首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riu E  Mas A  Ferre T  Pujol A  Gros L  Otaegui P  Montoliu L  Bosch F 《Diabetes》2002,51(3):704-711
Insulin replacement therapy in type 1 diabetes is imperfect because proper glycemic control is not always achieved. Most patients develop microvascular, macrovascular, and neurological complications, which increase with the degree of hyperglycemia. Engineered muscle cells continuously secreting basal levels of insulin might be used to improve the efficacy of insulin treatment. Here we examined the control of glucose homeostasis in healthy and diabetic transgenic mice constitutively expressing mature human insulin in skeletal muscle. Fed transgenic mice were normoglycemic and normoinsulinemic and, after an intraperitoneal glucose tolerance test, showed increased glucose disposal. When treated with streptozotocin (STZ), transgenic mice showed increased insulinemia and reduced hyperglycemia when fed and normoglycemia and normoinsulinemia when fasted. Injection of low doses of soluble insulin restored normoglycemia in fed STZ-treated transgenic mice, while STZ-treated controls remained highly hyperglycemic, indicating that diabetic transgenic mice were more sensitive to the hypoglycemic effects of insulin. Furthermore, STZ-treated transgenic mice presented normalization of both skeletal muscle and liver glucose metabolism. These results indicate that skeletal muscle may be a key target tissue for insulin production and suggest that muscle cells secreting basal levels of insulin, in conjunction with insulin therapy, may permit tight regulation of glycemia.  相似文献   

2.
Lee YS  Shin S  Shigihara T  Hahm E  Liu MJ  Han J  Yoon JW  Jun HS 《Diabetes》2007,56(6):1671-1679
Long-term treatment with glucagon-like peptide (GLP)-1 or its analog can improve insulin sensitivity. However, continuous administration is required due to its short half-life. We hypothesized that continuous production of therapeutic levels of GLP-1 in vivo by a gene therapy strategy may remit hyperglycemia and maintain prolonged normoglycemia. We produced a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) under the cytomegalovirus promoter, intravenously injected it into diabetic ob/ob mice, and investigated the effect of this treatment on remission of diabetes, as well as the mechanisms involved. rAd-GLP-1-treated diabetic ob/ob mice became normoglycemic 4 days after treatment, remained normoglycemic over 60 days, and had reduced body weight gain. Glucose tolerance tests found that exogenous glucose was cleared normally. rAd-GLP-1-treated diabetic ob/ob mice showed improved beta-cell function, evidenced by glucose-responsive insulin release, and increased insulin sensitivity, evidenced by improved insulin tolerance and increased insulin-stimulated glucose uptake in adipocytes. rAd-GLP-1 treatment increased basal levels of insulin receptor substrate (IRS)-1 in the liver and activation of IRS-1 and protein kinase C by insulin in liver and muscle; increased Akt activation was only observed in muscle. rAd-GLP-1 treatment reduced hepatic glucose production and hepatic expression of phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and fatty acid synthase in ob/ob mice. Taken together, these results show that a single administration of rAd-GLP-1 results in the long-term remission of diabetes in ob/ob mice by improving insulin sensitivity through restoration of insulin signaling and reducing hepatic gluconeogenesis.  相似文献   

3.
S Farrace  L Rossetti 《Diabetes》1992,41(11):1453-1463
Both hyperinsulinemia and hyperglycemia stimulate skeletal muscle glucose uptake. However, the intracellular metabolic fate of the phosphorylated glucose may be different when the prevalent stimulus for glucose uptake is hyperinsulinemia or hyperglycemia. To define the impact of hyperglycemia on the intracellular glucose disposal, we studied control and diabetic conscious rats under four experimental conditions: 1) basal insulin and basal glucose; 2) basal insulin and high glucose; 3) high insulin and basal glucose; and 4) high insulin and high glucose. Under both basal insulin (130 pM) and high insulin (2500 pM), hyperglycemia (15 mM) increased glucose uptake and muscle and liver glycogen synthesis similarly in control and diabetic rats. Hyperglycemia resulted in a more significant decline in the muscle G-6-P concentration in diabetic rats than in control rats, suggesting activation of intracellular glucose metabolism. The diabetic skeletal muscle glycogen synthase was severely resistant to insulin stimulation compared with control (FV0.1 = 0.31 +/- 0.04 vs. 0.49 +/- 0.03; Km = 0.19 +/- 0.05 vs. 0.10 +/- 0.01 mM; P < 0.01), but it was markedly responsive to glucose stimulation under both basal (FV0.1 = 0.38 +/- 0.03 vs. 0.21 +/- 0.03; Km = 0.10 +/- 0.01 vs. 0.35 +/- 0.08 mM) and high insulin (FV0.1 = 0.65 +/- 0.07 vs. 0.31 +/- 0.04; Km = 0.11 +/- 0.02 vs. 0.19 +/- 0.05 mM). By contrast, in control rats, hyperglycemia did not exert any stimulatory effect on skeletal muscle glycogen synthase. Thus, some metabolic alteration associated with the diabetic state renders the skeletal muscle glycogen synthase selectively responsive to glucose stimulation. This may represent a compensatory mechanism for the severe impairment in insulin's activation of this enzyme in diabetes.  相似文献   

