首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been previously demonstrated that mitochondria are of crucial importance for posttetanic potentiation (PTP) at neuromuscular junction. The aim of our study was to examine whether this may also be the case at a central synapse. To address this question, we studied possible mitochondrial involvement in PTP of GABAergic synaptic transmission in rat neocortical cultures, a preparation in which PTP has not been previously documented. Synaptic responses were evoked by local extracellular stimulation. Whole-cell patch-clamp technique was employed to record inhibitory postsynaptic currents (IPSCs) from postsynaptic neurons. Tetanic stimulation (30 Hz, 4 s) of the presynaptic neuron evoked an increase of IPSC amplitude, lasting for about 1 min. PTP was accompanied by a decrease of coefficient of variation of the IPSC and a decrease of paired-pulse (IPSC(2)/IPSC(1)) ratio, indicating involvement of presynaptic mechanism(s) in PTP. Possible role of mitochondria in PTP was addressed using drugs affecting Ca(2+) uptake and subsequent Ca(2+) efflux: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and tetraphenylphosphonium ions (TPP(+)). It was found that both CCCP (1-2 microM) and TPP(+) (10 microM) either substantially decreased or eliminated PTP. These results further confirm presynaptic origin of PTP in neocortical neurons and suggest an important role of mitochondrial Ca(2+) turnover in this form of synaptic plasticity at the central synapse.  相似文献   

2.
An antibody raised in rabbits against a GABA-BSA conjugate was used together with the PAP technique to label elements in the neostriatum of three Old World monkeys. Light microscopy revealed numerous immunoreactive medium-size neurons of various staining intensities, some of which had indented nuclei, as well as an occasional large cell. The neuropil showed a plexus of fine processes with frequent puncta. Ultrastructurally, the medium-size GABA-positive neurons were of two types: one with smooth nuclei and scanty cytoplasm, similar to spiny I cells, the other with invaginated nuclear envelopes and more abundant perikaryon, resembling the aspiny type. Correspondingly, labeled dendrites were either spiny or varicose. Some stained axons were myelinated, and the boutons had either large and ovoid, or small and pleomorphic vesicles. All of these boutons formed symmetric synapses, the former type with GABA-positive dendritic shafts but also with unlabeled dendrites; the latter type usually with GABA-negative elements, either dendrites, dendritic spines, or somata. Synapses were also observed between unreactive boutons and immunostained dendrites. Terminals with densely packed, small round vesicles that established asymmetric synapses with spines were always GABA-negative. Glial elements were consistently unlabeled, save for some astroglial endfeet. These findings provide positive evidence for the existence of two classes of GABAergic striatal neurons corresponding to a long-axoned spiny I type and an aspiny interneuron. Furthermore, the simultaneous labeling of GABA-immunoreactive presynaptic and postsynaptic profiles offers possible morphologic bases for the various kinds of intrastriatal inhibitory processes, including the feedforward, feedback, and "autaptic" types.  相似文献   

3.
The mammalian target of rapamycin (mTOR) signaling pathway in neurons integrates a variety of extracellular signals to produce appropriate translational responses. mTOR signaling is hyperactive in neurological syndromes in both humans and mouse models that are characterized by epilepsy, autism, and cognitive disturbances. In addition, rapamycin, a clinically important immunosuppressant, is a specific and potent inhibitor of mTOR signaling. While mTOR is known to regulate growth and synaptic plasticity of glutamatergic neurons, its effects on basic parameters of synaptic transmission are less well studied, and its role in regulating GABAergic transmission is unexplored. We therefore performed an electrophysiological and morphological comparison of glutamatergic and GABAergic neurons in which mTOR signaling was either increased by loss of the repressor Pten or decreased by treatment with rapamycin. We found that hyperactive mTOR signaling increased evoked synaptic responses in both glutamatergic and GABAergic neurons by ~50%, due to an increase in the number of synaptic vesicles available for release, the number of synapses formed, and the miniature event size. Prolonged (72 h) rapamycin treatment prevented these abnormalities and also decreased synaptic transmission in wild-type glutamatergic, but not GABAergic, neurons. Further analyses suggested that hyperactivation of the mTOR pathway also impairs presynaptic function, possibly by interfering with vesicle fusion. Despite this presynaptic impairment, the net effect of Pten loss is enhanced synaptic transmission in both GABAergic and glutamatergic neurons, which has numerous implications, depending on where in the brain mutations of an mTOR suppressor gene occur.  相似文献   

