首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major obstacle to successful islet transplantation for both type 1 and 2 diabetes is an inadequate supply of insulin-producing tissue. In vitro transdifferentiation of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into insulin-producing cells could provide an abundant source of cells for this procedure. For this study, we isolated and characterized human UCB-MSCs and induced them in vitro to differentiate into islet-like cell clusters using a 15-day protocol based on a combination of high-glucose, retinoic acid, nicotinamide, epidermal growth factor, and exendin-4. These clusters appeared about 9 days after pancreatic differentiation; expressed pancreatic beta-cell markers, including insulin, glucagon, Glut-2, PDX1, Pax4, and Ngn3; and could synthesize and secrete functional islet proteins at the end of the inducing protocol. The insulin-positive cells accounted for (25.2-3.36)% of whole induced cells. Although insulin secretion of those insulin-producing cells did not respond to glucose challenge very well, human UCB-MSCs have the ability to differentiate into islet-like cells in vitro and may be a potential new source for islet transplantation.  相似文献   

2.
3.
Recent success in pancreatic islet transplantation has energized the field to discover an alternative source of stem cells with differentiation potential to beta cells. Generation of glucose-responsive, insulin-producing beta cells from self-renewing, pluripotent human ESCs (hESCs) has immense potential for diabetes treatment. We report here the development of a novel serum-free protocol to generate insulin-producing islet-like clusters (ILCs) from hESCs grown under feeder-free conditions. In this 36-day protocol, hESCs were treated with sodium butyrate and activin A to generate definitive endoderm coexpressing CXCR4 and Sox17, and CXCR4 and Foxa2. The endoderm population was then converted into cellular aggregates and further differentiated to Pdx1-expressing pancreatic endoderm in the presence of epidermal growth factor, basic fibroblast growth factor, and noggin. Soon thereafter, expression of Ptf1a and Ngn3 was detected, indicative of further pancreatic differentiation. The aggregates were finally matured in the presence of insulin-like growth factor II and nicotinamide. The temporal pattern of pancreas-specific gene expression in the hESC-derived ILCs showed considerable similarity to in vivo pancreas development, and the final population contained representatives of the ductal, exocrine, and endocrine pancreas. The hESC-derived ILCs contained 2%-8% human C-peptide-positive cells, as well as glucagon- and somatostatin-positive cells. Insulin content as high as 70 ng of insulin/mug of DNA was measured in the ILCs, representing levels higher than that of human fetal islets. In addition, the hESC-derived ILCs contained numerous secretory granules, as determined by electron microscopy, and secreted human C-peptide in a glucose-dependent manner. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

4.
Recent findings suggest that bone marrow (BM) cells have the capacity to differentiate into a variety of cell types including endocrine cells of the pancreas. We report that BM derived cells, when cultured under defined conditions, were induced to trans-differentiate into insulin-producing cells. Furthermore, these insulin-producing cells formed aggregates that, upon transplantation into mice, acquired architecture similar to islets of Langerhans. These aggregates showed endocrine gene expression for insulin (I and II), glucagon, somatostatin and pancreatic polypeptide. Immunohistochemistry also confirmed that these aggregates were positive for insulin, somatostatin, pancreatic polypeptide and C-peptide. Also, Western and ELISA analysis demonstrated expression of proinsulin and/or secretion of active insulin upon glucose challenge. Subcapsular renal transplantation of these aggregates into hyperglycemic mice lowered circulating blood glucose levels and maintained comparatively normal glucose levels for up to 90 days post-transplantation. Graft removal resulted in rapid relapse and death in experimental animals. In addition, electron microscopy revealed these aggregates had acquired ultrastructure typically associated with mature beta (beta) cells. These results demonstrate that adult BM cells are capable of trans-differentiating into a pancreatic lineage in vitro and may represent a pool of cells for the treatment of diabetes mellitus.  相似文献   

