首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cement hydration is a very complex set of processes. The evolution of the crystalline phases during hydration can be accurately followed by X-ray powder diffraction data evaluated by the Rietveld method. However, accurate measurements of some microstructural features, including porosity and amorphous content developments, are more challenging. Here, we combine laboratory X-ray powder diffraction and computed microtomography (μCT) to better understand the results of the μCT analyses. Two pastes with different water–cement ratios, 0.45 and 0.65, filled within capillaries of two sizes, ϕ = 0.5 and 1.0 mm, were analysed at 50 days of hydration. It was shown that within the spatial resolution of the measured μCTs, ~2 μm, the water capillary porosity was segmented within the hydrated component fraction. The unhydrated part could be accurately quantified within 2 vol% error. This work is a first step to accurately determining selected hydration features like the hydration degree of amorphous phases of supplementary cementitious materials within cement blends.  相似文献   

2.
The purpose of this article is to determine the effect of granite powder grain size and grinding time on the properties of cement paste. A series of cement pastes modified by the addition of granite powder were made and the properties of the fresh mixtures and the mechanical properties of hardened pastes were studied. Based on the study, the best results, from the point of view of the application of granite powder in cementitious composites, were obtained for a sample with granite powder ground for 3 h, in which 50% of the particles were smaller than 4 μm, and 90% were below 20 μm. Compressive strength of 55 MPa and flexural strength of 6.8 MPa were obtained on this sample after aging for 28 days. To confirm the validity of using granite powder as substitute materials, additional tests such as scanning microscopy with elemental analysis (SEM, EDS) and infrared (FTIR) studies were performed.  相似文献   

3.
The substitution of river sand with glass aggregate (GA) and cement with glass powder (GP) is a mainstream method to recycle waste glass. Traditionally, standard curing was widely used for glass-based mortars. However, it is time-consuming and cannot address low mechanical strengths of the early-age mortars. Therefore, the effect of water curing at 80 °C on the properties of GA mortars is investigated. Furthermore, the effect of the GP size is also considered. Results show that compared with the expansion of alkali-silica reaction (ASR), water curing at 80 °C has a negligible effect on the volume change. Moreover, the compressive strength of GA mortars under 1-day water curing at 80 °C is comparable with that under 28-day water curing at 20 °C. Therefore, the 1-day water curing at 80 °C is proposed as an accelerated curing method for GA mortars. On the other hand, the addition of GP with the mean size of 28.3 and 47.9 μm can effectively mitigate the ASR expansion of GA mortars. Compared with the size of 28.3 μm, GA mortars containing GP (47.9 μm) always obtain higher compressive strength. In particular, when applying the 1-day water curing at 80 °C, GA mortars containing GP (47.9 μm) can even gain higher strength than those containing fly ash.  相似文献   

4.
In this study, highly concentrated hydrogen nanobubble water was utilized as the blending water for cement mortar to improve its compressive and flexural strengths. Highly concentrated nanobubbles can be obtained through osmosis. This concentration was maintained by sustaining the osmotic time. The mortar specimens were cured for 28 days, in which the nanobubble concentration was increased. This improved their flexural strength by 2.25–13.48% and compressive strength by 6.41–11.22%, as compared to those afforded by plain water. The nanobubbles were densified at high concentrations, which caused a decrease in their diameter. This increased the probability of collisions with the cement particles and accelerated the hydration and pozzolanic reactions, which facilitated an increase in the strength of cement. Thermogravimetric analysis and scanning electron microscopy were used to confirm the development of calcium silicate hydrate (C-S-H) and hydration products with an increase in the nanobubble concentration. Quantitative analysis of the hydration products and the degree of hydration were calculated by mineralogical analysis.  相似文献   

5.
This paper discusses studies regarding the impact of fine-ground glass additives on the hydration and properties of alumina cement pastes and mortars. Fine-ground glass was added to pastes and mortars instead of high-alumina cement and calcium aluminate cement in quantities of 5% and 10%. The findings are inconclusive as to the impact of glass on the properties of tested alumina cement types. The effect produced via the addition of glass instead of cement depends on the type of alumina cement used. Adding fine-ground glass to high-alumina cement enhances the paste’s density while improving paste and mortar strength. Using the same additive for calcium aluminate cement reduces its density and strength. The addition of glass to high-alumina cement adversely affects its strength at higher temperatures.  相似文献   

