首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in the phenotype and function of microglia, the resident mononuclear phagocytes of the central nervous system, are among the earliest indications of pathology within the brain and spinal cord. The prion diseases, also known as spongiform encephalopathies, are fatal neurodegenerative disorders with sporadic, genetic or acquired infectious manifestations. A hallmark of all prion diseases is the aberrant metabolism and resulting accumulation of the prion protein. Conversion of the normal cellular protein [PrPc] into the abnormal pathogenic (or disease-causing) isoform [PrPSc] involves a conformational alteration whereby the α-helical content is transformed into β-sheet. The histological characteristics of these disorders are spongiform change, astrocytosis, neuronal loss and progressive accumulation of the protease-resistant prion isoform. An additional upregulation in microglial response has been reported in Kuru, Creutzfeldt–Jakob disease (CJD), Gerstmann–Sträussler–Scheinker syndrome (GSS), scrapie, in transgenic murine models and in culture, where microglial activation often accompanies prion protein deposition and neuronal loss. This article will review the roles of microglia in spongiform encephalopathies.  相似文献   

2.
3.
4.
A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrPC) into a misfolded isoform (PrPSc) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrPSc from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrPSc in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrPSc spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.  相似文献   

5.
Prion disease is a neurodegenerative malady, which is believed to be transmitted via a prion protein in its abnormal conformation (PrPSc). Previous studies have failed to demonstrate that prion disease could be induced in wild-type animals using recombinant prion protein (rPrP) produced in Escherichia coli. Here, we report that prion infectivity was generated in Syrian hamsters after inoculating full-length rPrP that had been converted into the cross-β-sheet amyloid form and subjected to annealing. Serial transmission gave rise to a disease phenotype with highly unique clinical and neuropathological features. Among them were the deposition of large PrPSc plaques in subpial and subependymal areas in brain and spinal cord, very minor lesioning of the hippocampus and cerebellum, and a very slow progression of disease after onset of clinical signs despite the accumulation of large amounts of PrPSc in the brain. The length of the clinical duration is more typical of human and large animal prion diseases, than those of rodents. Our studies establish that transmissible prion disease can be induced in wild-type animals by inoculation of rPrP and introduce a valuable new model of prion diseases.  相似文献   

6.
αB-crystallin is a member of the small heat shock protein family constitutively presenting in brains at a relatively low level. To address the alteration of αB-crystallin in prion disease, the αB-crystallin levels in the brains of scrapie agent 263 K-infected hamsters were analyzed. The levels of αB-crystallin were remarkably increased in the brains of 263 K-infected hamsters, showing a time-dependent manner along with incubation time. Immunohistochemical (IHC) and immunofluorescent (IFA) assays illustrated more αB-crystallin-positive signals in the regions of the cortex and thalamus containing severe astrogliosis. Double-stained IFA verified that the αB-crystallin signals colocalized with the enlarged glial fibrillary acidic protein-positive astrocytes, but not with neuronal nuclei-positive cells. IHC and IFA of the serial brain sections of infected hamsters showed no colocalization and correlation between PrPSc deposits and αB-crystallin increase. Moreover, increased αB-crystallin deposits were observed in the brain sections of parietal lobe of a sporadic Creutzfeldt–Jakob disease (sCJD) case, parietal lobe and thalamus of a G114V genetic CJD case, and thalamus of a fatal family insomnia (FFI) case, but not in a parietal lobe of FFI where only very mild astrogliosis was addressed. Additionally, the molecular interaction between αB-crystallin and PrP was only observed in the reactions of recombinant proteins purified from Escherichia coli, but not either in that of brain homogenates or in that of the cultured cell lysates expressing human PrP and αB-crystallin. Our data indicate that brain αB-crystallin is abnormally upregulated in various prion diseases, which is coincidental with astrogliosis. Direct interaction between αB-crystallin and PrP seems not to be essential during the pathogenesis of prion infection.  相似文献   

