首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental enrichment (EE) has been shown to improve neurological function and cognitive performance in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). We have shown recently that even when they are already living in an enriched environment, additional EE had beneficial effects in R6/2 mice. Here we examined the effects of three different enrichment paradigms on cognitive dysfunction in R6/2 mice in a longitudinal study. The EE consisted of either enforced physical exercise on the Rotarod (predominantly motor stimulation), training in a novel type of maze, the 'noughts and crosses' (OX) maze (mainly cognitive stimulation), or access to a playground, that gave the mice the opportunity for increased, self-motivated activity using running wheels and other toys in a social context (mixed EE). We designed the OX maze to test spatial memory in the R6/2 mouse while minimizing motor demands. Control mice remained in their home cages during the training period. Mice were given enrichment between 6 and 8 weeks of age, followed by cognitive (Lashley maze) and motor testing (Rotarod) between 8 and 10 weeks. Mice were then given a further period of enrichment between 10 and 12 weeks, and their behavior was re-tested between 12 and 14 weeks of age. We also collected body weights and age at death from all mice. The OX maze was as sensitive for detecting learning deficits in the R6/2 mice as other types of mazes (such as the Morris water maze). Interestingly, providing cognitive stimulation via training in the OX maze produced significant improvements in subsequent cognitive performance by male, but not female, R6/2 mice in the Lashley maze task. OX maze training also significantly improved loss of body weight and survival in male R6/2 mice. These effects became apparent after as little as 2 weeks of training in the OX maze. These data suggest that there is a cognitive reserve that may be exploited in neurodegenerative disease. While brain training was not beneficial for all mice, it produced no deleterious effects, and so warrants further study in rodent models of HD.  相似文献   

2.
Huntington's disease (HD) is a neurodegenerative disorder with complex symptoms dominated by progressive motor dysfunction. Skeletal muscle atrophy is common in HD patients. Because the HD mutation is expressed in skeletal muscle as well as brain, we wondered whether the muscle changes arise from primary pathology. We used R6/2 transgenic mice for our studies. Unlike denervation atrophy, skeletal muscle atrophy in R6/2 mice occurs uniformly. Paradoxically however, skeletal muscles show age-dependent denervation-like abnormalities, including supersensitivity to acetylcholine, decreased sensitivity to mu-conotoxin, and anode-break action potentials. Morphological abnormalities of neuromuscular junctions are also present, particularly in older R6/2 mice. Severely affected R6/2 mice show a progressive increase in the number of motor endplates that fail to respond to nerve stimulation. Surprisingly, there was no constitutive sprouting of motor neurons in R6/2 muscles, even in severely atrophic muscles that showed other denervation-like characteristics. In fact, there was an age-dependent loss of regenerative capacity of motor neurons in R6/2 mice. Because muscle fibers appear to be released from the activity-dependent cues that regulate membrane properties and muscle size, and motor axons and nerve terminals become impaired in their capacity to release neurotransmitter and to respond to stimuli that normally evoke sprouting and adaptive reinnervation, we speculate that in these mice there is a progressive dissociation of trophic signalling between motor neurons and skeletal muscle. However, irrespective of the cause, the abnormalities at neuromuscular junctions we report here are likely to contribute to the pathological phenotype in R6/2 mice, particularly in late stages of the disease.  相似文献   

3.
Calcineurin (CaN) is a Ca(2+)- and calmodulin-dependent protein serine-threonine phosphatase that is thought to play an important role in the neuronal response to changes in the intracellular Ca(2+) concentration. CaN has been implicated in numerous physiological processes including learning and memory. Decreases in CaN expression are thought to be responsible for some of the pathological features seen in brain ischemia, Down's syndrome and Alzheimer's disease. In this study, we examined the possibility of CaN playing a role in the progressive neurological phenotype of the R6/2 mouse of Huntington's disease. We studied the effects of the CaN inhibitors cyclosporin A and FK506 on the progressive neurological phenotype in the R6/2 mouse. We found that an immunosuppressive dose of both drugs dramatically accelerated the main features of the neurological phenotype in R6/2 mice. This was unlikely to be due solely to the immunosuppressive action of these drugs, since treatment with cyclophosphamide, an immunosuppressant drug with a mechanism of action that is not mediated via CaN, did not have deleterious effects on the R6/2 mouse. If anything, cyclophosphamide improved the neurological symptoms in the R6/2 mice. Together, our data suggest a central role for CaN in the deleterious phenotype of the R6/2 mouse. Treatments aimed at preventing the loss of CaN or stimulating its function may be beneficial in the treatment of HD.  相似文献   

