首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper outlines the synthesis of selected acid mimics of the non-peptide CCK-B selective antagonist CI-988, 1. CCK-B and CCK-A binding affinities of these analogues are described and their CCK-B affinity and selectivity rationalized by consideration of the pK(a) values, charge distribution, and geometry of the respective acid mimics. Several of the compounds have CCK-B binding affinities similar to the parent carboxylic acid 1 (CCK-B, IC50 = 1.7 nM; pK(a) = 5.6) and span a pK(a) range of less than 1 (sulfonic acid 27) to greater than 9.5 (5-thio-1,2,4-triazole 24). Among the more active compounds synthesized are tricyclo[3.3.1.1(3,7)]dec-2-yl [R-(R*,R*)]-[2-[[2-[[(3-hydroxy-5-isoxazolyl)acetyl]-amino]-2- phenylethyl]amino]-1-(1H-indol-3-ylmethyl)-1-methyl-2-oxoethyl+ ++]carbamate (15), tricyclo[3.3.1.1(3,7)]dec-2-yl [R-(R*,R*)]-[1-(1H-indol-3-ylmethyl)-1-methyl-2-oxo-2-[[2-[(1-oxo- 3-sulfopropyl)amino]-2-phenylethyl]amino]-ethyl]carbamate, monosodium salt (27), and tricyclo[3.3.1.1(3,7)]dec-2-yl [R-(R*,R*)]-[1-(1H-indol-3-ylmethyl)-1- methyl-2-oxo-2-[[2-[[(1H-1,2,4-triazol-5-ylsulfinyl)acetyl]a mino]-2-phenylethyl]amino]ethyl]carbamic acid (34) which have CCK-B binding affinities of IC50 = 2.6, 1.3, and 1.7 nM, CCK-A/-B ratios of 650, 780, and 550 and pK(a) values of 6.5, less than 1, and 7.0, respectively.  相似文献   

2.
This paper describes the synthesis and structure-activity relationships (SAR) leading to the first rational design of "dipeptoid" analogues of the neuropeptide cholecystokinin (CCK). Compounds [R-(R*,S*)]-4-[2-[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[(tricyclo [3.3.1.1(3,7)]dec-2-yloxy)carbonyl]amino]propyl]amino]-3- phenylpropyl]-amino]-4-oxo-2-butenoic acid, [R-(R*,R*)]-4-[2-[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[(tricyclo [3.3.1.1(3,7)]dec-2-oxy)carbonyl]amino]propyl]amino]-1- phenylethyl]amino]-4-oxo-2-butenoic acid, and [R-(R*,R*)]-4-[2-[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[(tricyclo [3.3.1.1(3,7)]dec-2-yloxy)carbonyl]amino]propyl]amino]-1- phenylethyl]amino]-4-oxobutanoic acid (29d) have CCK-B binding affinities of IC50 = 0.8, 0.7, and 1.7 nM with a CCK-A/CCK-B ratio of 550, 1100, and 2500, respectively. Compound 27 is well-absorbed and is equiactive by the subcutaneous (sc) and intravenous (iv) routes of administration in the Ghosh and Schild test in rats in inhibiting pentagastrin stimulated gastric acid secretion with ED50 = 0.07 (0.01-0.34) mumol/kg. Compound 29d is anxiolytic in mice in the black-white test box over the range 0.0001-30 mg/kg sc, comparable in activity to diazepam over the range 0.125-1 mg/kg ip), and also active in this test when dosed orally over a wide range from 0.0001 to 10 mg/kg.  相似文献   

3.
A Free-Wilson/Fujita-Ban (FW/FB) analysis is reported on 36 "dipeptoid" antagonists of the CCK-B receptor. This series of compounds includes [R-(R*,R*)]-4-[[2-[[3-(1H-indol-3-yl)-2-methyl-1-oxo-2- [[(tricyclo[3.3.1.1] dec-2-yloxy)carbonyl]amino]propyl]amino]-1-phenylethyl]amino]- 4-oxobutanoic acid (CI-988, 1, Figure 1), the first rationally designed non-peptide antagonist of a neuropeptide receptor. The analysis treats the compounds in three parts: the N-terminus, variants on the tryptophan moiety, and the C-terminus. A highly significant correlation was found (n = 36, r2 = 0.97, s = 0.22, F = 57, p = 2 x 10(-8)), suggesting that these three domains of these compounds contribute to binding affinity independently of each other, and are therefore additive in their effects on receptor affinity. The relative free-energies of binding of the individual substituents are calculated from the coefficients of the regression equation. The substitution of D-alpha-methyltryptophan for L-tryptophan increases the free-energy of binding by 3.5 kcal mol-1. This increase in binding energy is explained by a 300-fold difference in conformational entropy between the methylated and desmethyl analogues.  相似文献   

