首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast with results obtained in experimental animals, antibodies to microtubule associated protein-2 (MAP2) preferentially label abnormal structures in human nervous system tissue samples, but the normal sites at which MAP2 is expressed are not well-defined. To determine the distribution of MAP2 in the human central (CNS) and peripheral (PNS) nervous systems, we prepared monoclonal antibodies (MAbs) specific to MAP2, and compared the localization of this MAP in postmortem bovine and human tissues as well as in several human neural cell lines that express either neurofilament (NF) or glial filament (GF) proteins. Eight MAbs specific for phosphate-independent epitopes in bovine and human MAP2 were obtained, and those that performed well in tissues produced immunoreactivity confined to the somatodendritic domain of neurons in bovine and human CNS and PNS tissues. Other neural cells (e.g. astrocytes) did not express MAP2 immunoreactivity using these MAbs. Postmortem delays of less than 24 h prior to tissue denaturation did not affect the distribution of MAP2 immunoreactivity. However, microwave denaturation of these tissues preserved MAP2 immunoreactivity better than fixation with Bouin's solution or formalin. Microwave treatment also improved the immunoreactivity of several MAbs for NF and GF proteins. Finally, MAP2 was not detected in human neural cell lines that express NF (2) or GF (1) proteins. We conclude that microwave denaturation provides an effective means to preserve the immunoreactivity of normal human neuronal cytoskeletal proteins, and that this method of tissue denaturation allows the normal distribution of MAP2 to be defined in postmortem samples of human CNS and PNS tissues.  相似文献   

2.
The study employed an immunochemical quantification of brain cell marker proteins in addition to quantitative morphology in order to provide a more multifacetted and characterized model for an excitotoxic CNS lesion. The importance of the approach in the evaluation of the potential of neuroprotective agents is emphasized. The S-100 protein, the glial fibrillary acidic (GFA) protein, neuron specific enolase (NSE) and neuronal intermediary filament polypeptides (NF 68 and NF 200) were measured with a dot-immunobinding assay, 3-30 days after a unilateral injection of N-methyl-D-aspartate (NMDA) in the left dorsal hippocampus of the rat. After 3 days, the neuronal cell loss averaged 80% in the hippocampus. The S-100 content was reduced 3 days after injection, but was 150% of control at 30 days. GFA increased constantly from days 3 to 30. The neuronal marker proteins were all markedly reduced 7 days after injection. However, at 30 days, NF 68 and NF 200 were close to control (80%). Increasing content would reflect regeneration and sprouting of neurites. The content of the neuronal cytoplasmic marker, NSE, was significantly lower than control also at 10 and 30 days, although a gradual recovery could be traced.  相似文献   

3.
G Shaw  J Hawkins 《Neuroreport》1992,3(6):461-464
Spinal cord cytoskeletal preparations from three different mammalian species contain several polypeptides in the SDS-PAGE molecular weight range 100-220 kDa which are recognized by all members of a panel of antibodies to glial fibrillary acidic protein (GFAP) and by anti-IFA, a panspecific intermediate filament protein antibody. The polypeptides are not recognized by antibodies to other intermediate filament proteins or to ubiquitin. The proteins coelute with GFAP in ion-exchange chromatography, cosediment with GFAP under filament assembly conditions, produce similar chemical digest patterns and have an amino acid profile close to that of pure GFAP, all properties expected for covalent GFAP multimers. Further experiments provide evidence for the existence of such multimeric complexes in vivo.  相似文献   