4.
Parvalbumin-containing GABAergic interneurons in the rat neostriatum   总被引:2,自引:0,他引:2  
Antibodies to the intracellular calcium binding protein parvalbumin were shown to label specifically a distinct group of neostriatal GABAergic neurons. These neurons corresponded to the intensely staining subclass of neostriatal GABAergic neurons that have previously been shown to be a class of aspiny interneurons in the neostriatum. The parvalbumin neurons were aspiny neurons with varicose dendrites distributed throughout the neostriatum in a pattern identical to the intensely stained GABA neurons, and both populations of neurons showed increased numbers in the lateral part of the neostriatum. Double labeling of single neurons with both the GABA and parvalbumin antisera showed that all parvalbumin neurons were positive for GABA, but some GABA labelled neurons were not immunoreactive for parvalbumin. These parvalbumin-negative GABAergic neurons were morphologically similar to the spiny projection neurons, which are GABAergic but usually are not so heavily stained. The relationship of the GABA-containing parvalbumin neurons to the striatal mosaic organization was determined by using immunocytochemistry for another calcium binding protein, calbindin D28K, to label the matrix compartment of the striatum. The distribution of parvalbumin-positive neurons relative to the calbindin-positive matrix and calbindin-poor patches was determined by using pairs of adjacent sections stained with the calbindin and parvalbumin antisera. This analysis showed that the somata of the parvalbumin neurons were present in both patch and matrix compartments, and their axons and dendrites crossed the boundaries between compartments. A quantitative analysis of the number of neurons in each compartment revealed that the neurons showed no preferential distribution in either compartment, but instead were present according to the area occupied by that compartment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cannabinoid ligands show therapeutic potential in a variety of disorders including anxiety. However, the anxiety-related effects of cannabinoids remain controversial as agonists show opposite effects in mice and rats. Here we compared the effects of the cannabinoid agonist WIN-55,212 and the CB1 antagonist AM-251 in CD1 mice and Wistar rats. Special attention was paid to antagonist-agonist interactions, which had not yet been studied in rats. In mice, WIN-55,212 decreased whereas AM-251 increased anxiety. The antagonist abolished the effects of the agonist. In contrast, WIN-55,212 increased anxiety in rats. Surprisingly, the antagonist potentiated this effect. Cannabinoids affect both GABAergic and glutamatergic functions, which play opposite roles in anxiety. We hypothesized that discrepant findings resulted from species differences in the relative responsiveness of the two transmitter systems to cannabinoids. We investigated this hypothesis by studying the effects of WIN-55,212 on evoked hippocampal inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs). IPSCs were one order of magnitude more sensitive to WIN-55,212 in mice than in rats. In mice, IPSCs were more sensitive than EPSCs to WIN-55,212. This is the first study showing that the relative cannabinoid sensitivity of GABA and glutamate neurotransmission is species-dependent. Based on behavioural and electrophysiological findings, we hypothesize that WIN-55,212 reduced anxiety in mice by affecting GABA neurotransmission whereas it increased anxiety in rats via glutamatergic mechanisms. In rats, AM-251 potentiated this anxiogenic effect by inhibiting the anxiolytic GABAergic mechanism. We suggest that the anxiety-related effects of cannabinoids depend on the relative cannabinoid responsiveness of GABAergic and glutamatergic neurotransmission.  相似文献   