4.
The ability of nonpeptide antagonists to interact with neuromedin B receptors on C6 cells was investigated. 2-[3-(2, 6-Diisopropyl-phenyl)-ureido]3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin- 2-yl-cyclohexylmethyl)-proprionate (PD165929), 3-(1H-indol-3-yl)-2-methyl-2-[3(4-nitro-phenyl)-ureido]-N-(1-pyridin- 2-yl-cyclohexylmethyl)-propionamide (PD168368) and 3-(1H-indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]- 2-m ethyl-2-[3-(4-nitro-phenyl)-ureido]-propionamide (PD176252) inhibited (125I-Tyr0)neuromedin B binding with IC50 values of 2000, 40 and 50 nM, respectively. Because neuromedin B is a G-protein coupled serpentine receptor, the effects of neuromedin B antagonists on second messenger production and proliferation were investigated. PD168368 inhibited the ability of 10 nM neuromedin B to cause elevation of cytosolic Ca2+, whereas it had no effect on basal cytosolic Ca2+. PD168368 inhibited the ability of 100 nM neuromedin B to cause elevation of c-fos mRNA. Also, PD168368 in a dose-dependent manner inhibited the ability of 100 nM neuromedin B to cause phosphorylation of focal adhesion kinase. Using a [3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay, the order of antagonist potency to inhibit C6 proliferation was PD168368=PD176252>PD165929. Also, 1 microM PD168368 and PD176252 significantly inhibited colony number using a proliferation assay in vitro. PD168368 significantly inhibited C6 xenograft growth in nude mice in vivo. These results indicate that PD168368 is a C6 cell neuromedin B receptor antagonist, which inhibits proliferation.  相似文献   

5.
The cholecystokininB receptor antagonist CI-988 ([R-(R*,R*)]-4-[[2-[[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[[(tricyclo[3.3.1. 13,7]dec-2-yloxy)carbonyl]amino]-propyl]amino]-1-phenylethyl]amino]-4-oxobbutanoic acid compound with 1-deoxy-1-(methylamino)-D-glucitol (1:1)) and the benzodiazepine receptor agonist diazepam were tested for potential anxiolytic effects on punished exploratory behavior in the four-plate test using mice. Diazepam (0.31–5 mg/kg PO) increased the number of shocks taken in a dose-dependent manner, an effect blocked by the benzodiazepine receptor antagonist flumazenil. CI-988 (0.00001–1 mg/kg PO) tended to increase the number of delivered shocks over the chosen dose range; this effect was, however, not dose-related or as large as that produced by diazepam. A limited testing of the 5-hydroxytryptamine3 receptor antagonist ondansetron (0.1 and 1 mg/kg PO) suggested an effect similar to CI-988. These results indicate that distinct and contrasting dose-response profiles exist for these classical and atypical drugs in an animal model of anxiety based on electric shock.  相似文献   

6.
Compounds exemplified by 2-[2-(5-bromo-1H-indol-3-yl)ethyl]-3-[3-(1- methylethoxy)phenyl]-4(3H)-quinazolinone (3, IC50 = 0.0093 microM using mouse brain membranes) represent a structurally novel series of non-peptide cholecystokinin B receptor ligands. Since asperlicin, a selective CCK-A receptor antagonist, may be regarded as a conformationally constrained 2-substituted-3-phenyl-4(3H)-quinazolinone, the progenitor of compound 3 (compound 2, 2-[2-(1H-indol-3-yl)ethyl]-3-phenyl-4(3H)- quinazolinone) might therefore represent a conformationally flexible pharmacophore of the natural product. To probe possible conformational preferences for this class of receptor ligands, in particular the spatial relationship between the indole and quinazolinone rings, we prepared a series of analogues with methyl substituents on the ethylene bridge as well as congeners with different linkers. The X-ray crystal structure conformation for compound 22 (2-[2-(1H-indol-3-yl)ethyl]-3-]-3-(1-methylethoxy) phenyl]-4(3H)-quinazolinone, IC50 = 0.026 microM) is extended with the two heteroaromatic rings adopting an antiperiplanar arrangement around the central sigma bond of the ethane linker, whereas the solid-state conformation for a less active analogue 19 (2-[2-(1H-indol-3-yl)-1-methylethyl]-3-[3-(1- methylethoxy)phenyl]-4(3H)-quinazolinone, IC50 = 9.1 microM) is folded with the two heteroaromatic systems adopting a synclinal orientation. However, MM2 force field calculations (MacroModel, v 3.0) suggest that the energy difference between the folded and extended conformation is small. Thus, other factors such as unfavorable steric interactions may account for the difference in receptor affinity. For derivatives with one to three methylene units separating the indole and quinazolinone rings, maximal receptor binding activity was found when the distance separating the two heteroaromatic systems is defined by an ethyl group. Introducing unsaturation into the ethylene bridge of compound 3 limited the conformational flexibility of the molecule and decreased its receptor affinity greater than 2 orders of magnitude.  相似文献   