5.
Wang J  Gao Y  Lu Y  Tang X  He D  Zhang Y 《生物医学工程学杂志》2011,28(6):1175-80, 1206
This study was to explore the induced differentiation of human mesenchymal stem cells (MSCs) modified by pancreatic and duodenal homeobox factor 1 (Pdx1) gene into insulin-producing cells in vitro. After recombined adenovirus vector with Pdx1 gene infected MSCs for 7 d, cells were induced by induction factors. The genes' expressions related to islet beta cells such as Pdx1, insulin, glucose transporter-2 (Glut2), were detected with RT-PCR, immunocytochemistry and Western blot. The levels of insulin and C peptide secretion were examined with chemiluminescence immunoassay. Insulin(+) cell rate was detected by flow cytometry. After infected by recombined adenovirus with Pdx1 and combined with induction factors, MSCs were aggregated and islet-like cell clusters formed. Dithizone staining of these cells was positive. The genes' expression related to islet beta cells, such as Pdx1, insulin, Glut2, could be detected. After induction, the islet-like cell clusters secreted insulin and C peptide. The levels of insulin and C peptide secretion increased with glucose stimulation. Insulin(+) cell rate was (11.61 +/- 4.83)%. It could be concluded that Pdx1 gene modified MSCs from human umbilical cord could be induced to differentiate into islet beta-like cells.  相似文献   

6.
Strategies designed to produce functional cells from stem cells or from mature cells hold great promise for treatment of different cell-degenerative diseases. Type 1 and type 2 diabetes are examples of such diseases. Although different in origin, both involve inadequate cell mass of insulin-producing beta cells, the most abundant cell type of pancreatic islets of Langerhans. Practical realization of such strategies is highly dependent on the elucidation of physiological mechanisms responsible for generation of new beta cells in the pancreas, which at this time are poorly defined. The in vitro differentiation systems allowing generation of new beta cells provide a valuable experimental tool for studying these mechanisms. Few such systems are currently available. In this work, we present an in vitro differentiation system, derived from adult mouse pancreas, capable of generating insulin-producing beta-like cells, which self-organize into islet-like cell clusters (ILCCs) during the course of the culture. Surprisingly, we found that along with the ILCCs, multiple cell types with phenotypic characteristics of embryonic central nervous system and neural crest are also generated. Moreover, several embryonic stem cell-specific genes are induced during the course of these cultures. These results suggest that the adult pancreas may contain cells competent to give rise to new endocrine and neural cells.  相似文献   

7.
Transplantation of pancreatic islet cells is the only known potential cure for diabetes mellitus. However, the difficulty in obtaining sufficient numbers of purified islets for transplantation severely limits its use. A renewable and clinically accessible source of stem cells capable of differentiating into insulin-secreting beta-cells might circumvent this limitation. Here, we report that human fetal bone marrow (BM)-derived mesodermal progenitor cells (MPCs) possess the potential to generate insulinsecreting islet-like clusters (ISILCs) when injected into human fetal pancreatic tissues implanted in severe combined immunodeficiency (SCID) mice. Seven essential genes involved in pancreatic endocrine development, including insulin, glucagon, somatostatin, pdx-1, glut-2, nkx 2.2, and nkx 6.1, are expressed in these BM-MPC-derived ISILCs, suggesting that ISILCs are generated through neogenesis of BM-MPCs. Our data further suggest that differentiation of BM-MPCs into ISILCs is not mediated by cell fusion. Insulin secretion from these ISILCs is regulated by glucose concentration in vitro, and transplantation of purified ISILCs normalizes hyperglycemia in streptozocin (STZ)- induced nonobese diabetic (NOD)/SCID mice.  相似文献   

8.
9.
Expansion of mesenchymal stem cells from human pancreatic ductal epithelium   总被引:13,自引:0,他引:13  
Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.  相似文献   