7.
Inflammation during pregnancy can disturb brain development and lead to disorders in the progeny, including autism spectrum disorder and schizophrenia. However, the mechanism by which a prenatal, short-lived increase of cytokines results in adverse neurodevelopmental outcomes remains largely unknown. Microglia—the brain’s resident immune-cells—stand as fundamental cellular mediators, being highly sensitive and responsive to immune signals, which also play key roles during normal development.The fractalkine signaling axis is a neuron-microglia communication mechanism used to regulate neurogenesis and network formation. Previously, we showed hippocampal reduction of fractalkine receptor (Cx3cr1) mRNA at postnatal day (P) 15 in male offspring exposed to maternal immune activation induced with lipopolysaccharide (LPS) during late gestation, which was concomitant to an increased dendritic spine density in the dentate gyrus, a neurogenic niche. The current study sought to evaluate the origin and impact of this reduced hippocampal Cx3cr1 mRNA expression on microglia and cognition. We found that microglial total cell number and density are not affected in the dorsal hippocampus and dentate gyrus, respectively, but that the microglial CX3CR1 protein is decreased in the hippocampus of LPS-male offspring at P15. Further characterization of microglial morphology in the dentate gyrus identified a more ameboid phenotype in LPS-exposed offspring, predominantly in males, at P15. We thus explored maternal plasma and fetal brain cytokines to understand the mechanism behind microglial priming, showing a robust immune activation in the mother at 2 and 4 hrs after LPS administration, while only IL-10 tended towards upregulation at 2 hrs after LPS in fetal brains. To evaluate the functional long-term consequences, we assessed learning and cognitive flexibility behavior during late adolescence, finding that LPS affects only the latter with a male predominance on perseveration. A CX3CR1 gene variant in humans that results in disrupted fractalkine signaling has been recently associated with an increased risk for neurodevelopmental disorders. We show that an acute immune insult during late gestation can alter fractalkine signaling by reducing the microglial CX3CR1 protein expression, highlighting neuron-microglial fractalkine signaling as a relevant target underlying the outcomes of environmental risk factors on neurodevelopmental disorders.  相似文献   

8.
Prion diseases are fatal neurodegenerative disorders characterized by long incubation periods. To investigate whether concurrent diseases can modify the clinical outcome of prion‐affected subjects, we tested the effect of viral infection on the binding and internalization of PrPSc, essential steps of prion propagation. To this effect, we added scrapie brain homogenate or purified PrPSc to fibroblasts previously infected with minute virus of mice (MVM), a mouse parvovirus. We show here that the rate of incorporation of PrPSc into MVM‐infected cells was significantly higher than that observed for naïve cells. Immunostaining of cells and immunoblotting of subcellular fractions using antibodies recognizing PrP and LysoTracker, a lysosomal marker, revealed that in both control and MVM‐infected cells the incorporated PrPSc was associated mostly with lysosomes. Interestingly, floatation gradient analysis revealed that the majority of the PrPSc internalized into MVM‐infected cells shifted toward raft‐containing low‐density fractions. Concomitantly, the MVM‐infected cells demonstrated increased levels of the glycosphingolipid GM1 (an essential raft lipid component) throughout the gradient and a shift in caveolin 1 (a raft protein marker) toward lighter membrane fractions compared with noninfected cells. Our results suggest that the effect of viral infection on membrane lipid composition may promote the incorporation of exogenous PrPSc into rafts. Importantly, membrane rafts are believed to be the conversion site of PrPC to PrPSc; therefore, the association of exogenous PrPSc with such membrane microdomains may facilitate prion infection. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
The exact roles of activated microglia and fractalkine (CX3CL1)/fractalkine receptor (CX3CR1) signaling are not fully understood in brain ischemic injury and the findings reported are controversial. Here, we investigated the effects of CX3CR1 siRNA on the expression of CX3CR1, p38 mitogen-activated protein kinase (p38MAPK), Protein Kinase C (PKC) and inflammatory cytokines, microglia activation, white matter lesions, and cognitive function in mice treated with bilateral common carotid artery stenosis (BCAS) in vivo as well as effects of exogenous CX3CL1, CX3CR1 siRNA, and SB2035080 on expression of inflammatory cytokines in BV2 microglia treated with oxygen–glucose deprivation (OGD) in vitro. We showed that CX3CR1 siRNA significantly inhibited the increased expression of CX3CR1, p38MAPK, PKC as well as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and also attenuated microglia activation, white matter lesions, and cognitive deficits induced by BCAS in mice brain. We also showed that exogenous CX3CL1 could induce a further enhancement in TNF-α and IL-1β expression, which could be suppressed by CX3CR1 siRNA or by the p38MAPK inhibitor in OGD-treated BV2 microglial cells in vitro. Our findings indicated that CX3CL1/CX3CR1-mediated microglial activation plays a detrimental role in ischemic brain via p38MAPK/PKC signaling and also suggested that CX3CL1/CX3CR1 axis might be a putative therapeutic target to disrupt the cascade of deleterious events that lead to brain ischemic injury.  相似文献   