4.
Type 1 diabetes mellitus(T1DM) is a chronic autoimmune disease targeting the pancreatic beta-cells and rendering the person hypoinsulinemic and hyperglycemic. Despite exogenous insulin therapy, individuals with T1 DM will invariably develop long-term complications such as blindness, kidney failure and cardiovascular disease. Though often overlooked, skeletal muscle isalso adversely affected in T1 DM, with both physical and metabolic derangements reported. As the largest metabolic organ in the body, impairments to skeletal muscle health in T1 DM would impact insulin sensitivity, glucose/lipid disposal and basal metabolic rate and thus affect the ability of persons with T1 DM to manage their disease. In this review, we discuss the impact of T1 DM on skeletal muscle health with a particular focus on the proposed mechanisms involved. We then identify and discuss established and potential adjuvant therapies which, in association with insulin therapy, would improve the health of skeletal muscle in those with T1 DM and thereby improve disease managementultimately delaying the onset and severity of other longterm diabetic complications.  相似文献   

5.
Glycogen synthase (GS) activity is reduced in skeletal muscle of type 2 diabetes, despite normal protein expression, consistent with altered GS regulation. Glycogen synthase kinase-3 (GSK-3) is involved in regulation (phosphorylation and deactivation) of GS. To access the potential role of GSK-3 in insulin resistance and reduced GS activity in type 2 diabetes, the expression and activity of GSK-3 were studied in biopsies of vastus lateralis from type 2 and nondiabetic subjects before and after 3-h hyperinsulinemic (300 mU x m(-2) x min(-1))-euglycemic clamps. The specific activity of GSK-3alpha did not differ between nondiabetic and diabetic muscle and was decreased similarly after 3-h insulin infusion. However, protein levels of both alpha and beta isoforms of GSK-3 were elevated (approximately 30%) in diabetic muscle compared with lean (P < 0.01) and weight-matched obese nondiabetic subjects (P < 0.05) and were unchanged by insulin infusion. Thus, both basal and insulin-stimulated total GSK-3 activities were elevated by approximately twofold in diabetic muscle. GSK-3 expression was related to in vivo insulin action, as GSK-3 protein was negatively correlated with maximal insulin-stimulated glucose disposal rates. In summary, GSK-3 protein levels and total activities are 1) elevated in type 2 diabetic muscle independent of obesity and 2) inversely correlated with both GS activity and maximally insulin-stimulated glucose disposal. We conclude that increased GSK-3 expression in diabetic muscle may contribute to the impaired GS activity and skeletal muscle insulin resistance present in type 2 diabetes.  相似文献   

6.
Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In wild-type cells, we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin-null myotubes, confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases, including type 2 diabetes.  相似文献   

