首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide (TiO2) are among most frequently used nanoparticles (NPs). They are present in a variety of consumer products, including food industry in which they are employed as an additive. The potential toxic effects of these NPs on mammal cells have been extensively studied. However, studies regarding neurotoxicity and specific effects on neuronal systems are very scarce and, to our knowledge, no studies on human neuronal cells have been reported so far. Therefore, the main objective of this work was to investigate the effects of two types of TiO2 NPs, with different crystalline structure, on human SHSY5Y neuronal cells. After NPs characterization, a battery of assays was performed to evaluate the viability, cytotoxicity, genotoxicity and oxidative damage in TiO2 NP-exposed SHSY5Y cells. Results obtained showed that the behaviour of both types of NPs resulted quite comparable. They did not reduce the viability of neuronal cells but were effectively internalized by the cells and induced dose-dependent cell cycle alterations, apoptosis by intrinsic pathway, and genotoxicity not related with double strand break production. Furthermore, all these effects were not associated with oxidative damage production and, consequently, further investigations on the specific mechanisms underlying the effects observed in this study are required.  相似文献   

2.
Titanium dioxide nanoparticles (TNP) are nanomaterials which have various applications including photocatalysts, cosmetics, and pharmaceuticals because of their high stability, anticorrosiveness, and photocatalytic properties. Induction of cytokines and potential chronic inflammation were investigated in mice treated with TNP (5 mg/kg, 20 mg/kg, and 50 mg/kg) by a single intratracheal instillation. Pro-inflammatory cytokines such as IL-1, TNF-a, and IL-6 were significantly induced in a dose-dependent manner at day 1 after instillation. The levels of Th1-type cytokines (IL-12 and IFN-γ) and Th2-type cytokines (IL4, IL-5 and IL-10) were also elevated dose-dependently at day 1 and the inflammatory responses were sustained until the remainder of experimental period for 14 days. By the induction of Th2-type cytokines, the increased B cell distributions both in spleen and in blood, and increased IgE production in BAL fluid and serum were observed. In lung tissue, increase of inflammatory proteins (MIP and MCP) and granuloma formation were observed. Furthermore, the expressions of genes related with antigen presentation (H2-T23, H2-T17, H2-K1, and H2-Eb1) and genes related with the induction of chemotaxis of immune cells (Ccl7, Ccl3, Cxcl1, Ccl4, Ccl2) were markedly increased using microarray analysis. From these data, it could be suggested that TNP possibly cause chronic inflammatory diseases through Th2-mediated pathway in mice.  相似文献   

3.
Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild‐type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN‐γ, TNF‐α, and TGF‐β in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up‐regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 782–792, 2015.  相似文献   

4.
Titanium (Ti) is currently the most widely used material for the manufacture of orthopedic and dental implants. Changes in the surface of commercial pure Ti (cp Ti) can determine the functional response of cells, and is therefore a critical factor for the success of the implant. However, the genotoxicity of titanium surfaces has been poorly studied. Thus, the purpose of this study was to evaluate the genotoxic potential of a new titanium surface developed by plasma treatment using argon-ion bombardment and compare it with an untreated titanium surface. Accordingly, comet assay, analysis of chromosomal aberrations (CAs), and Cytokinesis Block Micronucleus (CBMN) assay were carried out, using CHO-K1 (Chinese hamster ovary) cells grown on both titanium surfaces. Our results show that the untreated titanium surface caused a significant increase in % tail moment, in the number of cells with CAs, tetraploidy, micronucleus frequency, and other nuclear alterations when compared with the negative control and with the plasma-treated titanium surface. This difference may be attributed to increased surface roughness and changes in titanium oxide layer thickness.  相似文献   

5.
《Inhalation toxicology》2013,25(4):179-191
Abstract

Context: Titanium dioxide (TiO2) nanoparticles (NPs) are regarded as relatively non-toxic in concentrations occurring in occupational environments. Nevertheless, it is conceivable that adverse health effects may develop in sensitive populations such as individuals with respiratory diseases.

Objective: We investigated whether single or repeated exposure to TiO2 could aggravate inflammatory responses in naïve mice and mice with ovalbumin (OVA)-induced airway inflammation.

Methods: Exposure to aerosolized TiO2 was performed during OVA sensitization, before, or during the OVA challenge period. The effects on respiratory physiology, inflammatory cells in bronchoalveolar lavage (BAL) and inflammatory mediators in BAL and serum were assessed 24?h after the last OVA challenge or TiO2 exposure.

Results: A single exposure of TiO2 had a marked effect on responses in peripheral airways and increasing infiltration of neutrophils in airways of naïve animals. Marked aggravation of airway responses was also observed in animals with allergic disease provided that the single dose TiO2 was given before allergen challenge. Repeated exposures to TiO2 during sensitization diminished the OVA-induced airway eosinophilia and airway hyperresponsiveness but concomitant exposure to TiO2 during the OVA challenge period resulted in neutrophilic airway inflammation and a decline in general health condition as indicated by the loss of body weight.