10.
In scrapie infection, prion protein (PrPSc) is localized in areas where there is neurodegeneration and astrocytosis. It is thought that PrPSc is toxic to neurons and trophic for astrocytes. In our study, paraffin sections from scrapie infected (263K and 139H) and control hamsters were examined with histological and immunocytochemical staining. We found that PrPSc was present in the ependymal cells of both 263K- and 139H-infected hamsters. In 139H-infected hamsters, PrPSc was found in the cytoplasm of neurons in cerebral cortex and in hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. In contrast, neuronal cytoplasm and nuclei, were positive for PrPSc in most areas such as cortex, hippocampus, and thalamus in 263K-infected hamsters. Many aggregations of PrPSc could be seen in the cortex, hippocampus, substantia nigra and around the Pia mater, corpus callosum, fimbria, ventricles, and blood vessels in sections from 139H- and/or 263K-positive animals. Furthermore, PrPSc was also co-localized with glial fibrillary acidic protein (GFAP) in many reactive astrocytes (approximately 90%) in certain areas such as the hippocampus in 263K-infected hamsters, but not 139H-infected hamsters. The patterns of astrocytosis and PrPSc formation were different between 139H- and 263K-infected hamsters, which may be used for a diagnosis purpose. Our results suggest a hypothesis that multiple cell-types are capable of PrPSc production. Our results also confirm that reactive astrocytes can produce and/or accumulate PrPSc during some scrapie strain infections. The findings suggest a `snowball effect', that is: astrocytosis might play an important role in amyloidosis, while amyloidosis may induce further astrocytosis at least in 263K-infected hamsters.  相似文献   

11.
A human form of a prion disorder is the Creutzfeldt-Jakob disease. A hallmark of the disease is the accumulation of misfolded prion proteins (PrPSc), which exist as heterogeneous subtypes. PrPSc is formed by protein conversion from the host-encoded cellular prion (PrPC), which is expressed and modified to various isoforms. Little is known about variation in PrPC; however, it is assumed that PrPC types play important roles in the formation of PrPSc. In this study, we separated distinct human PrPC subtypes on the basis of differential protein solubilities in detergent solutions. Single and sequential application of the detergents Triton X-100, octyl-glucopyranoside and CHAPS facilitated high solubility of glycosylated PrPC isoforms, whereas high proportions of nonglycosylated PrPC remained non-soluble. Most proteins became highly soluble with laurylsarcosine and sodium dodecyl sulphate. Our findings demonstrate that the solubility characteristics of heterogeneous PrPC overlap in human brains and convey distinct solubility subtypes. Differentiation by solubility experiments can therefore provide valuable information on prion protein composition, facilitate the separation of subtypes, and offer new prospects for conversion specificity of distinct isoforms.  相似文献   

12.
In transmissible spongiform encephalopathies (TSEs) the prion protein (PrP) plays a central role in pathogenesis. The PrP gene (Prnp) has been described in a number of mammalian and avian species and its expression product, the cellular prion protein (PrPC), has been mapped in brains of different laboratory animals (rodent and non-human primates). However, mapping of PrPC expression in mammalian species suffering from natural (bovine and ovine) and experimental (swine) TSE or in species in which prion disease has never been reported (equine and canine) deserves further attention. Thus, localising the cellular prion protein (PrPC) distribution in brain may be noteworthy for the understanding of prion disease pathogenesis since lesions seem to be restricted to particular brain areas. In the present work, we analysed the distribution of PrPC expression among several brain structures of the above species. Our results suggest that the expression of PrPC, within the same species, differs depending on the brain structure studied, but no essential differences between the PrPC distribution patterns among the studied species could be established. Positive immunoreaction was found mainly in the neuropil and to a lesser extent in neuronal bodies which occasionally appeared strongly stained in discrete regions. Overall, the expression of PrPC in the brain was significantly higher in grey matter areas than in white matter, where accumulation of PrPSc is first observed in prion diseases. Therefore, other factors besides the level of expression of cellular PrP may account for the pathogenesis of TSEs  相似文献   