4.
A progressive disintegration of the rest-activity rhythm has been observed in the R6/2 mouse model of Huntington's disease (HD). Rest-activity rhythm is controlled by a circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, although SCN-independent oscillators such as the methamphetamine (MAP)-sensitive circadian oscillator (MASCO) can also control rhythmicity, even in SCN-lesioned animals. We aimed to test whether or not the administration of MAP could restore a normal rest-activity rhythm in R6/2 mice, via the activation of the MASCO. We administered chronic low doses of MAP to wild-type (WT) and presymptomatic (7-8 weeks) R6/2 mice, in constant darkness. As expected, ~ 40% of the WT mice expressed a rest-activity rhythm controlled by the MASCO, with a period of around 32 h. By contrast, the MASCO was missing from almost 95% of the R6/2 mice, even at early stages of disease. Interestingly, although the MASCO was deficient, initially MAP was able to stabilize the day/night activity ratio in R6/2 mice and delay the onset of disintegration of the rest-activity rhythm driven by the SCN. Furthermore, in presymptomatic R6/2 mice treated with L-DOPA, a MASCO-like component began to emerge, although this never became established. Our data show a major dysfunction of the MASCO in presymptomatic R6/2 mice that is likely to be due to an early abnormality of the catecholaminergic systems. We suggest that the dysfunction of the MASCO in humans could be partially responsible for circadian disturbances observed in HD patients, as well as patients with other neurological diseases in which both catecholaminergic and circadian abnormalities are present, such as Parkinson's disease and schizophrenia.  相似文献   

5.
Previous reports have highlighted a possible link between Huntington's disease (HD) and diabetes mellitus (DM), but the association has not been characterised in detail. A transgenic mouse model for HD, the R6/2 mouse, also develops diabetes. In the present study, we examined the R6/1 mouse, which carries a shorter CAG repeat than the R6/2 mouse, and found that, although not diabetic, the mice showed several signs of impaired glucose tolerance. First, following i.p. glucose injection, the blood glucose concentration was approximately 30% higher in young R6/1 mice (10 weeks) compared to wild-type mice (P = 0.004). In older mice (38 weeks), glucose tolerance was further impaired in both R6/1 and wild-type animals. Second, during glucose challenge, the R6/1 mice reached higher plasma insulin levels than wild-type mice, but the peripheral insulin sensitivity was normal as measured by injection of human or mouse insulin or when evaluated by the quantitative insulin sensitivity check index (QUICKI). Third, the beta cell volume was 17% and 39% smaller at 10 and 38 weeks of age, respectively, compared to age-matched wild-type littermates and the reduction was not caused by apoptosis at either age. Finally, we demonstrated the presence of the HD gene product, huntingtin (htt), in both alpha- and beta-cells in R6/1 islets of Langerhans. Since pancreatic beta cells and neurons share several common traits, clarification of the mechanism associating neurodegenerative diseases with diabetes might improve our understanding of the pathogenic events leading to both groups of diseases.  相似文献   

