首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Here, we present the first in silico and in vitro evidence of Aβ-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aβ peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aβ-like peptides and therefore their contribution to this progressive disease.  相似文献   

2.
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.  相似文献   

3.
Alzheimer’s disease (AD) is the most common form of dementia, and the cognitive impairments associated with this degenerative disease seriously affect daily life. Nutraceuticals for the prevention or delay of AD are urgently needed. It has been increasingly observed that phycocyanin (PC) exerts neuroprotective effects. AD model mice intracerebroventricularly injected with amyloid beta-peptide 25–35 (Aβ25–35) at 10 nmol/head displayed significant cognitive impairment in the spontaneous alternation test. Cognitive impairment was significantly ameliorated in mice treated with 750 mg/kg of enzyme-digested (ED) PC by daily oral administration for 22 consecutive days. Application of DNA microarray data on hippocampal gene expression to nutrigenomics studies revealed that oral EDPC counteracted the aberrant expression of 35 genes, including Prnp, Cct4, Vegfd (Figf), Map9 (Mtap9), Pik3cg, Zfand5, Endog, and Hbq1a. These results suggest that oral administration of EDPC ameliorated cognitive impairment in AD model mice by maintaining and/or restoring normal gene expression patterns in the hippocampus.  相似文献   

4.
Fatty acid β-oxidation (FAO) is confirmed to be impaired in obesity, especially in adipose tissues. We previously proved that Bifidobacterium animalis subsp. lactis A6 (BAA6) had protective effects against diet-induced obesity. However, whether BAA6 enhances FAO to ameliorate the development of obesity has not been explored. After being fed with high-fat diet (HFD) for 9 weeks, male C57BL/6J mice were fed HFD or BAA6 for 8 weeks. In vitro study was carried out using 3T3-L1 adipocytes to determine the effect of BAA6 culture supernatant (BAA6-CM). Here, we showed that administration of BAA6 to mice fed with HFD decreased body weight gain (by 5.03 g) and significantly up-regulated FAO in epididymal adipose tissues. In parallel, FAO in 3T3-L1 cells was increased after BAA6-CM treatment. Acetate was identified as a constituent of BAA6-CM that showed a similar effect to BAA6-CM. Furthermore, acetate treatment activated the GPR43-PPARα signaling, thereby promoting FAO in 3T3-L1 cells. The levels of acetate were also elevated in serum and feces (by 1.92- and 2.27-fold) of HFD-fed mice following BAA6 administration. The expression levels of GPR43 and PPARα were increased by 55.45% and 69.84% after BAA6 supplement in the epididymal fat of mice. Together, these data reveal that BAA6 promotes FAO of adipose tissues through the GPR43-PPARα signaling, mainly by increasing acetate levels, leading to alleviating the development of obesity.  相似文献   

5.
Alzheimer’s disease (AD) is a progressive degenerative disorder of the central nervous system, characterized by neuroinflammation, neurotransmitter deficits, and neurodegeneration, which finally leads to neuronal death. Emerging evidence highlighted that hyperglycemia and brain insulin resistance represent risk factors for AD development, thus suggesting the existence of an additional AD form, associated with glucose metabolism impairment, named type 3 diabetes. Owing to the limited pharmacological options, novel strategies, especially dietary approaches based on the consumption of polyphenols, have been addressed to prevent or, at least, slow down AD progression. Among polyphenols, ferulic acid is a hydroxycinnamic acid derivative, widely distributed in nature, especially in cereal bran and fruits, and known to be endowed with many bioactivities, especially antioxidant, anti-inflammatory and antidiabetic, thus suggesting it could be exploited as a possible novel neuroprotective strategy. Considering the importance of ferulic acid as a bioactive molecule and its widespread distribution in foods and medicinal plants, the aim of the present narrative review is to provide an overview on the existing preclinical and clinical evidence about the neuroprotective properties and mechanisms of action of ferulic acid, also focusing on its ability to modulate glucose homeostasis, in order to support a further therapeutic interest for AD and type 3 diabetes.  相似文献   

6.
Background. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) may have different effects on cognitive health due to their anti- or pro-inflammatory properties. Methods. We aimed to prospectively examine the relationships between n-3 and n-6 PUFA contents in serum phospholipids with incident all-cause dementia and Alzheimer’s disease dementia (AD). We included 1264 non-demented participants aged 84 ± 3 years from the German Study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe) multicenter-cohort study. We investigated whether fatty acid concentrations in serum phospholipids, especially eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), alpha-linolenic acid (ALA), linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA), were associated with risk of incident all-cause dementia and AD. Results. During the follow-up window of seven years, 233 participants developed dementia. Higher concentrations of EPA were associated with a lower incidence of AD (hazard ratio (HR) 0.76 (95% CI 0.63; 0.93)). We also observed that higher concentrations of EPA were associated with a decreased risk for all-cause dementia (HR 0.76 (95% CI 0.61; 0.94)) and AD (HR 0.66 (95% CI 0.51; 0.85)) among apolipoprotein E ε4 (APOE ε4) non-carriers but not among APOE ε4 carriers. No other fatty acids were significantly associated with AD or dementia. Conclusions. Higher concentrations of EPA were associated with a lower risk of incident AD. This further supports a beneficial role of n-3 PUFAs for cognitive health in old age.  相似文献   