6.
This experimental study focuses on the assessment of mineral additives and their incorporation into cement composites (CC). The assessment was based on a holistic approach to the performance of the durability properties of CC. Environmental suitability was also taken into consideration. In the experiments, cement pastes with w/c ratios of 0.3, 0.4, and 0.5, respectively, were prepared. Natural zeolite (NZ) and densified silica fume (SF) at doses of 7.5 and 15.0 wt.% of cement were used as the investigated (replacement) materials. Their effects (including development over time) on density, strength (flexural and compressive), porosity by water absorption, permeability by rapid chloride penetration (RCP) test, phase content by thermal analysis, and hydration progression, were observed. The results were then used to propose an evaluation approach. Natural zeolite was used for its known pozzolanic activity and classification as a supplementary cementitious material (SCM). In contrast SF acted as a filler in cement pastes, and thus did not have a direct positive effect on durability. The concept of comprehensive analysis for unknown additive classification is proposed to expressly differentiate between SCM, inert, and improving mineral additive. This concept could be applied to the assessment of mineral additives with regards to the durability and suitability of cement composites.  相似文献   

7.
Cement mortar can be colored using color additive technology to give colorful facades to the surfaces of buildings, and to beautify the environment. In this study, weight ratios of color powder/cement at 1:80, 1:40, and 1:27, and polyacrylic emulsion/cement at a ratio of 1:5 were added as pigments to cement mortar; the fresh properties, slump, slump flow, hardened properties, compressive strength, flexural strength, ultrasonic pulse velocity, durability, surface electrical resistivity and thermal conductivity of the colored cement mortar were then examined. The results showed that adding color powder/cement at 1:80 and polyacrylic emulsion/cement at 1:5 gives the best water/cement (W/C) ratio, which equals 0.5; this can effectively improve the hardness and durability of colored cement mortar. At 28 days of aging, the strength of the various colored cement mortars was maintained at 33.1–36.8 MPa. The acrylic-based emulsion significantly improved the flexural strength of the specimen. At 91 days of aging, all of the cement mortars exceeded the control group, with an anti-bay strength of 19.9–21.7 MPa, and the strength increased with aging. Adding appropriate amounts of inorganic color powder and mixing water can effectively enhance the fresh and hardened properties and durability of the colored cement mortar, while polyacrylic emulsion may significantly improve the test pieces and flexural strength, which increases with age. Moreover, natural α-Fe2O3 (rust layer) is formed on the surface of the colored cement mortar samples through the addition of inorganic color powder that contains Fe(III) ion; this prevents the intrusion of noxious ions and thus increases the durability. All of the test pieces of colored cement mortar in this study had a surface resistance of over 20 kΩ-cm on the seventh day of the test period, meaning good surface compactness. In addition, because the thermal conductivity of the added inorganic color powder was higher than that of cement, the thermal conductivity was significantly improved.  相似文献   

8.
As the construction of hydrotechnical and energy facilities grows worldwide, so does the need for special heavyweight concrete. This study presents the analysis of the influence of waste-metal particle filler (WMP) on Portland cement (PC) paste and mortars with pozzolanic (microsilica and metakaolin) additives in terms of the hydration process, structure development, and physical–mechanical properties during 28 days of hardening. Results have shown that waste-metal particle fillers prolong the course of PC hydration. The addition of pozzolanic additives by 37% increased the total heat value and the ultrasound propagation velocity (UPV) in WMP-containing paste by 16%; however, in the paste with only WMP, the UPV is 4% lower than in the WMP-free paste. The density of waste-metal particle fillers in the free mortar was about two times lower than waste-metal particle fillers containing mortar. Due to the lower water absorption, the compressive strength of WMP-free mortar after 28 days of hardening achieved 42.1 MPa, which is about 14% higher than in mortar with waste-metal particle filler. The addition of pozzolanic additives decreased water absorption and increased the compressive strength of waste-metal particle filler containing mortar by 22%, compared to pozzolanic additive-free waste-metal particle fillers containing mortar. The pozzolanic additives facilitated a less porous matrix and improved the contact zone between the cement matrix and waste-metal particle fillers. The results of the study showed that pozzolanic additives can solve difficulties in local waste-metal particle fillers application in heavyweight concrete. The successful development of heavyweight concrete with waste-metal particle fillers and pozzolanic additives can significantly expand the possibility of creating special concrete using different local waste. The heavyweight concrete developed by using waste-metal particle fillers is suitable for being used in load balancing and in hydrotechnical foundations.  相似文献   