6.
Melatonin (MLT) is secreted from the pineal gland and mediates its physiological effects through activation of two G protein‐coupled receptors, MT1 and MT2. These receptors are expressed in several brain areas, including the habenular complex, a pair of nuclei that relay information from forebrain to midbrain and modulate a plethora of behaviors, including sleep, mood, and pain. However, so far, the precise mechanisms by which MLT control the function of habenula neurons remain unknown. Using whole cell recordings from male rat brain slices, we examined the effects of MLT on the excitability of medial lateral habenula (MLHb) neurons. We found that MLT had no significant effects on the intrinsic excitability of MLHb neurons, but profoundly increased the amplitude of glutamate–mediated evoked excitatory post‐synaptic currents (EPSC). The increase in strength of glutamate synapses onto MLHb neurons was mediated by an increase in glutamate release. The MLT‐induced increase in glutamatergic synaptic transmission was blocked by the competitive MT1/MT2 receptor antagonist luzindole (LUZ). These results unravel a potential cellular mechanism by which MLT receptor activation enhances the excitability of MLHb neurons. The MLT‐mediated control of glutamatergic inputs to the MLHb may play a key role in the modulation of various behaviors controlled by the habenular complex. Synapse, 2016. © 2016 Wiley Periodicals, Inc. Synapse 70:181–186, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The dorsal (DR) and median (MR) raphe nuclei contain 5-hydroxytryptamine (5-HT) cell bodies that give rise to the majority of the ascending 5-HT projections to the forebrain. The DR and MR have differential roles in mediating stress, anxiety and depression. Glutamate and GABA activity sculpt putative 5-HT neuronal firing and 5-HT release in a seemingly differential manner in the MR and DR, yet isolated glutamate and GABA activity within the DR and MR has not been systematically characterized. Visualized whole-cell voltage-clamp techniques were used to record excitatory and inhibitory postsynaptic currents (EPSC and IPSC) in 5-HT-containing neurons. There was a regional variation in action potential-dependent (spontaneous) and basal [miniature (m)] glutamate and GABAergic activity. mEPSC activity was greater than mIPSC activity in the DR, whereas in the MR the mIPSC activity was greater. These differences in EPSC and IPSC frequency indicate that glutamatergic and GABAergic input have distinct cytoarchitectures in the DR and MR. 5-HT(1B) receptor activation decreased mEPSC frequency in the DR and the MR, but selectively inhibited mIPSC activity only in the MR. This finding, in concert with its previously described function as an autoreceptor, suggests that 5-HT(1B) receptors influence the ascending 5-HT system through multiple mechanisms. The disparity in organization and integration of glutamatergic and GABAergic input to DR and MR neurons and their regulation by 5-HT(1B) receptors may contribute to the distinction in MR and DR regulation of forebrain regions and their differential function in the aetiology and pharmacological treatment of psychiatric disease states.  相似文献   