6.
With spontaneous elongation of the CAG repeat in the R6/2 transgene to ≥ 335, resulting in a transgene protein too large for passive entry into nuclei via the nuclear pore, we observed an abrupt increase in lifespan to > 20 weeks, compared to the 12 weeks common in R6/2 mice with 150 repeats. In the ≥ 335 CAG mice, large ubiquitinated aggregates of mutant protein were common in neuronal dendrites and perikaryal cytoplasm, but intranuclear aggregates were small and infrequent. Message and protein for the ≥ 335 CAG transgene were reduced to one-third that in 150 CAG R6/2 mice. Neurological and neurochemical abnormalities were delayed in onset and less severe than in 150 CAG R6/2 mice. These findings suggest that polyQ length and pathogenicity in Huntington's disease may not be linearly related, and pathogenicity may be less severe with extreme repeats. Both diminished mutant protein and reduced nuclear entry may contribute to phenotype attenuation.  相似文献   

7.
We investigated whether cell proliferation and neurogenesis are altered in R6/2 transgenic Huntington's disease mice. Using bromodeoxyuridine (BrdU), we found a progressive decrease in the number of proliferating cells in the dentate gyrus of R6/2 mice. This reduction was detected in pre-symptomatic mice, and by 11.5 weeks, R6/2 mice had 66% fewer newly born cells in the hippocampus. The results were confirmed by immunohistochemistry for the cell cycle markers Ki-67 and proliferating cell nuclear antigen (PCNA). We did not observe changes in cell proliferation in the R6/2 subventricular zone, indicating that the decrease in cell proliferation is specific for the hippocampus. This decrease corresponded to a reduction in actual hippocampal neurogenesis as assessed by double immunostaining for BrdU and the neuronal marker neuronal nuclei (NeuN) and by immunohistochemistry for the neuroblast marker doublecortin. Reduced hippocampal neurogenesis may be a novel neuropathological feature in R6/2 mice that could be assessed when evaluating potential therapies.  相似文献   

8.
Genetic murine models play an important role in the study of human neurological disorders by providing accurate and experimentally accessible systems to study pathogenesis and to test potential therapeutic treatments. One of the most widely employed models of Huntington's disease (HD) is the R6/2 transgenic mouse. To characterize this model further, we have performed behavioral and neuropathological analyses that provide a foundation for the use of R6/2 mice in preclinical therapeutic trials. Behavioral analyses of the R6/2 mouse reveal age-related impairments in dystonic movements, motor performance, grip strength, and body weight that progressively worsen until death. Significant neuropathological sequela, identified as increasing marked reductions in brain weight, are present from 30 days, whereas decreased brain volume is present from 60 days and decreased neostriatal volume and striatal neuron area, with a concomitant reduction in striatal neuron number, are present at 90 days of age. Huntingtin-positive aggregates are present at postnatal day 1 and increase in number and size with age. Our findings suggest that the R6/2 HD model exhibits a progressive HD-like behavioral and neuropathological phenotype that more closely corresponds to human HD than previously believed, providing further assurance that the R6/2 mouse is an appropriate model for testing potential therapies for HD.  相似文献   

9.
Expression of the Huntington's disease (HD) mutation in mice (R6/2 line) causes a progressive neurological phenotype that includes deterioration of motor function resembling that seen in HD. The current study sought to determine whether or not chronic treatment of R6/2 mice with lithium chloride would have an effect on the progression of the phenotype, in light of lithium's reported neuroprotective and anti-depressive properties. Treatment began either before or after the onset of symptoms. Chronic treatment with lithium caused a significant improvement in rotarod performance when treatment was started post- but not pre-symptomatically. There was no overall effect on survival in either group, but further analysis revealed that in the post-symptomatic group, mice could be assigned to one of two distinct groups, depending on the effects of lithium. One subgroup of mice lost weight faster, died earlier and showed rotarod performance similar to the vehicle-treated controls. The other subgroup lost weight at a normal rate, died at a similar age, but showed greatly improved motor performance compared to controls. The improvement in rotarod performance suggests that lithium may improve motor symptoms as well as depression in some HD patients.  相似文献   