13.
Fractalkine (CX3CL1) to fractalkine receptor (CX3CR1) interactions in the brain are involved in the modulation of microglial activation. Our recent findings indicate that there is microglial hyperactivity in the aged brain during an inflammatory challenge. The underlying cause of this amplified microglial response in the aged brain is unknown. Therefore, the purpose of this study was to determine the degree to which age-associated impairments of CX3CL1 and CX3CR1 in the brain contribute to exaggerated microglial activation after intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). Here we show that CX3CL1 protein was reduced in the brain of aged (18–22 mo) BALB/c mice compared to adult (3–6 mo) controls. CX3CL1 protein, however, was unaltered by LPS injection. Next, CX3CR1 levels were determined in microglia (CD11b+/CD45low) isolated by Percoll density gradient separation at 4 and 24 h after LPS injection. Flow cytometric and mRNA analyses of these microglia showed that LPS injection caused a marked decrease of CX3CR1 and a simultaneous increase of IL-1β at 4 h after LPS injection. While surface expression of CX3CR1 was enhanced on microglia of adult mice by 24 h, it was still significantly downregulated on a subset of microglia from aged mice. This protracted reduction of CX3CR1 corresponded with a delayed recovery from sickness behavior, prolonged IL-1β induction, and decreased TGFß expression in the aged brain. In the last set of studies BV2 microglia were used to determine effect of TGFß on CX3CR1. These results showed that TGFβ enhanced CX3CR1 expression and attenuated the LPS-induced increase in IL-1β expression.  相似文献   

14.
Natarajan C  Sriram S  Muthian G  Bright JJ 《Glia》2004,45(2):188-196
Microglia, the resident macrophage of the brain, mediates immune and inflammatory responses in the central nervous system (CNS). Activation of microglia and secretion of inflammatory cytokines associate with the pathogenesis of CNS diseases, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, prion disease, and AIDS dementia. Microbial pathogens, cytokines, chemokines, and costimulatory molecules are potent inducers of microglial activation in the CNS. Signaling through its receptor, IL-3 induces the activation of JAK-STAT and MAP kinase pathways in microglial cells. In this study, we found that in vitro treatment of EOC-20 microglial cells with tyrphostin AG490 blocked IL-3-induced tyrosine phosphorylation of JAK2, STAT5A, and STAT5B signaling proteins. Stable transfection of EOC-20 cells with a dominant negative JAK2 mutant also blocked IL-3-induced tyrosine phosphorylation of JAK2, STAT5A, and STAT5B in microglia. The blockade of JAK2-STAT5 pathway resulted in a decrease in IL-3-induced proliferation and expression of CD40 and major histocompatibility complex class II molecules in microglia. These findings highlight the fact that JAK2-STAT5 signaling pathway plays a critical role in mediating IL-3-induced activation of microglia.  相似文献   

15.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders caused by PrPSc, or prion, an abnormally folded form of the cellular prion protein (PrPC). The abundant expression of PrPC in the central nervous system (CNS) is a requirement for prion replication, yet despite years of intensive research the physiological function of PrPC still remains unclear. Several routes of investigation point out a potential role for PrPC in axon growth and neuronal development. Thus, we undertook a detailed analysis of the spatial and temporal expression of PrPC during mouse CNS development. Our findings show regional differences of the expression of PrP, with some specific white matter structures showing the earliest and highest expression of PrPC. Indeed, all these regions are part of the thalamolimbic neurocircuitry, suggesting a potential role of PrPC in the development and functioning of this specific brain system. J. Comp. Neurol. 518:1879–1891, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The cellular prion protein (PrPC) is a glycoprotein anchored by glycosylphosphatidylinositol to the cell surface and is abundantly expressed in the central nervous system. A previous study has shown that PrPC contributes to the establishment of infections with intracellular bacteria in macrophages. In the present work, we investigated the role of PrPC in the response of BV2 microglia to Mycobacterium bovis infection. For this purpose, we examined the mRNA expression of prion protein gene (PRNP) upon M. bovis infection and analyzed the effect of siRNA-mediated disruption of PRNP on different parameters of microglial activation and apoptosis in M. bovis-infected microglia. We found that M. bovis infection induced a gradual increase in PRNP mRNA level and that siRNA-mediated silencing of PRNP in M. bovis-infected microglia reduced M. bovis-induced upregulation of pro-inflammatory factors, increased the rate of apoptosis in infected microglia, promoted the intrinsic apoptotic pathway, and downregulated the extrinsic apoptotic pathway. We conclude that PrPC participates in the regulation of the response of microglia to M. bovis infection through the upregulation of pro-inflammatory cytokines and the modulation of apoptosis by interference with the intrinsic apoptotic pathway.  相似文献   

17.
The main feature of prion diseases is the accumulation of infectious proteins (PrPSc). Since PrPSc results from conversion of cellular prion proteins (PrPC), differential expressed PrPC types may play an important role in the formation and conversion efficiency to specific PrPSc forms. However, little is known about the PrPC expression, regulation and differentiation. Here, we demonstrate a new type of differentiation of overlapping PrPC isoforms in brain homogenates using differential SDS solubility. Low and highly soluble PrPC were detected along with various types of protein which are present in the brain of non-infected humans, sheep and cattle. Our findings provide evidence for the existence of several overlapping PrPC proteins exhibiting distinct glycotypes. The selection of defined PrPC types offers new possibilities for identifying highly efficient converting proteins and provides the potential for disease control.  相似文献   