9.
Concrete is a multi-phase, porous system. The pore structure has an important influence on the properties of the concrete. In this paper, a kind of fiber reinforced mortar was prepared with desert sand and its pore structure was studied. The MIP technique was used to investigate the pore structure characteristics between 1 nm and 500 μm (in diameter). Meanwhile, the μX-CT technique was used to study the pore structure characteristics above 200 μm. It was found that the total porosity tends to decrease first and then increase as the dosage of desert sand increased. The porosity decreased gradually from the upper to bottom area inside the sample, and the diameter of the air voids near the upper area became larger. After curing for 28 days, the compressive strength of fiber reinforced mortar reached the maximum when the content of desert sand was 50%. In conclusion, the appropriate amount of desert sand can reduce the porosity of the fiber reinforced mortar to some extent and the number of large size air voids can be significantly reduced, which improves the pore structure and the mechanical properties of the fiber reinforced mortar.  相似文献   

10.
The influence of four naturally occurring mineral additives (zeolite, diatomite, trass and bentonite) on the hydration and properties of cement pastes and mortars was investigated. The materials change the phase composition, heat of hydration (determined by calorimetry) and mechanical properties of composites. After 28 days, the amount of Ca(OH)2 was reduced by up to 23% and up to 35% more C-S-H was formed, as proved by TG measurements. Differences were observed in the kinetics of heat release, especially for 25% of the addition. In the calorimetric curves, an additional exothermic effect is observed, related to the alteration in the hydration of C3A in cement. From the point of view of beneficial influence on mechanical properties of mortars, the additives could be ranked as follows: bentonite < diatomite, zeolite < trass after 2 days and bentonite < diatomite < trass < zeolite after 28 days of curing. The highest compressive strength (58.5 MPa) was observed for the sample with a 10% addition of zeolite. Zeolite, trass, bentonite and diatomite are all pozzolanic materials; however, their activity varies to an extent due to the differences in their specific surface area and the content of the amorphous phase, responsible for the pozzolanic reaction.  相似文献   

11.
This study addresses the application of polyvinyl alcohol (PVA) fibers to improve the performance of lightweight cement composites with pozzolans. Blended cement mixes based on expanded glass granules were modified with PVA fibers (Type A: Ø40 µm, L = 8 mm and Type B: Ø200 µm, L = 12 mm). The following research methods were used to analyse the effect of the fibers on the structure of cement matrix and physical-mechanical properties of lightweight composite: SEM, XRD, DTG, calorimetry tests, and standard test methods of physical and mechanical properties. Results from the tests showed that a denser layer of hydrates was formed around the PVA fiber and the amounts of portlandite, CSH, and CASH formed in the specimens with PVA were found to be higher. PVA fibers of Type A accelerated hydration of the cement paste, slightly increased the compressive strength of the lightweight composite, but had no significant effect on the values of density, ultrasonic pulse velocity and flexural strength. The shrinkage of cement composite was significantly reduced using both types of PVA fiber and both types of PVA fibers increased the fracture energy of lightweight cement composite with expanded granules.  相似文献   