7.
L-365,260 (3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepin-3-yl)-N'-(3-methylphenyl)urea), interacted in a stereoselective and competitive manner with guinea pig stomach gastrin and brain cholecystokinin (CCK) receptors. The affinity of L-365,260 for both gastrin (Ki = 1.9 nM) and brain CCK-B (Ki = 2.0 nM) receptors was greater than 2 orders of magnitude higher than its affinity for peripheral pancreatic CCK-A receptors or various other receptors. L-365,260 exhibited a similar high affinity for brain CCK-B receptors of rats, mice and man. A somewhat lower affinity for gastrin and brain CCK-B (IC50 = 20-40 nM) receptors was observed in dog tissues. In vivo, oral administration of L-365,260 antagonized gastrin-stimulated acid secretion in mice (ED50 = 0.03 mg/kg), rats (ED50 = 0.9 mg/kg) and guinea pigs (ED50 = 5.1 mg/kg). L-365,260 did not affect basal acid secretion and did not antagonize histamine- or carbachol-stimulated acid secretion in mice. L-365,260 represents a potentially powerful new tool for investigating gastrin and brain CCK-B receptors, and possibly their role in physiology and disease.  相似文献   

8.
Neurotensin reduced substance P-induced tension in ileal muscle strips and the relaxant effect was inhibited by a nonpeptide antagonist, SR 48692, 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3-yl)car bonylamino]tricyclo(3.3.1.1.(3.7)decan-2-carboxylic acid with a half-maximal concentration (IC50) of 7.4+/-2.1 nM (n = 9) and a dissociation constant (Kb) of 0.9+/-0.2 nM. Neurotensin produced a contractile response in ileal muscle strips pretreated with apamin (50 nM) and in isolated chick rectums and both contractile effects were inhibited by SR 48692 with IC50 of 31.6+/-9.5 nM and Kh of 3.2+/-0.9 nM (n = 6) and with IC50 of 28.9+/-6.9 nM and Kb of 5.4+/-1.0 nM (n = 7), respectively. The Kb values for the contractile effects were not significantly different from each other, but significantly different from that for the relaxant effect, suggesting that both types of effect are mediated via distinct subtypes of neurotensin receptor in the intestinal smooth muscles. Contractile responses and excitatory junction potentials evoked by electrical stimulation of nonadrenergic, noncholinergic (NANC) nerves in isolated chick rectums were not inhibited by SR 48692 (up to 3.3 microM). This does not provide functional evidence for the idea that neurotensin acts as an unidentified excitatory neurotransmitter of NANC nerves in the avian rectum.  相似文献   