18.
Hughes PM  Botham MS  Frentzel S  Mir A  Perry VH 《Glia》2002,37(4):314-327
In this study, we investigate the expression of fractalkine (CX3CL1) and the fractalkine receptor (CX3CR1) in the naive rat and mouse central nervous system (CNS). We determine if the expression of this chemokine and its receptor are altered during chronic or acute inflammation in the CNS. In addition, we determine if CX3CL1, which has been reported to be chemoattractant to leukocytes in vitro, is capable of acting as a chemoattractant in the CNS in vivo. Immunohistochemistry was performed using primary antibodies recognizing soluble and membrane-bound CX3CL1 and the N-terminus of the CX3CR1. We found that neurons in the naive rodent brain are immunoreactive for CX3CL1 and CX3CR1, both showing a perinuclear staining pattern. Resident microglia associated with the parenchyma and macrophages in the meninges and choroid plexus constituitively express CX3CR1. In a prion model of chronic neurodegeneration and inflammation, CX3CL1 immunoreactivity is upregulated in astrocytes and CX3CR1 expression is elevated on microglia. In surviving neurons, expression of CX3CL1 appears unaltered relative to normal neurons. There is a decrease in neuronal CX3CR1 expression. Acute inflammatory responses in the CNS, induced by stereotaxic injections of lipopolysaccharide or kainic acid, results in activation of microglia and astrocytes but no detectable changes in the glial expression of CX3CL1 or CX3CR1. The expression of CX3CL1 and CX3CR1 by glial cells during inflammation in the CNS may be influenced by the surrounding cytokine milieu, which has been shown to differ in acute and chronic neuroinflammation.  相似文献   

19.
Although fractalkine is one of chemokines involved in mediation of neuronal/microglial interaction, it is not known whether fractalkine/CX3CR1-mediated pathogenesis occurs in the rat brain following epileptogenic insults. In order to elucidate the roles of the fractalkine/CX3CR1 system in microglial activation and neurodegeneration induced by status epilepticus (SE), we investigated changes in fractalkine/CX3CR1 system within the rat hippocampus following SE. In non-SE induced animals, fractalkine and CX3CR1 immunoreactivity was detected in neurons and microglia, respectively. Following SE, fractalkine immunoreactivity was transiently increased in neurons and astrocytes. CX3CR1 immunoreactivity was also transiently detected in neurons (particularly in CA1 pyramidal cells). Intracerebroventricular infusions of recombinant rat fractalkine aggravated SE-induced neuronal damage, while fractalkine IgG or CX3CR1 IgG infusion alleviated it, compared to saline-infused animals. These findings suggest that fractalkine/CX3CR1 system may play an important role in SE-induced neuronal damages via neuron-microglial interactions.  相似文献   

20.
We report a case of human prion disease of 29 months duration in a 74‐year‐old Japanese man. The disease started with progressive sleeplessness and dementia. MRI showed gradually progressive cerebral atrophy. Neuronal loss, spongiform change and gliosis were evident in the thalamus and cerebral cortex, as well as in the striatum and amygdaloid nucleus. In the cerebellar cortex, mild‐to‐moderate depletion of Pukinje cells and spongiform change were observed. Mild neuronal loss in the inferior olivary nucleus was also seen. Immunohistochemistry revealed widespread perivacuolar deposits of abnormal prion protein (PrPSc) in the cerebral cortex, thalamus, basal ganglia, and brainstem, and minimal plaque‐like deposits of PrPSc in the cerebellar cortex. In the cerebellar plaque‐like deposits, the presence of amyloid fibrils was confirmed ultrastructurally. The entire pathology appeared to lie halfway between those of CJD and fatal insomnia, and further demonstrated the relationship between spongiform degeneration and PrPSc deposits, especially in the diseased thalamus. By immunoblotting, the thalamus was shown to contain the lowest amount of PrPSC among the brain regions examined. The PrPSc of type 2, in which the ratio of the three glycoforms was compatible with that of sporadic fatal insomnia (MM2‐thalamic variant) reported previously, was also demonstrated. Analysis of the prion protein gene (PRNP) showed no mutation, and homozygosity for methionine at codon 129. In conclusion, we considered that this patient had been suffering from sporadic, pathologically atypical fatal insomnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号