single sodium channel currents (at testing potentials of -10-30 mV) was observed. The data obtained confirm the suggestion that the inhibition of macroscopic sodium currents with lowering of pH of the extracellular solution is due to the decrease in the ionic current flowing through single open channels.  相似文献   

17.
Insecticidal pyrazolines inhibit voltage-sensitive sodium channels of both insect and mammalian neurons in a voltage-dependent manner. Studies on the effects of pyrazoline insecticides on mammalian sodium channels have been limited to experimentation on the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channel populations of rat dorsal root ganglion (DRG) neurons. In this study, we examined the effects of the insecticidal pyrazolines indoxacarb, the N-decarbomethoxyllated metabolite of indoxacarb (DCJW), and RH 3421 on rat Na(v)1.4 sodium channels expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique. Both DCJW and RH 3421 were ineffective inhibitors of rat Na(v)1.4 sodium channels at a membrane potential of -120 mV, but depolarization to -60 mV or -30 mV during insecticide exposure resulted in substantial block. Inhibition by pyrazoline insecticides was nearly irreversible with washout, but repolarization of the membrane relieved block. DCJW and RH 3421 also caused hyperpolarizing shifts in the voltage dependence of slow inactivation without affecting the voltage dependence of activation or fast inactivation. These results suggest that DCJW and RH 3421 interact specifically with the slow inactivated state of the sodium channel. Indoxacarb did not cause block at any potential, yet it interfered with the ability of DCJW, but not RH 3421, to inhibit sodium current. Phenytoin, an anticonvulsant, reduced the efficacy of both DCJW and RH 3421. These data imply that the binding site for pyrazoline insecticides overlaps with that for therapeutic sodium channel blockers.  相似文献   

18.
Ionic currents through batrachotoxin-modified sodium channels in frog nerve fibres were measured over a wide range of membrane potentials. At potentials above +80 mV currents decay in time and their steady-state level decreased as potentials increased. "Instantaneous" current measurements have shown that this phenomenon was due to the decrease in net channel conductance. Scorpion toxin affected current kinetics only slightly at these potentials, which suggested that these decays were not caused by usual inactivation process. Externally applied procaine induced slow (tens of ms) potential-dependent block of batrachotoxin-modified channels at large positive potentials. At large negative potentials (above -100 mV) "instantaneus" currents decreased due to fast voltage-dependent block of the channels by calcium ions.  相似文献   

19.
Indoxacarb is a newly developed insecticide with high insecticidal activity and low toxicity to non-target organisms. Its metabolite, DCJW, is known to block compound action potentials in insect nerves and to inhibit sodium currents in cultured insect neurons. However, little is known about the effects of these compounds on the sodium channels of mammalian neurons. We compared the effects of indoxacarb and DCJW on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons by using the whole-cell patch clamp technique. Indoxacarb and DCJW at 1-10 microM slowly and irreversibly blocked both TTX-S and TTX-R sodium channels in a voltage-dependent manner. The sodium channel activation kinetics were not significantly modified by 1 microM indoxacarb or 1 microM DCJW. The steady-state fast and slow inactivation curves were shifted in the hyperpolarization direction by 1 microM indoxacarb or 1 microM DCJW indicating a higher affinity of the inactivated sodium channels for these insecticides. These shifts resulted in an enhanced block at more depolarized potentials, thus explaining voltage-dependent block, and an apparent difference in the sensitivity of TTX-R and TTX-S channels to indoxacarb and DCJW near the resting potential. Indoxacarb and its metabolite DCJW cause toxicity through their action on the sodium channels.  相似文献   

20.
The effects of quinidine on sodium (INa) and potassium (IK) currents in the Ranvier node of frog myelinated nerve fibre was studied by means of voltage clamp technique. When applied externally quinidine (5.10(-5) M) suppresses both INa and IK. Inhibition of INa can be greatly increased by repetitive membrane depolarization. After the end of stimulation the INa value recovers slowly up to the initial level (time constant being about 30 s at 12 degrees C). Unlike repetitive stimulation a single depolarizing pulse of long (1s) duration does not enhance appreciably the quinidine block, which permits a conclusion that quinidine interacts preferently with open sodium channels. Batrachotoxin protects the channels from the blocking action of 5.10(-5) M quinidine. The outward IK is blocked by quinidine in time- and voltage-dependent manner suggesting the interaction of the drug with open potassium channels. The results are consistent with the notion that tertiary amine quinidine, like amine local anesthetics penetrates through the membrane in the neutral form and blocks open sodium and potassium channels from inside in charged (protonated) form. Quinidine and local anesthetics are supposed to share a common receptor in the inner mouth of the sodium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号