9.
Based on their relative affinities for cholecystokinin octapeptide (26-33) (CCK-8), cholecystokinin tetrapeptide (30-33) (CCK-4), desulfated CCK-8, and gastrin, cholecystokinin (CCK) receptors have been classified as CCK-A (alimentary) and CCK-B (brain). Selective nonpeptide antagonists of CCK-A and CCK-B receptors, as well as highly selective CCK-A and CCK-B peptide agonists, have been described. We report here the characterization of two novel CCK-4-based peptides, A-71623 and A-70874. In radioligand binding assays, the IC50 values for A-71623 and A-70874 were 3.7 and 4.9 nM in guinea pig pancreas (CCK-A) and 4500 and 710 nM in cerebral cortex (CCK-B), respectively. Both were agonists in stimulating pancreatic amylase release, and their stimulatory effects were potently inhibited by the CCK-A antagonist L-364,718. A-71623 was a full agonist and A-70874 was a partial agonist (approximately 80%) in stimulating phosphoinositide breakdown in pancreas. Both peptides also were potent agonists in stimulating CCK-A receptors in the ileum. They were, however, weak and behaved as partial agonists in calcium studies in NCI-H345 cells, which possess CCK-B/gastrin receptors. In guinea pig gastric glands, the affinities of A-71623 and A-70874 for the CCK-B/gastrin receptor were 11 and 1.6 microM, respectively. These results demonstrate that A-71623 and A-70874 are potent and selective agonists at CCK-A receptors. The preferential interaction of these novel CCK-4 analogs with CCK-A receptors is in contrast to other CCK-4-based peptides, which are primarily selective for CCK-B receptors. In addition, A-71623 and A-70874 are the first two examples of potent CCK-A agonists that do not contain a tyrosine residue whose sulfation is required for potent CCK-A agonist activity of larger peptides.  相似文献   

10.
We describe here the properties of tert-butyloxycarbonyl-Trp-Leu-Asp-Phe-NHNH2 (A-57696), a C-terminal hydrazide analogue of tert-butyloxycarbonyl-CCK4 (Boc-Trp-Met-Asp-Phe-NH2), at four cholecystokinin (CCK) receptor-bearing tissues, the guinea pig pancreas and gall bladder (Type A), guinea pig cortex (Type B), and NCI-H345 cells, a human small cell lung cancer cell line that expresses CCK-B/gastrin receptors. Using 125I-Bolton-Hunter-cholecystokinin octapeptide (26-33) (125I-Bolton-Hunter-CCK8) as the radioligand, A-57696 was found to be selective for cortical CCK-B receptors (IC50 = 25 nM), compared with pancreatic CCK-A receptors (IC50 = 15 microM). A-57696 behaved as a competitive antagonist in reversing CCK8-stimulated pancreatic amylase secretion and phosphoinositide breakdown. By Schild analysis, its Kd was determined to be 4.7 and 6.8 microM in amylase and phosphoinositide assays, respectively. A-57696 (100 microM) did not elicit gall bladder contraction, and it inhibited contractions induced by CCK8. The Kd of A-57696 at gall bladder CCK-A receptors was 19 microM. In contrast, A-57696 behaved as a partial agonist (80% of maximal CCK8 response) in stimulating calcium mobilization at CCK-B/gastrin receptors on NCI-H345 cells. A-57696 and CCK8 inhibited each other in calcium mobilization experiments utilizing the fluorescent dye Indo-1. Stimulatory actions of CCK8 and A-57696 were reversed by the CCK-B-selective (R)-L-365,260 (100 nM), whereas at the same concentration, the CCK-A-selective (S)-L-365,260 was ineffective. Binding studies using 125I-Bolton-Hunter-CCK8 and 125I-gastrin indicated that binding sites labeled by these two ligands displayed similar affinities for CCK8, desulfated CCK8, gastrin, A-57696, and both enantiomers of L-365,260. A-57696 represents a new class of CCK-A peptide antagonist at guinea pig pancreas a new class of CCK-A peptide antagonist at guinea pig pancreas and gall bladder. Its contrasting functional activities at guinea pig CCK-A and CCK-B/gastrin receptors in a human tumor cell demonstrate that, in addition to the previously described differences in binding specificity for selective agonists and antagonists, CCK-A receptors and CCK-B/gastrin receptors have different requirements for activation.  相似文献   

11.
Inhibitors of aminopeptidase enzymes have been prepared by the synthesis of peptide substrate analogues in which the scissile amide bond has been replaced with the hydrolytically stable ketomethylene (-COCH2-) and hydroxyethylene [-CH(OH)CH2-] functionalities. Two synthetic strategies were used to prepare the inhibitors, and the advantages and disadvantages of each are discussed. The synthesis of peptides that contain the hydroxyethylene isostere was complicated by competing lactone and lactam formation, and attempts to prepare free N-terminal dipeptide hydroxyethylene isostere derivatives were unsuccessful. All ketomethylene isosteres examined were weak inhibitors of both leucine aminopeptidase and aminopeptidase M. However, the ketomethylene inhibitor LysK(RS)Phe (58) (Ki = 4 nM) is a potent inhibitor comparable to the natural product, arphamenine A (ArgKPhe; Ki = 2.5 nM). Normal Michaelis-Menten kinetics for inhibition of membrane leucine aminopeptidase are observed in the absence of magnesium ion, but nonlinear kinetics were obtained in the presence of Mg2+.  相似文献   