12.
The addition of Superabsorbent Polymer (SAP) decreases the effect of autogenous shrinkage present in pastes, mortars, and concretes. In this study we investigated the influence of the addition of SAP in self-compacting cement paste mixtures. Eighteen 5 × 10 cylindrical specimens were molded in all, three for each mixture (CPII base, CPII 0.15%SAP/600μm, CPII 0.15%SAP/800 μm, CPV base, CPV 0.15%SAP/600 μm, CPV 0.15%SAP/800 μm). Two types of cement were tested, CP II-Z and CP V-ARI with 0.15% of weight replaced per two diameters of SAP (600 μm and 800 μm). The samples followed the standards required. Mini slump tests were carried out in the fresh state, and uniaxial compressive strength, elastic modulus, specific mass, absorption, and air content in the hardened state after 28 days. The results obtained show the SAP is high indicated to replaced cement in small % of weight i/to fresh and hardened paste. Likewise, the group mix n° 3 composed of CPII 0.15% of SAP with 800 μm diameter presented the best result.  相似文献   

13.
This study analyzed the influence of carbon nanotubes (CNTs) on the carbonation conductive cementitious composites. Two powder types of CNT, multi-walled and single-wall CNTs, were employed to give the cement mortar the conductivity, and four tests including the accelerated carbonation, compressive and flexural strength, electrical resistance, and porosity tests were carried out. To intentionally accelerate the carbonation, the prismatic specimens of conductive cement composites were fabricated and stored in the controlled environmental chamber at a constant temperature of 20 ± 2 °C, constant relative humidity of 60 ± 5%, and carbon dioxide (CO2) concentration of 5% for 12 weeks. It was observed that carbonation resulted in only chemical damage so that there was no change in the electrical resistance value of conductive cementitious mortar that had undergone a carbonation attack.  相似文献   

14.
Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.  相似文献   

15.
This study analyzed the effects of applying highly concentrated hydrogen nanobubble water (HNBW) on the workability, durability, watertightness, and microstructure of cement mixtures. The number of hydrogen nanobubbles was concentrated twofold to a more stable state using osmosis. The compressive strength of the cement mortar for each curing day was improved by about 3.7–15.79%, compared to the specimen that used general water, when two concentrations of HNBW were used as the mixing water. The results of mercury intrusion porosimetry and a scanning electron microscope analysis of the cement paste showed that the pore volume of the specimen decreased by about 4.38–10.26%, thereby improving the watertightness when high-concentration HNBW was used. The improvement in strength and watertightness is a result of the reduction of the microbubbles’ particle size, and the increase in the zeta potential and surface tension, which activated the hydration reaction of the cement and accelerated the pozzolanic reaction.  相似文献   

16.
To study the physical and chemical properties of grout containing fly ash, Class II fly ash was used as a mineral admixture and mixed with silicate cement to produce grout, and the rheological properties, strength properties, hydration properties, and microscopic mechanism were studied. The results of the study showed the following. The incorporation of fly ash reduced the thixotropic area of the composite cement slurry, which facilitated pumping in the pipeline conveying process. The inclusion of fly ash reduced the yield stress and plastic viscosity of the cement paste, but the rheological index increased and then decreased with the increase in fly ash, and the composite paste had the lowest degree of shear thinning at 30% fly ash inclusion. The incorporation of fly ash reduced the hydration exothermic rate and total hydration exothermic amount of the composite slurry and prolonged the hydration induction period, but the promotion effect of fly ash on the hydration rate of cement was obvious at 10% fly ash admixture. The admixture of fly ash increased the empty volume of the composite slurry, but the effect on the most probable aperture was not significant, and the porosity of the system increased, resulting in a decrease in compressive strength. The effect of adding fly ash on the hydration products was reflected mainly by the C-S-H gel produced by cement hydration and the change in calcium alumina and Ca(OH)2. Fly ash does not directly participate in the hydration reaction of cement, but it can promote cement hydration and increase the reaction rate of cement. By analyzing the rheological properties, mechanical properties, and hydration properties of fly ash composite cement paste, the comprehensive analysis found that the rheological properties are excellent when the fly ash admixture is 20–30%, and the water–cement ratio can be reduced to improve the strength without affecting the pumping demand.  相似文献   