10.
Huntington's disease (HD) is a neurodegenerative disorder involving progressive motor disturbances, cognitive decline, and desynchronized sleep-wake rhythms. Recent studies revealed that restoring normal sleep-wake cycles can improve cognitive function in HD mice, suggesting that some sleep/wake systems remain operational and thus represent potential therapeutic targets for HD. Hypothalamic neurons expressing orexins/hypocretins (orexin neurons) are fundamental orchestrators of arousal in mammals, but it is unclear whether orexin circuits operate normally in HD. Here we analyzed the electrophysiology, histology, and gene expression of orexin circuits in brain slices from R6/2 mice, a transgenic model of HD with a progressive neurological phenotype. We report that in R6/2 mice, the size of an electrically distinct subpopulation of orexin neurons is reduced, as is the number of orexin-immunopositive cells in some hypothalamic regions. R6/2 orexin cells display altered glutamatergic inputs, and have an abnormal circadian profile of activity, despite normal circadian rhythmicity of the suprachiasmatic nucleus (SCN), the "master clock" of the brain. Nevertheless, even at advanced stages of HD, intrinsic firing properties of orexin cells remain normal and suppressible by serotonin, noradrenaline, and glucose. Furthermore, histaminergic neurons (key cells required for the propagation of orexin-induced arousal) also display normal responses to orexin. Together, these data suggest that the orexin system remains functional and modifiable in HD mice, although its circadian activity profile is disrupted and no longer follows that of the SCN.  相似文献   

11.
Huntington's disease (HD) is a heritable neurodegenerative disorder, characterised by metabolic disturbances, along with cognitive and psychiatric impairments. Targeting metabolic HD dysfunction via the maintenance of body weight and fat mass and restoration of peripheral energy metabolism can improve the progression of neurological symptoms. In this respect, we focused on the therapeutic potential of the orexigenic peptide hormone ghrelin, which plays an important role in promoting a positive energy balance. In the present study, we found a significant disruption of circadian metabolic regulation in a R6/2 mouse HD model in the late stage of disease. Daily circadian rhythms of activity, energy expenditure, respiratory exchange ratio and feeding were strongly attenuated in R6/2 mice. During the rest phase, R6/2 mice had a higher total activity, elevated energy expenditure and excessive water consumption compared to control mice. We also found that, in the late stage of disease, R6/2 mice had ghrelin axis deficiency as a result of low circulating ghrelin levels, in addition to down‐regulation of the ghrelin receptor and several key signalling molecules in the hypothalamus, as well as a reduced responsiveness to exogenous peripheral ghrelin. We demonstrated that, in pre‐symptomatic mice, responsiveness to ghrelin is preserved. Chronic ghrelin treatment efficiently increased lean body mass and decreased the energy expenditure and fat utilisation of R6/2 mice in the early stage of disease. In addition, ghrelin treatment was also effective in the normalisation of drinking behaviour and the rest activity of these mice. Ghrelin treatment could provide a novel therapeutic possibility for delaying disease progression; however, deficiency in ghrelin receptor expression could limit its therapeutic potential in the late stage of disease.  相似文献   

12.
Medium spiny GABAergic projection neurons are progressively lost in Huntington's disease (HD), whereas there is preferential sparing of the few interneurons co-expressing NPY, somatostatin and neuronal nitric oxide synthase.We investigated the effect of the selective adenosine A2A receptor antagonist SCH58261 (0.01 mg/kg, acutely and chronically administered i.p.) on nNOS striatal expression and motor impairment in R6/2 transgenic mice in clearly symptomatic phase (10–11-week old). SCH58261 chronically administered increased the number of nNOS-immunoreactive neurons (nNOS-IR) in the striatum of R6/2 mice. No glial activation was detected in the striatum or cortex. SCH58261 also improved walking in the inclined plane test but not motor capability evaluated by the rotarod test. These findings demonstrate for the first time a role of adenosine A2A receptors in regulating nNOS expression in the striatum. We suggest that the protective effect of A2A antagonism in HD is related to the increase in striatal nNOS-IR neurons.  相似文献   