8.
The interactions between dopamine and carbachol on the excitatory synaptic transmission were studied in rat neostriatal slices using an intracellular recording method. Excitatory postsynaptic potentials (EPSPs) were evoked by cortical stimulation. Application of dopamine (DA; 0.1 μM) or carbachol (0.1 μM) produced a dramatic and reversible inhibition of the EPSP amplitude. The inhibitory effect induced by carbachol was markedly attenuated in the presence of either DA (0.1 μM) or the selective D2 dopaminergic receptor agonist (±)-2-(N-phenylethyl-N-propyl) amino-5-hydroxytertralin (PPHT; 0.1 μM), but not by the D1 dopaminergic receptor agonist (±)-7,8-dihydroxy-3-allyl-1-phenyl-2, 3, 4, 5-tetrahydro-1H-3-benzazepine (SKF-38393; 0.1 μM) or the D3 dopaminergic receptor agonist R(−)-(4aS, 10bS)-3, 4, 4a, 10b-tetrahydro-4-propyl-2H, 5H-[1] benzogyrano-[4,3-b]-1, 4-oxazin-9-ol (PD-128,907; 0.1 μM). Conversely, muscarinic receptor activation with carbachol (0.1 μM) also completely abolished the DA-induced depression of the EPSP amplitude. In addition, the inhibitory effect of DA on the carbachol-induced depression of the EPSP amplitude was antagonized by sulpiride (1 μM), a selective D2 dopaminergic receptor antagonist. However, D1 dopaminergic receptor antagonist (±)-7-bromo-8-hydroxy-3-methyl-1-phenyl-2, 3, 4, 5-tetrahydro-3-benzazepine (SKF-83566; 1 μM) did not affect DA's inhibition. Rp-adenosine-3′,5′-cyclic monophosphothioate (Rp-cAMPS; 25 μM), a potent inhibitor of cAMP-dependent protein kinase A (PKA), alone decreased the amplitude of EPSP below baseline values and mimicked the inhibitory effect of DA on the carbachol-induced depression of the EPSP amplitude. Based on these findings, we conclude that the inhibitory effects of D2 dopaminergic receptor and muscarinic receptor activation on the excitatory synaptic transmission in the neostriatum are non-additive and therefore are antagonistic interactions. Furthermore, the effect of muscarinic receptor stimulation will depend on the extent of D2 dopaminergic receptor activation and the modulation of the cellular PKA-dependent messenger system seems to contribute to their interactions. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The cellular and synaptic physiology of developing rat neocortical neurons was studied using the in vitro slice method. Rats aged 1-28 days were used for analysis. During the first two postnatal weeks several sequential changes occur in membrane properties and evoked synaptic potentials. Immature neurons had higher input resistances, more linear I-V characteristics, longer membrane time constants, and slower rising and falling phases of action potentials. The developmental increase in rate of rise of the action potential suggests an increasing density of voltage-dependent Na+-channels are inserted in neuronal membranes during postnatal development. The higher input resistance of young cells might be due to their small size and differences in membrane properties. The long time constant indicates a higher specific membrane resistivity of immature neurons. Postsynaptic potentials (PSPs) recorded in young neurons were longer in latency, longer in duration, and more fragile during repetitive activation than their mature counterparts. In addition, PSPs evoked in neurons of animals less than 1 week old did not contain inhibitory postsynaptic components. These physiological features of immature neocortical neurons help explain the pattern of epileptogenesis in young animals. When neonatal cortical slices were exposed to the gamma-aminobutyric acid (GABA) antagonists penicillin or bicuculline, the frequency of occurrence of discharges resembling epileptiform depolarization shifts approached that found in mature slices only during the second postnatal week. Depolarization shifts at younger ages were less stereotyped and more sensitive to stimulus parameters than those in mature neurons.  相似文献   

10.
Dentato- and fastigiothalamic afferents were identified in the VM and medial VA and VL using electron microscopic (EM)-autoradiography. Synaptic vesicles in labeled dentate and fastigial boutons differed significantly in both their size and shape, which allows these two types of terminals to be distinguished in the normal neuropil. Differences in the mode of terminations of cerebellar afferents upon the neurons in the thalamic nuclei studied are also discussed.  相似文献   

11.
Using optical recordings, we studied the effects of asphyxia on intracellular Cl and Ca2+ concentrations ([Cl]i; [Ca2+]i) in the superior colliculus of fetal rats, which were connected via the umbilical cord to the dam. Acute asphyxia was induced by umbilical cord occlusion. The number of fetal superior colliculus neurons showing GABA-mediated increases in [Cl]i (leading to hyperpolarization) following local synaptic electrical stimulation had decreased by 3 h post-asphyxiation, while the number showing GABA-mediated decreases in [Cl]i (leading to depolarization) increased. [Ca2+]i rise, which occurred after acute asphyxiation, was antagonized by both non-NMDA and NMDA receptor antagonists. The increase in [Ca2+]i following focal superior colliculus stimulation was markedly attenuated at 3 h post-asphyxiation.  相似文献   

12.
Postsynaptic gamma-aminobutyric acid (GABA)A-mediated responses switch from depolarizing to hyperpolarizing during postnatal development of the rodent hippocampus. This is attributable to a decrease in the concentration of intracellular chloride set by the expression of the neuron-specific K+-Cl- co-transporter, KCC2. A recent in vitro study [Ganguly et al. (2001) Cell, 105, 521-532] showed that KCC2 expression may be under the trophic control of GABAA receptor-mediated transmission. Here we have studied the developmental expression of KCC2 protein in mouse hippocampal dissociated cultures as well as organotypic cultures. A low somatic expression level was found in neurons prior to the formation of the first synapses, as detected by synaptophysin immunoreactivity. Thereafter, KCC2 expression was strongly up-regulated during neuronal maturation. The developmental up-regulation of KCC2 expression was not altered by a chronic application (throughout the culturing period; 2-15 days in vitro) of the action-potential blocker TTX or the N-methyl-d-aspartate (NMDA) and non-NMDA antagonists APV and NBQX. Blockade of GABAA-mediated transmission with picrotoxin did not affect the expression levels of KCC2 protein either. These data show that neither neuronal spiking nor ionotropic glutamatergic and GABAergic transmission are required for the developmental expression of KCC2 in mouse hippocampal neurons in vitro.  相似文献   