7.
8.
Excessive expression of interleukin (IL)-1β in the brain causes depression and cognitive dysfunction. Herein, we investigated the effect of Lactobacillus gasseri NK109, which suppressed IL-1β expression in activated macrophages, on Escherichia coli K1-induced cognitive impairment and depression in mice. Germ-free and specific pathogen-free mice with neuropsychiatric disorders were prepared by oral gavage of K1. NK109 alleviated K1-induced cognition-impaired and depressive behaviors, decreased the expression of IL-1β and populations of NF-κB+/Iba1+ and IL-1R+ cells, and increased the K1-suppressed population of BDNF+/NeuN+ cells in the hippocampus. However, its effects were partially attenuated by celiac vagotomy. NK109 treatment mitigated K1-induced colitis and gut dysbiosis. Tyndallized NK109, even if lysed, alleviated cognitive impairment and depression. In conclusion, NK109 alleviated neuropsychiatric disorders and colitis by modulating IL-1β expression, gut microbiota, and vagus nerve-mediated gut–brain signaling.  相似文献   

9.
Fibrosis is a severe complication of chronic inflammatory disorders, such as inflammatory bowel disease (IBD). Current strategies are not fully effective in treating fibrosis; therefore, innovative anti-fibrotic approaches are urgently needed. TGF-β1 plays a central role in the fibrotic process by inducing myofibroblast differentiation and excessive extracellular matrix (ECM) protein deposition. Here, we explored the potential anti-fibrotic impact of two high concentration multi-strain probiotic formulations on TGF-β1-activated human intestinal colonic myofibroblast CCD-18Co. Human colonic fibroblast CCD-18Co cells were cultured in the presence of TGF-β1 to develop a fibrotic phenotype. Cell viability and growth were measured using the Trypan Blue dye exclusion test. The collagen-I, α-SMA, and pSmad2/3 expression levels were evaluated by Western blot analysis. Fibrosis markers were also analyzed by immunofluorescence and microscopy. The levels of TGF-β1 in the culture medium were assessed by ELISA. The effects of commercially available probiotic products VSL#3® and Vivomixx® were evaluated as the soluble fraction of bacterial lysates. The results suggested that the soluble fraction of Vivomixx® formulation, but not VSL#3®, was able to antagonize the pro-fibrotic effects of TGF-β1 on CCD-18Co cells, being able to prevent all of the cellular and molecular parameters that are related to the fibrotic phenotype. The mechanism underlying the observed effect appeared to be associated with inhibition of the TGF-β1/Smad signaling pathway. To our knowledge, this study provides the first experimental evidence that Vivomixx® could be considered to be a promising candidate against intestinal fibrosis, being able to antagonize TGF-β1 pro-fibrotic effects. The differences that were observed in our fibrosis model between the two probiotics used could be attributable to the different number of strains in different proportions.  相似文献   

10.
Caloric restriction (CR) slows the aging process, extends lifespan, and exerts neuroprotective effects. It is widely accepted that CR attenuates β-amyloid (Aβ) neuropathology in models of Alzheimer’s disease (AD) by so-far unknown mechanisms. One promising process induced by CR is autophagy, which is known to degrade aggregated proteins such as amyloids. In addition, autophagy positively regulates glucose uptake and may improve cerebral hypometabolism—a hallmark of AD—and, consequently, neural activity. To evaluate this hypothesis, APPswe/PS1delta9 (tg) mice and their littermates (wild-type, wt) underwent CR for either 16 or 68 weeks. Whereas short-term CR for 16 weeks revealed no noteworthy changes of AD phenotype in tg mice, long-term CR for 68 weeks showed beneficial effects. Thus, cerebral glucose metabolism and neuronal integrity were markedly increased upon 68 weeks CR in tg mice, indicated by an elevated hippocampal fluorodeoxyglucose [18F] ([18F]FDG) uptake and increased N-acetylaspartate-to-creatine ratio using positron emission tomography/computer tomography (PET/CT) imaging and magnet resonance spectroscopy (MRS). Improved neuronal activity and integrity resulted in a better cognitive performance within the Morris Water Maze. Moreover, CR for 68 weeks caused a significant increase of LC3BII and p62 protein expression, showing enhanced autophagy. Additionally, a significant decrease of Aβ plaques in tg mice in the hippocampus was observed, accompanied by reduced microgliosis as indicated by significantly decreased numbers of iba1-positive cells. In summary, long-term CR revealed an overall neuroprotective effect in tg mice. Further, this study shows, for the first time, that CR-induced autophagy in tg mice accompanies the observed attenuation of Aβ pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号