12.
A series of 3-(4-fluorophenyl)-1H-indoles substituted in the 1-position with 4-piperidinyl, 1,2,3,6-tetrahydro-4-pyridinyl, and 4-piperazinyl was synthesized. By variation of the substituents in the benzene part of the indole nucleus in 1-[2-[4-[3-4-fluorophenyl)-1H-indol-1-yl]-1-piperidinyl]-ethyl]-2- imidazolidinones, the highest 5-HT2 receptor affinity and selectivity with respect to dopamine D2 receptors and alpha 1 adrenoceptors were obtained by 5-methyl substitution. Different substituents were introduced in the 1-position of the piperidine ring in the 5-methyl-substituted derivative. Thus replacement of the 2-(2-imidazolidinon-1-yl)ethyl side chain with a 2-(1,3-dimethyl-1-ureido)ethyl or methyl substituent resulted in unchanged affinity and selectivity for 5-HT2 receptors. Replacement with a 2-[3-(2-propyl)-2-imidazolidinon-1-yl]ethyl side chain reduced binding to alpha 1 adrenoceptors with a factor of four, while affinities for 5-HT2 and D2 receptors were retained, compared to the 3-unsubstituted imidazolidinone. Indoles substituted in the 1-position with 4-piperazinyl had generally weaker affinity for both 5-HT2 and D2 receptors compared to corresponding 4-piperidinyl- and 1,2,3,6-tetrahydro-4-pyridinyl-substituted indoles. Introduction of a methyl group in the 2-position of the 5-methyl-substituted indole resulted in further increase of selectivity for the 5-HT2 receptor. Compounds with potent receptor binding also potently inhibited the quipazine-induced head twitch syndrome in rats. The compounds were equally active after oral and subcutaneous administration and showed a long duration of action (> 24 h). In general, the derivatives were found to be considerably more potent at 24 h than at 2 h after the administration. The compounds within this series were prepared as analogues of the previously described 1-(4-fluorophenyl)-3-(4-piperidyl)-1H-indoles by interchange of the C-3 carbon atom and the nitrogen atom in the indole nucleus. The pharmacological results indicate that this isosteric replacement results in higher selectivity for 5-HT2 receptors compared to the former series. The 1-[2-[4-[2,5-dimethyl-3-(4-fluorophenyl)-1H-indol-1-yl]-1- piperidinyl]ethyl]-2-imidazolidinone has high affinity for 5-HT2 receptors (IC50 = 3.4 nM) and extremely low affinity for both dopamine D2 receptors (IC50 = 6900 nM) and alpha 1 adrenoceptors (IC50 = 2300 nM).  相似文献   

13.
The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.  相似文献   

14.
[3H]L-365,260, [(3R-(+)-2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4- benzodiazepin-3-yl)-N'-(3-methylphenyl)urea], a new potent and selective nonpeptide brain cholecystokinin (CCK-B) and gastrin receptor antagonist, bound saturably and reversibly to guinea pig brain membranes. Scatchard analysis indicated a single class of high affinity (Kd = 2.3 nM) binding sites. The binding of [3H]L-365,260 was stereospecific, because unlabeled L-365,260 (an R-enantiomer) was approximately 100 times more potent than its S-enantiomer in displacing binding. The relative potencies of various CCK/gastrin-related peptides and nonpeptide peripheral CCK-A antagonists in displacing [3H]L-365,260 brain binding correlated with their potencies in displacing the binding of 125I-CCK to brain receptors but not their potencies in displacing the peripherally selective CCK-A ligand [3H]L-364,718 from pancreatic receptors. The regional distribution of [3H]L-365,260 binding in various brain areas correlated with 125I-CCK binding. Specific [3H]L-365,260 binding to guinea pig brain membranes was reduced by omission of NaCl but was not affected by omission of MgCl2 or addition of guanosine 5'-(beta-gamma-imido)triphosphate or various pharmacological agents known to interact with other common peptide and nonpeptide receptor systems. [3H]L-365,260 also bound in a specific manner to guinea pig gastric glands but only negligibly to guinea pig or rat pancreas. The binding of [3H]L-365,260 to gastric glands was inhibited by CCK/gastrin antagonists with potencies similar to those for inhibition of 125I-gastrin binding in this tissue. Collectively, the data indicates that [3H]L-365,260 represents a new potent nonpeptide antagonist radioligand suitable for the study of brain CCK-B and gastrin receptors.  相似文献   