4.
Neuronal injury and loss are recognized features of neuroinflammatory disorders, including acute and chronic encephalitides and multiple sclerosis; destruction of astrocytes has been demonstrated in cases of Rasmussen encephalitis. Here, we show that innate immune cells (i.e. natural killer [NK] and gammadelta T cells) cause loss of neurons from primary human neuron-enriched cultures by destroying the supporting astrocytes. Interleukin 2-activated NK cells caused loss of astrocytes within 1 hour, whereas neurons were lost at 4 hours. Time-lapse imaging indicated that delayed neuron loss was due to early destruction of supporting astrocytes. Selective blocking of astrocyte death with anti-NKG2D antibodies reduced neuron loss, as did blocking of CD54 on astrocytes. gammadelta T cells also induced astrocyte cytotoxicity, leading to subsequent neuronal displacement. In astrocytes, NK cells caused caspase-dependent fragmentation of the intermediate filament proteins glial fibrillary acidic protein and vimentin, whereas anti-CD3-activated T cells produced fragmentation to a lesser extent and without measurable cytotoxicity. Glial fibrillary acidic protein fragmentation was also demonstrated in lysates from chronic multiple sclerosis plaques but not from normal control white matter. These data suggest that non-major histocompatibility complex-restricted immune effector cells may contribute to neuron loss in neuroinflammatory disorders indirectly through injury of glia.  相似文献   

5.
The outpouching of CNS tissues into the entering spinal nerve roots was documented by light and electron microscopy of human and bovine tissues. Astrocytic processes containing large bundles of glial filaments were very prominent in the nerve entry zone and extended for short distances into the adjacent endoneurium of the spinal nerve roots. Antiserum raised to glial acidic fibrillary (GFA) protein stained these glial elements, thereby characterizing the dome-shaped evaginations of CNS tissues into the nerve root entry zones. Antisera to CNS basic protein showed enhanced staining in the nerve entry zone. Analyses of nerve proteins by SDS gel electrophoresis disclosed a prominent 49,000 MW protein in the bovine and human nerve root entry zone. This protein was also prominent in spinal cord white matter, but was not seen in nerve roots which were not admixed with glial tissues. This finding supported the view that a 49,000 MW protein is a glial filaments but is not a component of bovine or human neurofilaments.  相似文献   

6.
Urich  H.  Herrick  M. Kaarsoo 《Acta neuropathologica》1985,65(3-4):190-194
Summary Extremely severe gliosis develops at the end stage of infantile neuronal ceroid-lipofuscinosis (INCL), a fatal encephalopathy characterized by accumulation of autofluorescent storage material in the brain and other tissues followed by a terminal subtotal neuronal and myelin loss. A major fraction of highly enriched intermediate filaments was obtained with a density gradient centrifugation method from INCL brain tissue, whereas the storage material represented only a minor fraction. SDS-polyacrylamide gel electrophoresis of the filament fraction showed a major protein with molecular weight of 51 kD and three to four polypeptides of 40–48 kD identified as glial fibrillary acidic protein (GFAP) and its degradation products by the immunoblotting technique with monoclonal antibodies against GFAP. Immunization experiments with the isolated INCL glial filament fraction produced antibodies reacting only with GFAP but not with other types of intermediate filament proteins, furthermore indicating a high content of GFAP in the isolated fraction. No significant amounts of vimentin or other types of intermediate filament proteins could be detected. These results document the extremely high content of glial filaments at the terminal stage of INCL and suggest that INCL brain may serve as a good human model for studies on the composition of glial filaments in vivo and on the pathogenesis of gliosis.Supported by grants from the Research Department of Rinnekoti Foundation, Finska Läkaresällskapet, the Sigrid Juselius Foundation and the Finnish Medical Research Council  相似文献   

7.
Anti-IFA, a panspecific monoclonal antibody which was raised against human glial fibrillary acidic protein (GFAP), recognizes a determinant common to GFAP and all other intermediate filament proteins. This antibody can be used to identify intermediate filament proteins from both vertebrate and invertebrate tissues. Its utility in immunoblot studies of intermediate filament proteins is enhanced by using cytoskeleton extracts and protease treatment to facilitate the transfer of high molecular weight (greater than 70 000) proteins from gels to nitrocellulose membranes.  相似文献   