10.
11.
12.
Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.  相似文献   

13.
背景:1型糖尿病的胰岛移植治疗一直面临供体来源不足与免疫排斥两大关键问题,寻找一种自体来源的种子细胞通过组织工程方法制备类胰岛组织可以提供充足新型供体、降低异基因供体移植的不良反应。 目的:分析成人脂肪干细胞体外分化为对葡萄糖敏感、可分泌胰岛素的功能性胰岛样细胞团的能力,探索体外制备类胰岛组织的技术路线。 方法:首先分离纯化人体脂肪干细胞,采用新型植物诱导剂Conophylline与其他诱导因子的不同组合将脂肪干细胞诱导分化为胰岛样细胞团,观察不同组合的诱导分化效率,并利用特异性染色、RT-PCR,免疫细胞化学等方法对诱导分化后的细胞团在基因水平与蛋白水平上进行鉴定,最后用ELISA法检测细胞团在不同浓度葡萄糖刺激下胰岛素的分泌情况。 结果与结论:脂肪干细胞具有多能干细胞特性,可诱导分化为具有胰岛素分泌和葡萄糖浓度反应性类胰岛细胞团;Conophylline与尼克酰胺联合诱导可大幅度提高诱导分化效率。  相似文献   

14.
背景:体外诱导人骨髓间充质干细胞定向分化为胰岛样细胞,目前尚无成熟的鉴定方案。 目的:探讨胎儿骨髓间充质干细胞在适当的条件下体外分化为胰岛样分泌细胞的可能性。   方法:将胎儿骨髓间充质干细胞与胎儿胰岛素细胞分别接种于Transwell 双层细胞培养板上下层共培养。对照组中的骨髓间充质干细胞仅用胰岛细胞培养基培养。倒置相差显微镜观察胎儿骨髓间充质干细胞、胎儿胰岛细胞的形态,放射免疫分析法检测共培养刺激下胰岛素的分泌情况。 结果与结论:未经诱导的骨髓间充质干细胞呈长梭形贴壁生长,与胰岛细胞共培养的骨髓间充质干细胞逐渐变圆,并聚集成团,共培养9 d后骨髓间充质干细胞经RAI检测分泌大量胰岛素,DTZ染色为阳性,细胞免疫化学检测阳性。而对照组无胰岛素释放。提示在适当的培养条件下,胎儿骨髓间充质干细胞具有向胰岛素分泌细胞分化的能力。  相似文献   

15.
背景:脐带Wharton’s Jelly中间充质干细胞可以向胰岛样细胞诱导分化。 目的:验证脐带源间充质干细胞与大鼠胰腺细胞共培养向胰岛样细胞诱导分化的可能性,并观察移植后对糖尿病大鼠血糖的影响。 方法:分离、诱导、传代脐带Wharton’s Jelly中间充质干细胞,再与大鼠胰腺细胞共培养,诱导成胰岛细胞团样组织。将大鼠分为3组,正常对照组不进行移植及造模;模型组仅制备糖尿病大鼠模型;实验组造模后将胰岛样细胞移植入糖尿病大鼠肾脏包膜。 结果与结论:脐带Wharton’s Jelly细胞培养中有细胞从组织块中爬出,第7天形态发生变化,贴壁细胞部分变成梭形。分离培养的细胞表达具有间充质干细胞表面特有标志CD44、CD29、CD105,不表达CD34、CD45、CD14。诱导第7,10天PDX-1及人胰岛素强染色;胰岛素及C-肽浓度较单纯培养组明显升高;PDX-1及人胰岛素mRNA诱导第7、10天较高表达。移植第1周大鼠尾尖血糖链脲佐菌素实验组明显低于模型组(P < 0.01),但明显高于正常照组(P < 0.01)。8周链脲佐菌素实验组肾脏被膜下发现胞核染棕色染色的Brdu阳性、胞浆棕色染色的胰岛素阳性细胞。结果表明,脐带Wharton’s Jelly中存在脐带源间充质干细胞,与大鼠胰腺细胞共培养可促进间充质干细胞向胰岛样细胞诱导分化,移植入糖尿病大鼠肾脏被膜下,可显著降低糖尿病大鼠血糖。  相似文献   