7.
Insulin-dependent diabetes in rats is characterized by abnormalities of post-binding insulin signaling reactions that are not fully corrected by exogenous insulin therapy. The aim of this study was to investigate the effects of islet transplantation on insulin signaling in skeletal muscle and myocardium of streptozocin (STZ)-induced diabetic rats. Control rats, untreated diabetic rats, and diabetic rats transplanted with syngeneic islets under the kidney capsule were studied. Compared with controls, diabetic rats were characterized by multiple insulin signaling abnormalities in skeletal muscle, which included 1) increased insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit and insulin receptor substrates IRS-1 and IRS-2, 2) increased substrate tyrosine phosphorylation in the basal state, 3) a decreased amount of IRS-1 protein, 4) markedly elevated basal and insulin-stimulated phosphatidylinositol (PI) 3-kinase activity in anti-IRS-1 immunoprecipitates from total tissue extracts, and 5) increased PI 3-kinase activity in low-density microsomes. A similar augmentation of insulin receptor and substrate tyrosine phosphorylation in response to STZ-diabetes was also found in myocardium, although with lower magnitude than that found in skeletal muscle. In addition, STZ-diabetes resulted in decreased IRS-1 and increased IRS-2 protein levels in myocardium. Islet transplantation fully corrected the diabetes-induced changes in protein tyrosine phosphorylation and PI 3-kinase activity and normalized IRS-1 and IRS-2 protein content in both skeletal muscle and myocardium. Thus, insulin delivered into the systemic circulation by pancreatic islets transplanted under the kidney capsule can adequately correct altered insulin signaling mechanisms in insulinopenic diabetes.  相似文献   

8.
Islet transplantation is an effective method to obtain long-term glycemic control for patients with type 1 diabetes, yet its widespread use is limited by an inadequate supply of donor islets. The hormone leptin has profound glucose-lowering and insulin-sensitizing action in type 1 diabetic rodent models. We hypothesized that leptin administration could reduce the dose of transplanted islets required to achieve metabolic control in a mouse model of type 1 diabetes. We first performed a leptin dose-response study in C57Bl/6 mice with streptozotocin (STZ)-induced diabetes to determine a leptin dose insufficient to reverse hyperglycemia. Subsequently, we compared the ability of suboptimal islet transplants of 50 or 125 syngeneic islets to achieve glycemic control in STZ-induced diabetic C57Bl/6 mice treated with or without this dose of leptin. The dose-response study revealed that leptin reverses STZ-induced diabetes in a dose-dependent manner. Supraphysiological leptin levels were necessary to restore euglycemia but simultaneously increased risk of hypoglycemia, and also lost efficacy after 12 days of administration. In contrast, 1 µg/day leptin only modestly reduced blood glucose but maintained efficacy throughout the study duration. We then administered 1 µg/day leptin to diabetic mice that underwent transplantation of 50 or 125 islets. Although these islet doses were insufficient to ameliorate hyperglycemia alone, coadministration of leptin with islet transplantation robustly improved control of glucose and lipid metabolism, without increasing circulating insulin levels. This study reveals that low-dose leptin administration can reduce the number of transplanted islets required to achieve metabolic control in STZ-induced diabetic mice.The current state-of-the-art for achieving long-term glycemic control in type 1 diabetic patients is transplantation of cadaveric donor islets. Whereas frequent episodes of hyperglycemia and hypoglycemia occur with insulin therapy, islet transplantation can effectively eliminate these excursions and maintain glycemia within a target range of 3.3 to 7.8 mmol/L (1). Unfortunately, islet transplantation is not widely available because of limited donor islet supply. Most transplant recipients require islets from at least two cadaveric donors to achieve target glycemia (1,2), and the decline of graft function within 5 years of transplantation necessitates that most patients resume insulin therapy (2). Thus, a strategy to reduce the number of islets needed to achieve insulin independence is essential for widespread application of islet transplantation from cadaveric donor islets.The hormone leptin has a well-recognized role in glucose homeostasis (3). Recent studies have demonstrated that high-dose leptin administration reverses hyperglycemia and dyslipidemia in type 1 diabetic rodent models (48). However, leptin is unlikely to replace insulin as a therapy for type 1 diabetes because it offers little, if any, advantage over insulin injections with regard to metabolic control and quality of life. Alternatively, glycemic control and insulin requirements for type 1 diabetic patients may be improved by leptin and insulin cotherapy. In diabetic mice, leptin administration reduced the insulin dose needed to ameliorate hyperglycemia (9), and combined leptin and insulin administration achieved better glycemic control than insulin alone (6).Because islet transplantation provides superior metabolic control over insulin injections, we investigated whether leptin as an adjunct to islet transplantation could provide tighter glycemic control with fewer transplanted islets. Such an effect could increase the availability and efficacy of islet transplantation as a treatment. To test this, we examined whether leptin administration could reduce the number of transplanted islets needed to reverse streptozotocin (STZ)-induced diabetes in mice (STZ-diabetic mice). Because high-dose leptin alone can restore normoglycemia in STZ-diabetic rodents (48), which thereby can enhance islet graft function (10,11), we first performed a dose-response study in STZ-diabetic mice to identify a leptin dose that was insufficient to reverse hyperglycemia. Subsequently, we administered this dose of leptin to diabetic mice transplanted with 50 or 125 syngeneic islets (17 and 42% of an optimal dose of 300 islets, respectively) to determine whether leptin cotherapy could enhance the ability of these suboptimal islet doses to achieve metabolic control.  相似文献   