Conclusion: We conclude that inhalation of TiO2 may aggravate respiratory diseases and that the adverse health effects are highly dependent on dose and timing of exposure. Our data imply that inhalation of NPs may increase the risk for individuals with allergic airway disease to develop symptoms of severe asthma.  相似文献   

6.
Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated.  相似文献   

7.
目的优选二氧化钛马来酸氯苯那敏乳膏剂的最优处方,并初步考察其抗过敏作用。方法以乳膏剂色泽光泽度考察、稳定性考察及显微镜法观察作为考察指标,采用单因素考察和正交试验优选最优处方。并将该制剂涂抹于被紫外线照射的小鼠皮肤上。结果制备40 g乳膏中二氧化钛的投药量为3 g、扑尔敏的投药量为0.2 g、乳化时间为30 min、乳化温度为70℃时,乳膏效果较好。小鼠背部皮肤HE染色观察显示其有明显的抗过敏作用。结论二氧化钛马来酸氯苯那敏乳膏可有效抗紫外线过敏。  相似文献   

8.
With the extensive application of titanium dioxide (TiO2) nanoparticles (NPs) in food industry, there is a rising debate concerning the possible risk associated with exposure to TiO2 NPs. The purpose of this study is to evaluate the genotoxicity of TiO2 NPs using in vivo and in vitro test systems. In vivo study, the adult male Sprague-Dawley rats were exposed to anatase TiO2 NPs (75 ± 15 nm) through intragastric administration at 0, 10, 50 and 200 mg/kg body weight every day for 30 days. The γ-H2AX assay showed TiO2 NPs could induce DNA double strand breaks in bone marrow cells after oral administration. However, the micronucleus test revealed that the oral-exposed TiO2 NPs did not cause damage to chromosomes or mitotic apparatus observably in rat bone marrow cells. In vitro study, Chinese hamster lung fibroblasts (V79 cells) were exposed to TiO2 NPs at the dose of 0, 5, 10, 20, 50 and 100 μg/mL. Significant decreases in cell viability were detected in all the treated groups after 24 h and 48 h exposure. Significant DNA damage was only observed at the concentration of 100 μg/mL after 24 h treatment using the comet assay. The obvious gene mutation was observed at the concentration of 20 and 100 μg/mL after 2 h treatment using hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene mutation assay. This study presented a comprehensive genotoxic evaluation of TiO2 NPs, and TiO2 NPs were shown to be genotoxic both in vivo and in vitro tests. The gene mutation and DNA strand breaks seem to be more sensitive genetic endpoints for the detection of TiO2 NPs induced genotoxic effects.  相似文献   

9.
《Nanotoxicology》2013,7(3):211-226
TiO2 is a widely used manufactured nanomaterial and the opportunity for human exposure makes it necessary to study its health implications. Using murine models for inflammation, size effects of inflammatory response in instillation and acute inhalation exposures of TiO2 nanoparticles with manufacturers’ average particles sizes of 5 and 21 nm were investigated. The properties of the primary nanoparticles, nanoparticle agglomerates aerosol and instillation solution for both sized nanoparticles were evaluated. Mice were acutely exposed in a whole-body exposure chamber or through nasal instillation and toxicity was assessed by enumeration of total and differential cells, determination of total protein, LDH activity and inflammatory cytokines in BAL fluid. Lungs were also evaluated for histopathological changes. Results show the larger TiO2 nanoparticles were found to be moderately, but significantly, more toxic. The nanoparticles had different agglomeration states which may be a factor as important as the surface and physical characteristics of the primary nanoparticles in determining toxicity.  相似文献   

10.
目的 探究米诺环素光催化降解条件,有利于水环境中米诺环素的防治。方法 米诺环素是一种新型污染物。自然光条件下米诺环素与可见光没有明显的响应,在体系中加入TiO2光敏剂,米诺环素可发生显著的可见光降解。通过研究TiO2的用量,米诺环素的浓度,溶液中的金属离子对TiO2可见光降解米诺环素的影响。结果 TiO2诱导下的光催化降解可有效的去除水环境中的米诺环素,pH3,温度为75℃,米诺环素的初始浓度为20mg/L,TiO2的浓度为1.0g/L时米诺环素降解率最高,最高降解率为78%。结论 TiO2能够有效的降解废水中的米诺环素,为此类废水的净化提供方法。  相似文献   