15.
The antigastrinic, antisecretory and antiulcer activities of CR 2945, (R)-1-naphthalenepropanoic acid,beta-[2-[[2-(8-azaspiro[4.5]dec-8-yl-carbonyl)-4,6-dimethylph enyl] amino]-2-oxoethyl], were investigated in vitro and in vivo in rats and cats. Its activities were compared with those of two gastrin/CCK(B) receptor antagonists, L-365,260 (3R(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin -3-yl)-N'-(3-methylphenyl)urea and CAM-1028 (4-[[2-[[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[[[1,7,7-trimethylbicyclo [2.2.1]hept-2-yl)oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino -4-oxo-[1S-1alpha,2beta[S'(S')4alpha]]-butanoate -N-methyl-D-glucamine), of the histamine H2 receptor antagonist, ranitidine, and the proton pump inhibitor, omeprazole. Cytosolic Ca2+ elevation in rabbit parietal cells induced by gastrin (50 nM) was blocked by CR 2945 with an IC50 value of 5.9 nM. CAM-1028 and L-365,260 showed similar activity. CR 2945 antagonized pentagastrin-stimulated gastric acid secretion in rats (ED50 = 1.3 mg kg(-1) i.v. and 2.7 mg kg(-1) i.d.) and cats (1.6 mg kg(-1) i.v.). CR 2945 was slightly less potent than the reference compounds after i.v. administration, whereas after intraduodenal (i.d.) administration, it was more potent than both ranitidine and omeprazole. In the rat, the gastrin antagonism exhibited by CR 2945 was reversible and competitive, with a pA2 value of 7.33. CR 2945 had specific antigastrin activity, as it was unable to antagonize the gastric acid secretion stimulated by histamine or carbachol in rats up to the dose of 30 mg kg(-1). CR 2945 was about as efficacious as ranitidine against the indomethacin- and ethanol-induced gastric ulcers and the cysteamine-induced duodenal ulcer in rats. On the contrary, L-365,260 was only slightly effective. These results suggest that CR 2945 might be a promising compound for the therapy of acid-related disorders, and that its clinical use could help clarify the therapeutic potential of gastrin/CCK(B) receptor antagonists in the gut.  相似文献   

16.
The potential antidepressant, LY367265 (1-[2-[4-(6-fluoro-1H-indol-3-yl)-3, 6-dihydro-1(2H)-pyridinyl]ethyl]-5,6-dihydro-1H,4H-[1,2, 5]thiadiazolo[4.3.2-ij]quinoline-2,2,-dioxide) has been shown to have a higher affinity for the 5-hydroxytryptamine (5-HT) transporter (K(i)=2.3 nM) and 5-HT(2A) (K(i)=0.81 nM) receptor than the clinically effective antidepressant, nefazodone. It is a potent inhibitor of [3H]5-HT uptake into rat cortical synaptosomes (IC(50)=3.1 nM) and shows selectivity over that for [3H]noradrenaline (IC(50)>1000 nM). It potentiates potassium-induced [3H]5-HT outflow from prelabelled guinea pig cortical slices both in the presence (EC(50)=950 nM) and absence (EC(50)=250 nM) of a saturating concentration of the 5-HT transport inhibitor, paroxetine, indicating a low level of activity at the 5-HT(1B/1D) autoreceptor. These studies indicate that LY367265 is a putative antidepressant which, because of its 5-HT(2A) receptor antagonist activity, has the potential to produce less sleep disturbance and sexual dysfunction than selective serotonin uptake inhibitors.  相似文献   