9.
Abnormalities in insulin action are the characteristics of type 2 diabetes. Dominant-negative muscle-specific IGF-I receptor (MKR) mice exhibit elevated lipid levels at an early age and eventually develop type 2 diabetes. To evaluate the role of elevated lipids in the progression of the diabetic state, MKR mice were treated with WY14,643, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist. WY14,643 treatment markedly reduced serum fatty acid and triglyceride levels within a few days, as well as muscle triglyceride levels, and subsequently normalized glucose and insulin levels in MKR mice. Hyperinsulinemic-euglycemic clamp analysis showed that WY14,643 treatment enhanced muscle and adipose tissue glucose uptake by improving whole-body insulin sensitivity. Insulin suppression of endogenous glucose production by the liver of MKR mice was also improved. The expression of genes involved in fatty acid oxidation was increased in liver and skeletal muscle, whereas gene expression levels of hepatic gluconeogenic enzymes were decreased in WY14,643-treated MKR mice. WY14,643 treatment also improved the pattern of glucose-stimulated insulin secretion from the perfused pancreata of MKR mice and reduced the beta-cell mass. Taken together, these findings suggest that the reduction in circulating or intracellular lipids by activation of PPAR-alpha improved insulin sensitivity and the diabetic condition of MKR mice.  相似文献   

10.
Guo T  Bond ND  Jou W  Gavrilova O  Portas J  McPherron AC 《Diabetes》2012,61(10):2414-2423
Lipodystrophies are characterized by a loss of white adipose tissue, which causes ectopic lipid deposition, peripheral insulin resistance, reduced adipokine levels, and increased food intake (hyperphagia). The growth factor myostatin (MSTN) negatively regulates skeletal muscle growth, and mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. MSTN inhibition may therefore be efficacious in ameliorating diabetes. To test this hypothesis, we inhibited MSTN signaling in a diabetic model of generalized lipodystrophy to analyze its effects on glucose metabolism separate from effects on adipose mass. A-ZIP/F1 lipodystrophic mice were crossed to mice expressing a dominant-negative MSTN receptor (activin receptor type IIB) in muscle. MSTN inhibition in A-ZIP/F1 mice reduced blood glucose, serum insulin, triglyceride levels, and the rate of triglyceride synthesis, and improved insulin sensitivity. Unexpectedly, hyperphagia was normalized by MSTN inhibition in muscle. Blood glucose and hyperphagia were reduced in double mutants independent of the adipokine leptin. These results show that the effect of MSTN inhibition on insulin sensitivity is not secondary to an effect on adipose mass and that MSTN inhibition may be an effective treatment for diabetes. These results further suggest that muscle may play a heretofore unappreciated role in regulating food intake.  相似文献   