11.
The ubiquitous presence of nanoparticles (NPs) together with increasing evidence linking them to negative health effects points towards the need to develop the understanding of mechanisms by which they exert toxic effects. This study was designed to investigate the role of surface area and oxidative stress in the cellular effects of two chemically distinct NPs, carbon black (CB) and titanium dioxide (TiO2), on the bronchial epithelial cell line (16HBE14o-). CB and TiO2 NPs were taken up by 16HBE cells in a dose-dependent manner and were localized within the endosomes or free in the cytoplasm. Oxidative stress produced inside the cell by NPs was well correlated to the BET surface area and endocytosis of NPs. Contrary to intracellular conditions only CB NPs produced reactive oxygen species (ROS) under abiotic conditions. Exposure of cells to NPs resulted in an increased granulocyte macrophage colony stimulating factor (GM-CSF) mRNA expression and secretion. Inflammatory effects of NPs were dependent on the surface area and were mediated through oxidative stress as they were inhibited by catalase. It can be concluded that NP induced oxidative stress and pro-inflammatory responses are well correlated not only with the BET (Brunauer, Emmett and Teller) surface of the individual NPs but also with the internalized amount of NPs. Differences of even few nanometers in primary particle size lead to significant changes in inflammatory and oxidative stress responses.  相似文献   

12.
Nano-titanium dioxide (TiO2NPs) is widely used for its extremely high stability, corrosion resistance, and photocatalytic properties and has penetrated into various fields of production and life. Assessing its toxicity to different organs should be a key part of preclinical toxicity assessment of TiO2NPs, which is relatively incomprehensive yet. Therefore, this review focuses on the toxic effects of TiO2NPs on various organs in mammals and biological mechanisms from different organs. The commonality of toxic effects on various target organs reflected in tissue structure damage and dysfunction, such as liver damage and dysfunction; pulmonary fibrosis; and renal impairment (including hematuria and nephritis); damage of brain tissue and neurons; alteration of intestinal villi; and weight loss. And effects on the reproductive system are affected by different sexes, including ovarian dysfunction, testicular development damage, and sperm viability reduction. We believe that the toxic mechanisms of TiO2NPs in target organs have commonalities, such as oxidative stress, inflammatory responses, and organelle damage. However, different target organ toxicities also have their specificities. TiO2NPs disturb the intestinal flora and cause undesirable changes in feces products. And in spleen are infiltration of neutrophils and lymphadenopathy and eventually immune deficiency. Although the toxic pathways are different, but there may be a close link between the different toxic pathways. In this article, the main manifestations of the toxic effects of titanium dioxide nanoparticles on major mammalian organs are reviewed, in order to provide basic data for their better application from a medical perspective.  相似文献   

13.
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l–1 for Au NPs, 32.3 mg l–1 for Ag NPs and 100 mg l–1 for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non‐genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
目的探讨不同化学组成的纳米颗粒对人胃癌BGC-823细胞的毒性作用及其机制。方法分别以纳米活性炭(ACNP)、纳米二氧化硅(SiO2)和纳米二氧化钛(TiO2)100,200,400,800和1600mg·L-1悬液作用BGC-823细胞24,48和72h,MTT法检测细胞增殖,比色法检测乳酸脱氢酶(LDH)漏出量。ACNP100mg·L-1,纳米SiO2200mg·L-1,纳米TiO2200mg·L-1作用BGC-823细胞24h,透射电镜观察细胞形态及超微结构的影响。纳米SiO2和纳米TiO2100,200,400mg·L-1作用细胞24h后,AnnexinⅤ-FITC/PI双染法检测细胞凋亡。ACNP、纳米SiO2和纳米TiO2100,200mg·L-1作用细胞48h后,用PI染色法检测细胞周期。结果 ACNP,纳米SiO2和纳米TiO2均能明显抑制BGC-823细胞的增殖,作用72h后的IC50分别为874.2,676.2和883.5mg·L-1。与正常对照组相比,纳米SiO2100~800mg·L-1组LDH漏出量均显著升高,并呈浓度依赖性(r=0.9751,P<0.01),而纳米TiO2100mg·L-1作用细胞24h,LDH漏出量与对照组相比没有显著差异,但随着作用浓度增加和作用时间延长,各组LDH漏出量明显高于对照组(P<0.05)。ACNP100mg·L-1作用24h后,细胞出现细胞质浓缩、细胞核固缩和裂解。纳米SiO2200mg·L-1和纳米TiO2200mg·L-1作用24h后均出现细胞坏死。纳米颗粒ACNP,SiO2和TiO2作用组均可见纳米颗粒进入细胞及线粒体损伤。纳米SiO2100mg·L-1和纳米TiO2100mg·L-1作用24h,细胞坏死率与正常对照组(4.59±1.20)%相比显著升高(P<0.01),分别为(39.40±1.72)%和(14.12±0.90)%(P<0.05);细胞凋亡率与对照组相比没有显著差异。ACNP,纳米SiO2和纳米TiO2100和200mg·L-1作用细胞48h后,S期细胞增多,G0/G1期细胞减少,细胞碎片增多;ACNP组亚二倍体细胞增多。结论 ACNP、纳米SiO2和纳米TiO2能够抑制BGC-823细胞的增殖。ACNP可诱导细胞凋亡。纳米SiO2和纳米TiO2能损伤细胞膜,造成以细胞坏死为主的毒性损伤。  相似文献   