8.
Glial-defined boundaries in Xenopus CNS.   总被引:2,自引:0,他引:2  
Regional specificity, which arises early during central nervous system (CNS) development, reflects the generation of boundary regions that define the domains of distinct neural cell types and the guidance of axonal growth. The boundaries between discrete CNS domains often appear to be established by specialized glial cells. Boundary glia have been implicated in supporting neurite extension by providing mechanical and chemical barriers during development and regeneration. The present study demonstrates biochemical and morphological differences in boundary glial cells in the hindbrain and spinal cord of developing Xenopus laevis. DM gamma, a membrane protein of the proteolipid protein family, is localized to radial glial processes in hindbrain boundary regions. By contrast, DM beta, a neuronal protein that bears significant homology to DM gamma in primary sequence and that promotes neurite outgrowth, is expressed in hindbrain axonal pathways. In addition, the expression of two intermediate filament proteins, glial fibrillary acidic protein and vimentin, are progressively restricted to glial cells in the rhombomere center and boundary regions, respectively. Those two intermediate filament proteins show distinct expression domains in the spinal cord as well. The present study suggests that a glial surface protein, DM gamma, may act as a boundary molecule in developing Xenopus hindbrain and that a distinct subpopulation of glial cells may define functional domains within the CNS.  相似文献   

9.
Butyrylcholinesterase (BChE) is a glial cell marker with unknown function. For neuroepithelial cells, BChE has been shown to regulate cell division and expression of the postmitotic marker acetylcholinesterase (AChE), while similar studies are lacking for glial cells. By transducing an antisense-5'BChE cDNA expression vector via calcium phosphate precipitation, we have analyzed the effect of BChE inhibition on proliferation and differentiation of rat oligodendroglia-derived OLN-93 cells. OLN-93 cells were chosen because they are highly proliferative, while expressing markers of differentiated oligodendrocytes (Richter-Landsberg and Heinrich, 1996). First, we established that OLN-93 cells do express BChE protein, albeit chiefly in an inactive state, and that BChE was decreased by antisense-5'BChE transfection. Cell proliferation was also strongly diminished, protein kinase C (PKCalpha) was upregulated, and expression of cytoskeletal and cell surface proteins was altered. In particular, immunoreactivities of the intermediate filament proteins vimentin and the cell adhesion protein F11 were detected, indicating that BChE-inhibited OLN-93 cells have shifted toward an astrocytic phenotype. These data support a role of the glia marker BChE in CNS glial cell proliferation and differentiation, achieved via a nonenzymatic mechanism. The possible biomedical impact of BChE protein, e.g., on CNS nerve regeneration, is briefly discussed.  相似文献   

10.
Ronaldson PT  Persidsky Y  Bendayan R 《Glia》2008,56(16):1711-1735
Limited drug penetration is an obstacle that is often encountered in the treatment of CNS diseases including human immunodeficiency virus type-1 (HIV-1) encephalitis (HIVE). One mechanism that may contribute to this phenomenon is the expression of ATP-binding cassette (ABC) drug efflux transporters [i.e., P-glycoprotein (P-gp), Multidrug Resistance-Associated Proteins (MRP/Mrp), Breast Cancer Resistance Protein (BCRP; also known as ABCG2)] at the primary brain barrier sites (i.e., blood-brain barrier, blood-cerebrospinal fluid barrier). In addition, it has been recently proposed that glial cells may also contribute to the low accumulation and altered distribution of therapeutic compounds in the CNS by functioning as a "secondary barrier." In fact, a few studies have shown that ABC transporters are both expressed and functional in glial cells. Furthermore, commonly prescribed antiretroviral compounds (ARVs), particularly HIV-1 protease inhibitors, are substrates for many of these same transport proteins suggesting that ABC transporters in glial cells may contribute to the overall export of these drugs from the brain. HIV-1 infection is a chronic condition characterized by long-term exposure of brain cellular compartments to HIV-1 virions and soluble viral proteins. In addition, treatment of HIV-1 infection involves long-term administration of a multiplicity of ARVs (i.e., HAART regimens). Indeed, pathological factors associated with HIV-1 infection and/or pharmacological factors related to treatment may alter the expression of ABC transporters and lead to changes in CNS ARV uptake and/or distribution. This review summarizes recent knowledge in this area and emphasizes the role that glial ABC transporters may play in regulating ARV transport.  相似文献   