11.
Clustering of classical cardiovascular risk factors is insufficient to account for the excess coronary artery disease (CAD) of patients with diabetes, and chronic hyperglycemia and insulin resistance (IR) are obvious culprits. Whole-body and skeletal muscle IR is characteristic of patients with type 2 diabetes, but whether it extends to the normally contracting cardiac muscle is controversial. We investigated whether type 2 diabetes is associated with myocardial IR independent of CAD in a case-control series (n = 55) of male nondiabetic and diabetic (type 2 and type 1) patients with or without angiographically documented CAD. Baseline blood flow ((15)O-water) and insulin-stimulated glucose uptake ((18)F-fluoro-deoxyglucose) during euglycemic (5.6 mmol/l), physiological hyperinsulinemia (40 mU x min(-1) x m(-2) insulin clamp) were measured by positron emission tomography in skeletal muscle and normally contracting myocardium. Skeletal muscle glucose uptake was reduced in association with both CAD and type 2 diabetes. In regions with normal baseline perfusion, insulin-mediated myocardial glucose uptake was reduced in non-CAD type 2 diabetic (0.36 +/- 0.14 micro mol x min(-1). g(-1)) and nondiabetic CAD patients (0.44 +/- 0.15 micro mol x min(- 1) x g(-1)) in comparison with healthy control subjects (0.61 +/- 0.08) or with non-CAD type 1 diabetic patients (0.80 +/- 0.13; P < 0.001 for both CAD and diabetes). Neither basal skeletal muscle nor basal myocardial blood flow differed across groups; both skeletal muscle and myocardial IR were directly related to whole-body IR. We conclude that type 2 diabetes is specifically associated with myocardial IR that is independent of and nonadditive with angiographic CAD and proportional to skeletal muscle and whole-body IR.  相似文献   

12.
Fetuin inhibits insulin-induced insulin receptor (IR) autophosphorylation and tyrosine kinase activity in vitro, in intact cells, and in vivo. The fetuin gene (AHSG) is located on human chromosome 3q27, recently identified as a susceptibility locus for type 2 diabetes and the metabolic syndrome. Here, we explore insulin signaling, glucose homeostasis, and the effect of a high-fat diet on weight gain, body fat composition, and glucose disposal in mice carrying two null alleles for the gene encoding fetuin, Ahsg (B6, 129-Ahsg(tm1Mbl)). Fetuin knockout (KO) mice demonstrate increased basal and insulin-stimulated phosphorylation of IR and the downstream signaling molecules mitogen-activated protein kinase (MAPK) and Akt in liver and skeletal muscle. Glucose and insulin tolerance tests in fetuin KO mice indicate significantly enhanced glucose clearance and insulin sensitivity. Fetuin KO mice subjected to euglycemic-hyperinsulinemic clamp show augmented sensitivity to insulin, evidenced by increased glucose infusion rate (P = 0.077) and significantly increased skeletal muscle glycogen content (P < 0.05). When fed a high-fat diet, fetuin KO mice are resistant to weight gain, demonstrate significantly decreased body fat, and remain insulin sensitive. These data suggest that fetuin may play a significant role in regulating postprandial glucose disposal, insulin sensitivity, weight gain, and fat accumulation and may be a novel therapeutic target in the treatment of type 2 diabetes, obesity, and other insulin-resistant conditions.  相似文献   

13.
14.
Accili D 《Diabetes》2004,53(7):1633-1642
Type 2 diabetes arises from a combination of impaired insulin action and defective pancreatic beta-cell function. Classically, the two abnormalities have been viewed as distinct yet mutually detrimental processes. The combination of impaired insulin-dependent glucose metabolism in skeletal muscle and impaired beta-cell function causes an increase of hepatic glucose production, leading to a constellation of tissue abnormalities that has been referred to as the diabetes "ruling triumvirate." Targeted mutagenesis in mice has led to a critical reappraisal of the integrated physiology of insulin action. These studies indicate that insulin resistance in skeletal muscle and adipose tissue does not necessarily lead to hyperglycemia, so long as insulin sensitivity in other tissues is preserved. Additional data suggest a direct role of insulin signaling in beta-cell function and regulation of beta-cell mass, thus raising the possibility that insulin resistance may be the overarching feature of diabetes in all target tissues. I propose that we replace the original picture of a ruling triumvirate with that of a squabbling republic in which every tissue contributes to the onset of the disease.  相似文献   