13.
To examine the role of the amino acid GABA in the locomotion of basal chordates, we investigated the pharmacology of swimming and the morphology of GABA-immunopositive neurones in tadpole larvae of the ascidians Ciona intestinalis and Ciona savignyi. We verified that electrical recording from the tail reflects alternating muscle activity during swimming by correlating electrical signals with tail beats using high-speed video recording. GABA reversibly reduced swimming periods to single tail twitches, while picrotoxin increased the frequency and duration of electrical activity associated with spontaneous swimming periods. Immunocytochemistry for GABA revealed extensive labelling throughout the larval central nervous system. Two strongly labelled regions on either side of the sensory vesicle were connected by an arc of labelled fibres, from which fibre tracts extended caudally into the visceral ganglion. Fibre tracts extended ventrally from a third, more medial region in the posterior sensory vesicle. Two rows of immunoreactive cell bodies in the visceral ganglion extended neurites into the nerve cord, where varicosities were seen. Thus, presumed GABAergic neurones form a network that could release GABA during swimming that is involved in modulating the time course and frequency of periods of spontaneous swimming. GABAergic and motor neurones in the visceral ganglion could interact at the level of their cell bodies and/or through the presumed GABAergic fibres that enter the nerve cord. The larval swimming network appears to possess some of the properties of spinal networks in vertebrates, while at the same time possibly showing a type of peripheral innervation resembling that in some protostomes.  相似文献   

14.
To investigate whether lead (Pb2+) affects the tetrodotoxin (TTX)-sensitive release of neurotransmitters, the whole-cell mode of the patch-clamp technique was applied to cultured hippocampal neurons. Pb2+ (>/=10 nM) reversibly blocked the TTX-sensitive release of glutamate and gamma-aminobutyric acid (GABA), as evidenced by the reduction of the amplitude and frequency of glutamate- and GABA-mediated postsynaptic currents (PSCs) evoked by spontaneous neuronal firing. This effect of Pb2+, which occurred 2-3 s after exposure of the neurons to Pb2+-containing external solution, was not related to changes in Na+-channel activity, and was quantified by measurements of changes in the amplitude of PSCs evoked when a 50-micros, 5-V stimulus was applied via a bipolar electrode to a neuron synaptically connected to the neuron under study. With an IC50 of approximately 68 nM, Pb2+ blocked the evoked release of glutamate and GABA. This effect was most likely mediated by Pb2+'s actions on extracellular targets, because there was a very short delay (<3 s) for its onset, and it could be completely reversed by the chelator ethylene diaminetetraacetic acid (EDTA). Given that Pb2+-induced blockade of evoked transmitter release could be reversed by 4-aminopyridine, it is suggested that the effect on release was mediated via the binding of Pb2+ to voltage-gated Ca2+ channels. Thus, it is most likely that the neurotoxic effects of Pb2+ in the mammalian brain involve a decrease of the TTX-sensitive, Ca2+-dependent release of neurotransmitters.  相似文献   

15.
In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal conditions and during the stress response that accompanies many forms of vestibular dysfunction.  相似文献   