11.
In certain species, specialized glial cells delineate cell domains in the central nervous system and assist in the elongation of axons by providing mechanical and chemical barriers. We showed previously, that the glial intermediate filament proteins vimentin and glial fibrillary acidic protein are extensively coexpressed in radial glia in the developing hindbrain, and that subsequently, the two proteins define distinct rhombomere domains: vimentin is localized in radial glia at the rhombomere boundaries and glial fibrillary acidic protein expression is restricted to the rhombomere centers (Yoshida and Colman [2000] J. Comp. Neurol. 424:47-57). The present study reveals that vimentin and glial fibrillary acidic protein continue to display distinct expression domains throughout the developing Xenopus central nervous system. Although the precise function of the two intermediate filaments in glial cells has yet to be revealed, the observations presented here suggests that glial intermediate filament proteins demarcate different populations of glial cells during nervous system development and that the existence of different glial populations may define glial boundaries.  相似文献   

12.
We studied the expression and distribution of Na/HCO(3) cotransporters in rat brain using polynucleotide probes and polyclonal antibodies derived from the electrogenic rat kidney Na/HCO(3) cotransporter (rkNBC). In whole brain, we observed a single mRNA ( approximately 7.5 kb) by Northern hybridization and a major approximately 130 kDa protein by immunoblotting with a polyclonal antiserum directed against the C terminus of rkNBC. NBC mRNA and protein were present in cortex, brainstem-diencephalon, and cerebellum. In situ hybridization revealed NBC mRNA expression throughout the CNS, with particularly high levels in olfactory bulb, hippocampal dentate gyrus, and cerebellum. NBC mRNA was present in glial cells (e.g., Bergmann glia of cerebellum and hippocampal astrocytes) and neurons (e.g., granule cells of dentate gyrus and neurons of cortex or striatum). Double hybridization of mRNA encoding NBC and glutamate transporter 1 (glial marker) confirmed that both glia and neurons express NBC. Indirect immunofluorescence microscopy demonstrated NBC protein throughout the CNS, particularly in hippocampus and cerebellum. Although NBC mRNA was restricted to cell bodies, NBC protein was distributed diffusely, compatible with a localization in cell processes and perhaps cell bodies. Double labeling with glial fibrillary acidic protein (astrocytic marker), microtubule-associated protein 2 (neuronal marker), or 2',3'-cyclic mononucleotide 3'-phosphodiesterase (oligodendrocytic marker) demonstrated expression of NBC protein in specific subpopulations of both glia and neurons. Moreover, NBC protein was present in both cultured hippocampal astrocytes and cortical neurons. NBC mRNA and protein were also present in epithelial cells of choroid plexus, ependyma, and meninges. Our results are thus consistent with multiple novel roles for Na/HCO(3) cotransport in CNS physiology.  相似文献   

13.
By use of immunohistochemistry, we characterized the molecular phenotype of human olfactory epithelial (OE) cells and assessed the nature of the dystrophic olfactory neurites described initially in Alzheimer's disease (AD). Keratin 8 was present in all classes of OE cells. Sustentacular cells lacked other cell type specific polypeptides and were distinguished from neurons and basal cells because the latter two classes of OE cells expressed neural cell adhesion molecules (N-CAMs) and microtubule associated proteins (MAPs), i.e., MAP5. Basal cells expressed nerve growth factor receptors (NGFRs), which distinguished them from olfactory neurons. Unlike their perikarya, olfactory axons expressed vimentin and GAP-43, but not peripherin or neurofilament (NF) proteins. Olfactory nerves were distinguished from other axons because the latter were positive for all three NF subunits and peripherin, in addition to vimentin and GAP-43. Dystrophic neurites in the OE were GAP-43 positive, but they also expressed proteins that were not detected in normal olfactory nerves (i.e., synaptophysin, MAP2, tau, peripherin, NF proteins). Further, rare NF positive olfactory neurons gave rise to NF positive dystrophic neurites. These neurites were present in all 11 AD cases, 11 of 14 subjects with other neurodegenerative diseases, and 6 of 8 neurologically normal adult controls, but no dystrophic neurites were seen in 9 fetal and neonatal cases. We conclude that the molecular phenotype of different human OE cells is distinct and that dystrophic olfactory neurites occur very frequently in neurologically normal adults. The relevance of these neurites to aging or specific disease processes remains speculative.  相似文献   