15.
Remedi MS  Koster JC  Patton BL  Nichols CG 《Diabetes》2005,54(10):2925-2931
As the rate-limiting controller of glucose metabolism, glucokinase represents the primary beta-cell "glucose sensor." Inactivation of both glucokinase (GK) alleles results in permanent neonatal diabetes; inactivation of a single allele causes maturity-onset diabetes of the young type 2 (MODY-2). Similarly, mice lacking both alleles (GK(-/-)) exhibit severe neonatal diabetes and die within a week, whereas heterozygous GK(+/-) mice exhibit markedly impaired glucose tolerance and diabetes, resembling MODY-2. Glucose metabolism increases the cytosolic [ATP]-to-[ADP] ratio, which closes ATP-sensitive K(+) channels (K(ATP) channels), leading to membrane depolarization, Ca(2+) entry, and insulin exocytosis. Glucokinase insufficiency causes defective K(ATP) channel regulation, which may underlie the impaired secretion. To test this prediction, we crossed mice lacking neuroendocrine glucokinase (nGK(+/-)) with mice lacking K(ATP) channels (Kir6.2(-/-)). Kir6.2 knockout rescues perinatal lethality of nGK(-/-), although nGK(-/-)Kir6.2(-/-) animals are postnatally diabetic and still die prematurely. nGK(+/-) animals are diabetic on the Kir6.2(+/+) background but only mildly glucose intolerant on the Kir6.2(-/-) background. In the presence of glutamine, isolated nGK(+/-)Kir6.2(-/-) islets show improved insulin secretion compared with nGK(+/-)Kir6.2(+/+). The significant abrogation of nGK(-/-) and nGK(+/-) phenotypes in the absence of K(ATP) demonstrate that a major factor in glucokinase deficiency is indeed altered K(ATP) signaling. The results have implications for understanding and therapy of glucokinase-related diabetes.  相似文献   

16.
In this study we have explored whether the bifunctional protein semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1) represents a novel target for type 2 diabetes. To this end, Goto-Kakizaki (GK) diabetic rats were treated with the SSAO substrate benzylamine and with low ineffective doses of vanadate previously shown to have antidiabetic effects in streptozotocin-induced diabetic rats. The administration of benzylamine in combination with vanadate in type 2 diabetic rats acutely stimulated glucose tolerance, and the chronic treatment normalized hyperglycemia, stimulated glucose transport in adipocytes, and reversed muscle insulin resistance. Acute in vivo administration of benzylamine and vanadate stimulated skeletal muscle glucose transport, an effect that was also observed in incubated muscle preparations coincubated with adipose tissue explants or with human recombinant SSAO. Acute administration of benzylamine/vanadate also ameliorated insulin secretion in diabetic GK rats, and this effect was also observed in incubated pancreatic islets. In keeping with these observations, we also demonstrate that pancreatic islets express SSAO/VAP-1. As far as mechanisms of action, we have found that benzylamine/vanadate causes enhanced tyrosine phosphorylation of proteins and reduced protein tyrosine phosphatase activity in adipocytes. In addition, incubation of human recombinant SSAO, benzylamine, and vanadate generates peroxovanadium compounds in vitro. Based on these data, we propose that benzylamine/vanadate administration generates peroxovanadium locally in pancreatic islets, which stimulates insulin secretion and also produces peroxovanadium in adipose tissue, activating glucose metabolism in adipocytes and in neighboring muscle. This opens the possibility of using the SSAO/VAP-1 activity as a local generator of protein tyrosine phosphatase inhibitors in antidiabetic therapy.  相似文献   

17.
Although a conventional insulin regimen for type 1 diabetes with twice-daily insulin injections is effective in preventing postprandial blood glucose excursions, this treatment is limited by its inadequate control of fasting hyperglycemia. Alternatively, sustained basal hepatic insulin gene expression has been shown to result in fasting normoglycemia in type 1 diabetic rats, although the treated animals still exhibited moderate postprandial hyperglycemia. To test the hypothesis that basal hepatic insulin production can be used as an auxiliary treatment to conventional insulin therapy for achieving better glycemic control, streptozotocin-induced diabetic rats were treated with twice-daily insulin injections, basal hepatic insulin production, or both in combination. Diabetic rats treated by conventional insulin therapy still suffered from fasting hyperglycemia, but when complemented with basal hepatic insulin production, near-normoglycemia under both fed and fasting conditions was achieved without fasting hypoglycemia. In addition, the combination-treated animals showed significantly enhanced glucose tolerance and markedly improved profiles in lipid metabolism. Furthermore, the combination treatment reduced the elevated fructosamine, glycated hemoglobin, and advanced glycation end products concentrations to normal. These results provide a proof of concept for basal hepatic insulin production as an adjuvant treatment to conventional insulin therapy in type 1 diabetes.  相似文献   