16.
Long-term depression (LTD) at striatal synapses is mediated by postsynaptic endocannabinoid (eCB) release and presynaptic cannabinoid 1 receptor (CB1R) activation. Previous studies have indicated that eCB mobilization at excitatory synapses might be regulated by afferent activation. To further address the role of neuronal activity in synaptic plasticity we examined changes in synaptic strength induced by the L-type calcium channel activator 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176, FPL) at glutamatergic and γ-aminobutyric acid (GABA)ergic synapses in the striatum. We found that the basic mechanisms for FPL-mediated eCB signaling are the same at glutamatergic and GABAergic synapses. FPL-induced LTD (FPL-LTD) was blocked in slices treated with the CB1R antagonist AM251 (2 μ m ), but established depression was not reversed by AM251. FPL-LTD was temperature dependent, blocked by protein translation inhibitors and prevented by intracellular loading of the anandamide transporter inhibitor VDM11 (10 μ m ) at both glutamatergic and GABAergic synapses. FPL-LTD at glutamatergic synapses required paired-pulse afferent stimulation, while FPL-LTD at GABAergic synapses could be induced even in the absence of explicit afferent activation. By evaluating tetrodotoxin-insensitive spontaneous inhibitory postsynaptic currents we found that neuronal firing is vital for eCB release and LTD induction at GABAergic synapses, but not for short-term depression induced by CB1R agonist. The data presented here suggest that the level of neuronal firing regulates eCB signaling by modulating release from the postsynaptic cell, as well as interacting with presynaptic mechanisms to induce LTD at both glutamatergic and GABAergic synapses in the striatum.  相似文献   

17.
Effects of acute ethanol (EtOH) exposure on motoneuron excitability and properties of synaptic transmission were examined in spinal cords of postnatal rats. Whole-cell patch clamp recordings and intracellular recordings with high-resistance electrodes were carried out in motoneurons of 1- to 4-day-old postnatal rats. To determine the effects of extracellular EtOH on action potential waveform, properties of current-evoked soma action potentials and motoneuron ability to generate repetitive action potential firing were examined. During a brief EtOH (70 mM) exposure, larger depolarizing current was required for action potential generation, the duration of the after hyperpolarizing potential increased, and fewer action potentials were produced during a prolonged intracellular current injection. These effects were reversed within 20 min of EtOH removal from the extracellular solution. To determine whether the reduced probability of action potential generation was associated with changes in synaptic transmission, properties of evoked synaptic potentials and spontaneous synaptic currents were investigated. In the presence of EtOH, the amplitude of dorsal root-evoked synaptic potentials was reduced, the frequency of spontaneous excitatory postsynaptic currents decreased, while the frequency of inhibitory postsynaptic currents increased. Our data suggested that acute EtOH exposure suppressed motoneuron electrical activity by decreasing motoneuron excitability and shifting the balance between excitatory and inhibitory synaptic transmission toward inhibition.  相似文献   

18.
Rap1A, first identified as a suppressor of transformed phenotype induced by an activated ras oncogene, is abundantly expressed in the brain. Its neurophysiological function, however, is poorly understood. When an activated Rap1A mutant (Rap1-12V) or a dominant negative H-Ras mutant (Ras-17N) was expressed in CA1 neurons in cultured hippocampal slices using the sindbis virus-mediated gene transfer technique, NMDA receptor current in response to Schaffer collateral stimulation was suppressed. Expression of activated H-Ras mutant (Ras-12V) resulted in the elevation of both NMDA receptor current and AMPA receptor current. These results implicate counteracting functions of Ras and Rap1 in the regulation of NMDA receptor-mediated synaptic transmission and a positive regulatory role of Ras in AMPA receptor-mediated synaptic transmission.  相似文献   

19.
Although the neocortex has generally been considered resistant to the induction of long-term potentiation (LTP), we have recently shown that LTP can be reliably induced in the freely moving rat provided that the stimulation sessions are spaced and repeated. Here, we report that the induction of LTP in this preparation can be modulated by both GABAergic agonism and antagonism. The delivery of stimulation trains in the presence of the GABA(A) agonist diazepam blocked the induction of neocortical LTP, while the GABA(A) antagonist picrotoxin slowed the development of potentiation. When animals that had previously received high-frequency stimulation combined with diazepam were repotentiated, they showed greater resistance to LTP induction than animals that had received diazepam alone. These data suggest that the inhibitory circuits themselves may have potentiated. The demonstration that diazepam blocks neocortical LTP provides further support for the notion that LTP plays a role in memory formation.  相似文献   

20.
Sodium succinate has been studied for its influence on the efficiency of glutamate transmission in the Schaffer collateral synapses and duration of its potentiation state caused by high-frequency stimulation in surviving hippocampal slices. It is shown that administration of sodium succinate (50 mg/kg i. p.) to rats 30 min prior to decapitation stabilizes glutamate transmission in field CA1 of the rat hippocampal slices and increases duration of its potentiation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号