13.
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by progressive neuronal dysfunction and cell loss, especially striatal GABAergic neurons, generating motor, cognitive and affective problems. Although the disease-causing gene is known, the exact mechanism by which it induces its pathological effect remains unknown, and no cure is currently available for this disease. Interestingly, striatal neurons that express neuropeptide Y (NPY) are preferentially spared in HD and the number of such cells is increased in the striatum of HD patients. Furthermore, neurogenesis in the subventricular zone (SVZ) also appears to be up-regulated in HD patients, and previously we also demonstrated in wild-type mice that intracerebroventricular (ICV) NPY promotes SVZ neurogenesis with migration of the newborn cells towards the striatum where they differentiate into GABAergic neurons.Therefore, we sought to determine whether NPY could be of therapeutic benefit in a transgenic mouse model of HD (R6/2) through an action on SVZ neurogenesis. We found that a single ICV injection of NPY in R6/2 mice increased survival time through reduced weight loss as well as having a beneficial effect on motor function as evidenced by improving rotarod performance and reducing paw-clasping. We also demonstrated that the degree of cerebral and striatal atrophy was reduced following such a single NPY injection and that whilst the peptide also increased the number of BrdU-positive cells in the SVZ (but not in the dentate gyrus) of R6/2 mice, this was not sufficient to account for the changes in anatomy and function that we found.. These results suggest that NPY may be of some therapeutic interest in patients with HD, although further work is needed to ascertain exactly how it mediates its beneficial effects.  相似文献   

14.
Huntington's disease is a neurodegenerative autosomal disorder characterized by selective loss of striatal and cortical neurons. The mammalian brain subventricular zone contains a population of neural precursors involved in postnatal neurogenesis. These newly generated cells migrate from the subventricular zone along the rostral migratory stream and differentiate into mature olfactory bulb neurons throughout adulthood. The establishment of this pathway depends upon a variety of molecules, including polysialylated neural cell adhesion molecule (PSA‐NCAM). We used a murine model of Huntington's disease, the R6/2 transgenic mouse, and in vivo bromodeoxyuridine administration to label cells undergoing proliferation and to follow their migration along the rostral migratory stream. Bromodeoxyuridine labeling did not show any significant increase in proliferation of progenitor cells in symptomatic R6/2 mice, but migration of neuroblasts along the rostral migratory stream was significantly diminished. The decrease in neuroblast migration was not due to an alteration in the expression of PSA‐NCAM along the rostral migratory stream since immunohistochemical analysis showed no significant differences between R6/2 and wild type mice. In addition, we used Fluoro‐Jade C to evaluate apoptosis and demonstrated that the number of apoptotic cells in the rostral migratory stream is similar in affected and wild type animals, suggesting that cell death is not responsible for the differences observed in neuroblast migration. We conclude that in R6/2 mice, progenitor cells have an impaired migration in their route to the olfactory bulb, with accumulation of cells in the caudal rostral migratory stream that does not result from changes in PSA‐NCAM expression and/or cell death.  相似文献   

15.
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. The appearance of the reduction coincides with the onset of motor deficits and behavioral disturbances. Double immunohistochemistry did not show colocalization between rabphilin 3A and huntingtin aggregates in the HD mice. Using in situ hybridization, we demonstrated that rabphilin 3A mRNA expression was substantially reduced in the R6/1 mouse cortex compared to wild-type mice. Our results indicate that a decrease in mRNA levels underlie the depletion of protein levels of rabphilin 3A, and we suggest that this reduction may be involved in causing impaired synaptic transmission in R6/1 mice.  相似文献   