16.
Human embryonic stem (hES) cells represent a potentially unlimited source of transplantable beta-cells for the treatment of diabetes. Here we describe a differentiation strategy that reproducibly directs HES3, an National Institutes of Health (NIH)-registered hES cell line, into cells of the pancreatic endocrine lineage. HES3 cells are removed from their feeder layer and cultured as embryoid bodies in a three-dimensional matrix in the presence of Activin A and Bmp4 to induce definitive endoderm. Next, growth factors known to promote the proliferation and differentiation of pancreatic ductal epithelial cells to glucose-sensing, insulin-secreting beta-cells are added. Pdx1 expression, which identifies pancreatic progenitors, is detected as early as day 12 of differentiation. By day 34, Pdx1+ cells comprise between 5% and 20% of the total cell population and Insulin gene expression is up-regulated, with release of C-peptide into the culture medium. Unlike another recent report of the induction of insulin+ cells in differentiated hES cell populations, we are unable to detect the expression of other pancreatic hormones in insulin+ cells. When transplanted into severe combined immunodeficiency (SCID) mice, differentiated cell populations retain their endocrine identity and synthesize insulin.  相似文献   

17.
Islet-like cells derived from embryonic stem (ES) cells may be a promising therapeutic option for future diabetes treatment. Here, we demonstrated a five-stage protocol with adding exendin-4 instead of nicotinamide finally could generate islet-like cells from human embryonic stem (ES) cells. Immunofluorescence analysis revealed a high percentage of c-peptide positive cells in the derivation. However, in addition to insulin/c-peptide, most cells also coexpressed PDX-1 (pancreas duodenum homeobox-1), glucagon, somatostatin or pancreatic polypeptide. Insulin and other pancreatic beta-cell-specific genes were all present in the differentiated cells. Insulin secretion could be detected and increased significantly by adding KCL in high glucose concentration in vitro. Furthermore, subcutaneous transplantation of scaffolds seeded with the islet-like cells or cell transplantation under kidney capsules for further differentiation in vivo could improve 6 h fasted blood glucose levels and diabetic phenotypes in streptozotocin-induced diabetic SCID mice. More interestingly, blood vessels of host origin, characterized by mouse CD31 immunostaining, invaded the cell–scaffold complexes. This work reveals a five-stage protocol with adding exendin-4 may be an effective protocol on the differentiation of human ES cells into islet-like cells, and suggests scaffolds can serve as vehicles for islet-like cell transplantation.  相似文献   

18.
19.
20.
Cellular therapies to treat Type 1 diabetes are being devised and the use of human embryonic stem cells (hESCs) offers a solution to the issue of supply, because hESCs can be maintained in a pluripotent state indefinitely. Furthermore, hESCs have advantages in terms of their plasticity and reduced immunogenicity. Several strategies that have so far been investigated indicate that hESCs are capable of differentiating into insulin producing beta-cell surrogates. However the efficiency of the differentiation procedures used is generally quite low and the cell populations derived are often highly heterogenous. A strategy that appears to have long term potential is to design differentiation procedures based on the ontogeny of the beta-cell. The focus of this strategy is to replicate signaling processes that are known to be involved in the maturation of a beta-cell. The earliest pancreatic progenitors found in the developing vertebrate fetus are produced via a process known as gastrulation and form part of the definitive endoderm germ layer. hESCs have recently been differentiated into definitive endoderm with high efficiency using a differentiation procedure that mimics the signaling that occurs during gastrulation and the formation of the definitive endoderm. Subsequent events during pancreas development involve a section of the definitive endoderm forming into pancreatic epithelium, which then branches into the pancreatic mesenchyme to form islet clusters of endocrine cells. A proportion of the endocrine precursor cells within islets develop into insulin producing beta-cells. The challenge currently is to design hESC differentiation procedures that mimic the combined events of these stages of beta-cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号