14.
In order to gain a more complete understanding of the sequential pattern of gene expression during neurogenesis and gliogenesis in humans, we followed the expression of well-characterized, developmentally regulated polypeptides in the cerebellar cortex and dentate nucleus by immunohistochemistry using monoclonal antibodies of highly defined specificity. At 8–10 weeks gestational age (GA), progenitor cells and their immediate progeny in the rhombencephalic ventricular zone expressed vimentin and nestin and, to a lesser extent, microtubule-associated protein 5 (MAP5) and glial fibrillary acidic protein (GFAP), but not the low affinity nerve growth factor receptor (NGFR). In contrast, postmitotic, migrating immature neurons in the intermediate zone gave strong reactions for MAP2, tau, and a nonphosphorylated form of middle molecular weight neurofilament (NF) protein (NF-M) and weak reactivity for NGFR. At 15 weeks GA, proliferating cells of the superficial part of the cerebellar external granular layer stained only for NGFR, while more deeply situated cells of the external granular layer stained positively for NGFR, MAP2, MAP5, tau, and chromogranin A, which correlates with the early outgrowth of parallel fibers. All phosphoisoforms of NF-M as well as the low (NF-L) and high (NF-H) molecular weight NF proteins and alpha-internexin were expressed in the somatodendritic domain of Purkinje cells and dentate nucleus neurons from about 20 weeks GA with a gradual compartmentalization of highly phosphorylated forms of NF-M and NF-H into axons by the end of gestation. Alpha-internexin was also expressed strongly in axons of the deep white matter from 20 weeks GA to adulthood. MAP2, synaptophysin, and NGFR showed early, transient expression in the somatodendritic domain of Purkinje cells followed by the appearance of a 220 kDa nestin-like peptide that continued to be expressed in adult Purkinje cells. Notably, developing dentate nucleus neurons expressed many of these proteins in a similar temporal sequence. Early in the developing cerebellar cortex, the expression of NF protein and synaptophysin occurred in discrete patches or columns similar to those described for other antigens (i.e., zebrins). Finally, radial glia were positive for vimentin, GFAP, and nestin from 8 weeks GA to 8 months postnatal. This study describes the distinct molecular programs of lineage commitment in cerebellar progenitor cells and in differentiating neurons and astrocytes of the human cerebellum. The acquisition of a mature molecular neuronal phenotype correlates with the establishment of structural polarity in cerebellar neurons. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The dendritic processes and perinuclear cytoplasm of stellate-shaped perisinusoidal cells in frozen sections of rat liver were specifically labeled with antisera raised independently to glial fibrillary acidic protein (GFAP), the major component of intermediate filaments in astrocytes. A liver protein co-migrating with authentic GFAP and immunoreactive with GFAP antisera was demonstrated with immunoblots of brain and liver extracts enriched in intermediate filament proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This study presents yet another example of immunoreactivity to GFAP, or a highly similar protein localized outside the CNS, in cells of mesenchymal origin exhibiting some morphological features common to astroglia.  相似文献   

16.
17.
Hyaluronan (HA) plays an important role in tissue reorganization in response to injury. The mechanisms by which HA participates in these processes are likely to include HA-binding proteins. Previously, we reported the cloning and initial characterization of a central nervous system (CNS)-specific HA-binding protein, BEHAB (brain enriched hyaluronan binding), which was independently cloned in another laboratory and named brevican. BEHAB/brevican mRNA is expressed in the ventricular zone coincident with the initial proliferation and migration of glial cells and in surgical samples of human glioma, where glial-derived cells proliferate and migrate. To determine whether BEHAB/brevican is also expressed during the cellular proliferation and migration associated with CNS injury, we have examined BEHAB/brevican expression during reactive gliosis. BEHAB/brevican occurs as secreted and cell-surface, glycosylphosphatidylinositol (GPI)-anchored, isoforms. The secreted, but not the GPI-anchored, isoform is up-regulated in response to a stab wound to the adult rat brain. The temporal regulation and spatial distribution of BEHAB/brevican expression parallel the gliotic response and the expression of the intermediate filament protein nestin. The up-regulation of BEHAB/brevican in response to CNS injury suggests a role for this extracellular matrix molecule in reactive gliosis. Glial process extension, a central element in the glial response to injury, may require the reexpression of both cytoskeletal and matrix elements that are normally expressed during the glial motility seen in the immature brain.  相似文献   