17.
Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.  相似文献   

18.
In the search for new cholecystokinin (CCK) ligands, ureidopyrazolines were identified in combinatorial libraries using 168 chemically diverse amines. The structure-activity relationship optimisation of this pyrazoline template 4a resulted in novel 3-oxo-1,2-diphenyl-2,3-di-hydro-1H-pyrazol-4-yl)-N'-phenylureas 5a-5o. These novel CCK ligands have shown to act as mixed CCK-A/CCK-B ligands in a [125]I-CCK-8 receptor binding assay. The best pyrazoline 5e of this series displayed an IC50 of 20 and 25 nmol/L for the CCK-A, and CCK-B receptor, respectively. In a subsequent in vivo evaluation using various behavior pharmacological assays, an anxiolytic effect of these novel diphenylpyrazolinyl ureas was found in the elevated x-maze with an ED50 of 1.7 mg/kg. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.69 mg/kg was determinated for urea 5e and the antidepressant effect had a magnitude comparable to desimipramine.  相似文献   

19.
[3H]Propionyl-Tyr-(SO3H)-gNle-mGly-Trp-(NMe)Nle-Asp-Phe-NH2 ([3H]pBC 264) (98-100 Ci/mmol), a new peptidase-resistant cholecystokinin (CCK) agonist that is 1000-fold more potent for CCK-B than for CCK-A receptors, interacts, with a similar subnanomolar affinity, with a single class of binding sites (Kd, 0.15-0.2 nM) in brain membranes of mouse, rat, guinea pig, and cat, in Tris and Krebs buffers. The concentration of CCK-A receptors in rodent brain was estimated to be 8-10 fmol/mg of protein, by measurement of the Bmax values of the nonselective agonist [3H] propionyl-CCK8, with or without 10 nM pBC 264 to saturate CCK-B sites. In guinea pig and mouse brain, specific [3H]pBC 264 binding was not affected by NaCl and/or guanyl-5'-yl-imidodiphosphate. In contrast, in rat brain the affinity of [3H]pBC 264 was decreased and the maximal number of binding sites was increased by NaCl and the guanyl nucleotide or by alkaline treatment, suggesting that a proportion of CCK-B receptors are linked to guanine nucleotide-binding proteins. The Bmax of a CCK8 analog, [3H]SNF 8702, was higher (57 fmol/mg of protein) than that of [3H]pBC 264 (40 fmol/mg of protein) in guinea pig brain cortex but not in mouse brain. The relative potencies of various analogs differed among species. The CCK-B antagonist L365,260 was 18-, 30-, and 64-fold less potent than [3H]pBC 264 in guinea pig, mouse, and rat, respectively. PD 134308, a CCK-B antagonist, was 20-fold less potent in rat brain than in guinea pig brain. Likewise, the cyclic analog BC 254 displayed a 30- and 60-fold lower affinity for mouse and rat than for guinea pig brain preparations. Together, these results suggest the presence of CCK-B receptor subtypes. In all tissues, the specific binding of [3H]pBC 264 at its Kd values was very high (75-90%) and higher than that of the hydrophobic CCK-B probe [3H]SNF 8702 (approximately 50%). Therefore, unlike [3H]SNF 8702, [3H]pBC 264 can be used to study preparations with low receptor concentrations, such as rat brain, making this radiolabeled molecule the most appropriate ligand available to date for CCK-B receptor studies.  相似文献   

20.
We examined the role of cholecystokinin in the reduction of endomorphin-2-induced antinociception in diabetic mice. Endomorphin-1 (1-10 microg, i.c.v.) and endomorphin-2 (3-30 microg, i.c.v.) dose dependently inhibited the tail-flick response in non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effect of endomorphin-1 in non-diabetic and diabetic mice. On the other hand, the antinociceptive effect of endomorphin-2 in diabetic mice was significantly less than that in non-diabetic mice. Cholecystokinin octapeptide (CCK-8) dose dependently reduced the antinociceptive effects of endomorphin-1 and endomorphin-2 in non-diabetic mice. However, in diabetic mice, CCK-8 significantly inhibited the antinociceptive effect of endomorphin-1, but not of endomorphin-2. In non-diabetic mice, CI-988 ((R-[R*,R*])-4-([3-1H-indol]-3-yl)-2-methyl-1-oxo-2-([(tricyclo(3.3.1.1)dec-2-yloxy)carbonyl] amino)propylamino-1-phenyl-ethylamino-4-oxybutanoic acid) had no significant effect on either endomorphin-1- or endomorphin-2-induced antinociception. In diabetic mice, while CI-988 had no significant effect on endomorphin-1-induced antinociception, it dose dependently enhanced the antinociceptive effect of endomorphin-2. The results indicated that the reduction of endomorphin-2-induced antinociception in diabetic mice might be due, at least in part, to the activation of CCK(2) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号