18.
Pancreas transplant alone (PTA) represents a growing proportion of overall pancreas transplantations, with 1-year patient and graft survivals of almost 100% and higher than 80%, respectively. PTA can restore normoglycemia without exogenous insulin administration and eliminate acute diabetic complications. In our series of 28 PTA, performed with portal-enteric drainage, 2-year patient and pancreas survivals were 100% and 87%, respectively. In patients with successful transplantation, rapid normalization of blood glucose level and HbA1c concentration was observed, due to restored endogenous insulin secretion. Several classical cardiovascular risk factors were measured before and after transplant, with significant improvements shortly after transplantation. Diabetic retinopathy improved in 58.8% of examined eyes, stabilized in 35.3%, and worsened in 5.9%. In conclusion, PTA represents a clinically relevant option for patients with type 1 diabetes without advanced renal disease. It restores normoglycemia in the vast majority of patients and seems to have a positive impact on late diabetic complications.  相似文献   

19.
Studies indicate that the antihyperglycemic effects of Syzygium aromaticum-derived oleanolic acid (OA) are mediated in part through increased hepatic glycogen synthesis. Accordingly, this study assessed the influence of OA on the activity of glucokinase (GK) and hexokinase (HK) of skeletal muscle and liver tissues in streptozotocin (STZ)-induced diabetic rats. After 5 weeks of OA treatment, hepatic and gastrocnemius muscle glycogen concentrations and activities of GK and HK were measured spectrophotometrically in reactions where the oxidation of glucose-6-phosphate (G-6-PDH) formed was coupled to nicotinamide adenine dinucleotide phosphate (NADP+) reduction catalyzed by G-6-PDH dehydrogenase. Rats treated with deionized water or standard hypoglycemic drugs acted as untreated and treated positive controls, respectively. STZ-induced diabetic rats exhibited depleted glycogen levels and low activities of glycogenic enzymes in muscle and hepatic tissues. OA administration restored these biochemical alterations to near normalcy. The combination of OA and insulin did not significantly alter the activities of HK and GK of STZ-induced diabetic rats, suggesting that glycogen synthesis can also occur from precursors such as amino acids or fructose and lactate. The attenuation of the activities of glycogenic enzymes with concomitant increases of hepatic and muscle glycogen concentrations of STZ-induced diabetic rats provides a therapeutic strategy for diabetes treatment.  相似文献   

20.
Fu F  Hu S  Deleo J  Li S  Hopf C  Hoover J  Wang S  Brinkmann V  Lake P  Shi VC 《Transplantation》2002,73(9):1425-1430
BACKGROUND: Toxicity of current immunosuppressive agents to islet grafts is one of the major obstacles to clinical islet transplantation (Tx). This study was designed to assess the efficacy of FTY720, a novel immunomodulator with a unique mechanism of action, on islet graft survival and function in streptozotocin (STZ)- and autoimmune-induced diabetic recipients. METHODS: Islet allograft from BALB/C mice or islet isografts were transplanted into STZ-induced diabetic CBA mice and autoimmune nonobese diabetic (NOD) mice. FTY720 was administered orally at 0.5 mg/kg per day in STZ diabetic recipients or 3 mg/kg per day in NOD recipients after Tx. Functional status of the islet graft was monitored by measuring blood glucose daily. Insulin secretion from mouse islets was measured with an insulin scintillation proximity assay. RESULTS: Under the treatment of FTY720, long-term normoglycemia (>100 days) was achieved in 100% of STZ diabetic recipients and 50% of diabetic NOD recipients compared with a respective 11 and 7 days in untreated animals after allogeneic islet Tx. Normoglycemia persisted only temporarily (<4 weeks) in untreated NOD recipients of NOD islets, but was maintained for >100days with FTY720 treatment. Histologically, leukocyte infiltration observed in untreated animals was largely inhibited in FTY720-treated ones. Additionally, FTY720 stimulated insulin secretion from isolated islets by approximately twofold under both normoglycemic and hyperglycemic conditions. CONCLUSIONS: FTY720 is highly effective in protecting allo- and autoimmune response-mediated islet graft destruction without direct toxicity to the islets. The effect is likely attributable to its action in preventing effector lymphocyte infiltration into the grafted tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号