16.
The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., human and/or mouse, we performed a histopathological analysis, using mouse and human specific antibodies, of the neocortex and hippocampus in 6, 12 and 19 months old APP/PS1 double and APP and PS1 single transgenic mice. There was a significant correlation between the human amyloid beta deposits and the intrinsic rodent amyloid beta deposits, that is, all plaques contained both human and mouse Abeta, and the diffuse amyloid beta deposits also colocalized human and mouse Abeta. Furthermore, some blood vessels (mainly leptomeningeal vessels) show labeling with human Abeta, and most of these vessels also label with mouse Abeta. Our findings demonstrate that the human amyloid deposits in APP/PS1 transgenic mice are closely associated with mouse Abeta, however, they do not precisely overlap. For instance, the core of plaques consists of primarily human Abeta, whereas the rim of the plaque contains both human and mouse amyloid beta, similarly, human and mouse Abeta are differentially localized in the blood vessel wall. Finally, as early as amyloid beta deposits can be detected, they show the presence of both human and mouse Abeta. Together, these data indicate that mouse Abeta is formed and deposited in significant amounts in the AD mouse brain and that it is deposited together with the human Abeta.  相似文献   

17.
18.
Huntington's disease is a genetic disease caused by a single mutation. It is characterized by progressive movement, emotional and cognitive deficits. R6/2 mice transgenic for exon 1 of the HD gene with 150+ CAG repeats have a progressive neurological phenotype, including deterioration in cognitive function. The mechanism underlying the cognitive deficits in R6/2 mice is unknown, but dysregulated gene expression, reduced neurotransmitter levels and abnormal synaptic function are present before the cognitive decline becomes pronounced. Our goal here was to ameliorate the cognitive phenotype in R6/2 mice using a combination drug therapy (tacrine, moclobemide and creatine) aimed at boosting neurotransmitter levels in the brain. Treatment from 5 weeks of age prevented deterioration in two different cognitive tasks until at least 12 weeks. However, motor deterioration continued unabated. Microarray analysis of global gene expression revealed that many genes significantly up- or down-regulated in untreated R6/2 mice had returned towards normal levels after treatment, though a minority were further dysregulated. Thus dysregulated gene expression was reversed by the combination treatment in the R6/2 mice and probably underlies the observed improvements in cognitive function. Our study shows that cognitive decline caused by a genetic mutation can be slowed by a combination drug treatment, and gives hope that cognitive symptoms in HD can be treated.  相似文献   

19.
Shin CM  Chung YH  Kim MJ  Shin DH  Kim YS  Gurney ME  Lee KW  Cha CI 《Brain research》2000,887(2):309-315
In the present study, we performed immunohistochemical studies to investigate the changes of Bcl-2 and Bax in the central nervous system of the transgenic mice expressing a human Cu/Zn SOD mutation. In contrast to the controls, a high density of Bcl-2-IR astrocytes were detected all around the gray matter of the spinal cord of the mutant transgenic mice. Bcl-2-IR astrocytes were also detected in the cerebellum and brainstem of transgenic mice. Specific immunoreactivity for Bax was seen in the spinal cord and brainstem of transgenic mice. Immunostaining for Bax was identified only in neurons and not in glial cells. Our present study demonstrated the distribution of Bcl-2 and Bax in detail using immunohistochemical methods through the central nervous system of the transgenic mice, for the first time.  相似文献   

20.
Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Here, we show that R6/1 (HD) mice have deficits in short-term hippocampal-dependent memory prior to onset of motor symptoms. HD mice also exhibit impaired performance on a test of long-term spatial memory, however, environmental enrichment enhanced spatial learning and significantly ameliorated this memory deficit in HD mice. Analysis of the presynaptic vesicle protein synaptophysin showed no differences between standard-housed wild-type and HD littermates, however, enrichment increased synaptophysin levels in the frontal cortex and hippocampus in both groups. In comparison, analysis of postsynaptic proteins revealed that HD animals show decreased levels of PSD-95 and GluR1, but no change in levels of gephyrin. Furthermore, at 12 weeks of age when we observe a beneficial effect of enrichment on spatial learning in HD mice, enrichment also delays the onset of a deficit in hippocampal PSD-95 levels. Our results show that cognitive deficits in HD mice can be ameliorated by environmental enrichment and suggest that changes in synaptic composition may contribute to the cognitive alterations observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号