18.
Complex and variable morphological phenotypes pose a major challenge to the histopathological classification of neuroepithelial tumors. This applies in particular for low-grade gliomas and glio-neuronal tumors. Recently, we and others have identified microtubule-associated protein-2 (MAP2) as an immunohistochemical marker expressed in the majority of glial tumors. Characteristic cell morphologies can be recognized by MAP2 immunoreactivity in different glioma entities, i.e., process sparse oligodendroglial versus densely ramified astrocytic elements. Here, we describe MAP2-immunoreactivity patterns in a large series of various neuroepithelial tumors and related neoplasms (n=960). Immunohistochemical analysis led to the following conclusions: (1) specific pattern of MAP2-positive tumor cells can be identified in 95% of glial neoplasms; (2) ependymal tumors do not express MAP2 in their rosette-forming cell component; (3) tumors of the pineal gland as well as malignant embryonic tumors are also characterized by abundant MAP2 immunoreactivity; (4) virtually no MAP2 expression can be observed in the neoplastic glial component of glio-neuronal tumors, i.e. gangliogliomas; (5) malignant glial tumor variants (WHO grade III or IV) exhibit different and less specific MAP2 staining patterns compared to their benign counterparts (WHO grade I or II); (6) with the exception of melanomas and small cell lung cancers, MAP2 expression is very rare in metastatic and non-neuroepithelial tumors; (7) glial MAP2 expression was not detected in 56 non-neoplastic lesions. These data point towards MAP2 as valuable diagnostic tool for pattern recognition and differential diagnosis of low-grade neuroepithelial tumors.  相似文献   

19.
Glial fibrillary acidic (GFA) polypeptides are present in major categories of rat peripheral glia including non-myelin-forming Schwann cells, enteric glia and some satellite cells. They can be detected both immunochemically and immunohistochemically. The immunoreactivity is associated with a polypeptide which has an MW of 49 000, indistinguishable from that of glial fibrillary acidic protein (GFAP) from rat brain. In spite of this, the GFA polypeptides found in the peripheral nervous system and central nervous system are not identical since they can be distinguished both immunohistochemically and immunochemically by a monoclonal GFAP antibody which recognizes GFAP in astrocytes and some enteric glia, but not GFAP in non-myelin-forming Schwann cells, satellite cells and many enteric glia. GFA-related molecules can also be detected in human Schwann cells by immunofluorescence. The results suggest, however, that the glial filament polypeptides of peripheral glia and astrocytes are less closely related in the human than in the rat. The glial distribution of GFAP is closely paralleled by 2 cell surface proteins, Ran-2 and A5E3 antigen. Although GFAP, Ran-2 and A5E3 are individually expressed by diverse cell types, the phenotype GFAP+, Ran-2+, A5E3+ defines a narrow group including only non-myelin-forming Schwann cells, enteric glia and astrocytes. These observations suggest that the non-myelin-forming cells of the central and peripheral nervous system may share some common functions.  相似文献   

20.
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system (CNS), exerts its action via an interaction with specific receptors (e.g., GABAA and GABAB). These receptors are expressed not only in neurons but also on glial cells of the CNS, which might represent a target for the allosteric action of neuroactive steroids. Herein, we have demonstrated first that in the peripheral nervous system (PNS), the sciatic nerve and myelin-producing Schwann cells express both GABAA and GABAB receptors. Specific ligands, muscimol and baclofen, respectively, control Schwann-cell proliferation and expression of some specific myelin proteins (i.e., glycoprotein P0 and peripheral myelin protein 22 [PMP22]). Moreover, the progesterone (P) metabolite allopregnanolone, acting via the GABAA receptor, can influence PMP22 synthesis. In addition, we demonstrate that P, dihydroprogesterone, and allopregnanolone influence the expression of GABAB subunits in Schwann cells. The results suggest, at least in the myelinating cells of the PNS, a cross-interaction within the GABAergic receptor system, via GABAA and GABAB receptors and neuroactive steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号