15.
An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8 nm) and TiO2 nanoparticles (TiO2NPs; 6 nm and 35 nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO2NPs in BBB.  相似文献   

16.
Titanium dioxide (TiO2) is used extensively as a white pigment in the food industry, personal care, and a variety of products of everyday use. Although TiO2 has been categorized as a bioinert material, recent evidence has demonstrated different toxicity profiles of TiO2 nanoparticles (NPs) and a potential health risk to humans. Studies indicated that titanium dioxide enters the systemic circulation and accumulates in the lungs, liver, kidneys, spleen, heart, and central nervous system and may cause oxidative stress and tissue damage in these vital organs. Recently, some studies have raised concerns about the possible detrimental effects of TiO2 NPs on glucose homeostasis. However, the findings should be interpreted with caution due to the methodological issues. This article aims to evaluate current evidence regarding the effects of TiO2 NPs on glucose homeostasis, including possible underlying mechanisms. Furthermore, the limitations of current studies are discussed, which may provide a comprehensive understanding and new perspectives for future studies in this field.  相似文献   

17.
Nanomaterials are defined as substances with at least one dimension smaller than 100 nm in size and are used for a multitude of purposes. Titanium dioxide nanoparticles (TiO2-NPs) are an important material used as an additive in pharmaceutical and cosmetic products. Due to their high surface-to-mass index, TiO2 nanoparticles show different physical and chemical characteristics compared to the bulk substance. The knowledge about geno- or cytotoxic effects of TiO2-NPs is incomplete since existing studies show contrary results.  相似文献   

18.
Nanoparticles can be formed following degradation of medical devices such as orthopedic implants. To evaluate the safety of titanium alloy orthopedic materials, data are needed on the long‐term distribution and tissue effects of injected titanium nanoparticles in experimental animals. In this study, we evaluated the tissue distribution and histopathological effects of titanium dioxide (TiO2) nanoparticles (approximately 120 nm diameter) in mice after intravenous (i.v.; 56 or 560 mg kg?1 per mouse) or subcutaneous (s.c.; 560 or 5600 mg kg?1 per mouse) injection on two consecutive days. Animals were examined 1 and 3 days, and 2, 4, 12 and 26 weeks after the final injection. When examined by light microscopy, particle agglomerates identified as TiO2 were observed mainly in the major filtration organs – liver, lung and spleen – following i.v. injection. Particles were still observed 26 weeks after injection, indicating that tissue clearance is limited. In addition, redistribution within the histological micro‐compartments of organs, especially in the spleen, was noted. Following s.c. injection, the largest particle agglomerates were found mainly in the draining inguinal lymph node, and to a lesser extent, the liver, spleen and lung. With the exception of a foreign body response at the site of s.c. injection and the appearance of an increased number of macrophages in the lung and liver, there was no histopathological evidence of tissue damage observed in any tissue at any time point. Published 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

19.
Titanium dioxide (TiO(2)) is a potential carcinogenic/mutagenic agent although it is used in many areas including medical industries and cosmetics. Boron (as boric acid and borax) has also well-described biological effects and therapeutic benefits. In a previous study, sister-chromatid exchanges (SCEs) and micronuclei (MN) rates were assessed in control and TiO(2)-treated (1, 2, 3, 5, 7.5 and 10 microm) human whole blood cultures. The results showed that the rates of SCE (at 2, 3, 5, 7.5 and 10 microm) and MN (at 5, 7.5 and 10 microm) formation in peripheral lymphocytes were increased significantly by TiO(2) compared with the controls. The present study also investigated the genetic effects of boric acid and borax (2.5, 5 and 10 microm) on cultures with and without TiO(2) addition. No significant increase in SCE and MN frequencies were observed at all concentrations of boron compounds. However, TiO(2)-induced SCE and MN could be reduced significantly by the presence of boric acid and borax. In conclusion, this study indicated for the first time that boric acid and borax led to an increased resistance of DNA to damage induced by TiO(2).  相似文献   

20.
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food‐related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco‐2 cells, differentiated Caco‐2 cells and Caco‐2 monolayer. TiO2 NPs with a concentration less than 200 µg ml–1 did not induce any toxicity in differentiated cells and Caco‐2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml–1 inhibited the growth of undifferentiated Caco‐2 cells. Undifferentiated Caco‐2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco‐2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号