17.
This paper aims to study the feasibility of low cement content foamed concrete using waste lime mud (LM) and fly ash (FA) as mineral additives. The LM/FA ratio was first optimized based on the compressive strength. Isothermal calorimetry test, ESEM, and XRD were used to investigate the role of LM during hydration. Afterward, the optimized LM/FA ratio (1/5) was used to design foamed concrete with various wet densities (600, 700, 800 and 900 kg/m3) and LM–FA dosages (0%, 50%, 60%, 70% and 80%). Flowability measurements and mechanical measurements including compressive strength, flexural strength, splitting strength, elastic modulus, and California bearing ratio were conducted. The results show that the foamed concretes have excellent workability and stability with flowability within 170 and 190 mm. The high alkalinity of LM accelerated the hydration of FA, thereby increasing the early strength. The significant power functions were fitted for the relationships between flexural/splitting and compressive strength with all correlation coefficients (R2) larger with 0.95. The mechanical properties of the foamed concrete increased with the density increasing or LM–FA dosage decreasing. The compressive strength, tensile strength, CBR of all prepared foamed concretes were higher than the minimum requirements of 0.8 and 0.15 MPa and 8%, respectively in the standard.  相似文献   

18.
Blast furnace ferronickel slag (BFFS) is generated in the production of ferronickel alloys and is used as cement replacement in concrete or mortar. The effectivity in reducing cement consumption and improving performance are limited. By referring to the paste replacement method, this work used BFFS to replace an equal volume of the white Portland cement paste to obtain greater performance enhancement. BFFS was used with five levels of replacement (0%, 5%, 10%, 15%, 20%) and four water-to-cement ratios (0.40, 0.45, 0.50, 0.55) were designed. Fluidity, mechanical strength, hydration products, and pore structure of every mixture were measured. The results showed that the workability of the mortars decreased due to the reduced volume of water, but the 28-day compressive strength of the mortars increased, and the cement content of the mortars was also reduced by 33 wt %. The X-ray diffraction (XRD) patterns revealed that there existed a carboaluminate phase, and the presence of the ettringite was stabilized, indicating that the accumulating amount of the hydration products of the mortar increased. Furthermore, the BFFS could consume the portlandite and free water to form a higher amount of chemically bound water due to its pozzolanic activity. A high degree of hydration and a large volume of the hydration products refined the porosity of the hardened mortars, which explained the enhancement of the strength of the mortars. Compared to the cement replacement method, the paste replacement method was more effective in preparing eco-friendly mortar or concrete by recycling BFFS for reducing the cement content of the mortar while improving its strength.  相似文献   

19.
In this paper, cement based on fused silica powder @ polyurethane urea (FSP@PUU) with a micro constrained damping structure was studied. Firstly, FSP@PUU core-shell particles were prepared by heterogeneous stepwise addition polymerization method and added into cement paste as damping filler to form a micro-constrained damping structure inside cement paste. The mechanical property and damping performance of cement-based composites were characterized by compressive strength, dynamic mechanical analysis (DMA) test and modal vibration test. The results showed that the damping performance of FSP @ PUU cement-based composites was affected by temperature, and the loss tangent of cement with 6wt% FSP@PUU increased to about 0.057 at −35 °C to 35 °C, which was 1.5 times cement paste within the glass transition temperature. With 6 wt% FSP@PUU, the damping ratio of cement-based composites increased by 58% compared with cement paste in the frequency range of 175–300 Hz, while the compressive strength decreased by only 5%. The cement with suitable FSP@PUU possesses excellent damping performance.  相似文献   

20.
The preload load on concrete during heating is considered to cause a ‘densification’ of cement mortar which led to the increased compressive strength. In order to assess the influence of coupled load and heating effects on porosity characteristics of concrete, the porosity of mortar after mechanical and thermal loading was measured by X-ray computed tomography (X-ray CT). The preload at pre-stress ratios of 0, 0.2, 0.4, and 0.6 (ratio of stress applied to the specimen to its compressive strength at room temperature) were applied on mortar specimens during heating. The residual compressive strengths of the heated and stressed mortar specimens were tested after cooling to room temperature. Combined analyses of the residual compressive strength test results and porosity test results, it shows that the porosity of the specimens under the coupled stressing and heating conditions were slightly lower than that under the unstressed conditions; however, the conclusion that the increase of compressive strength of stressed mortar was caused by the ‘densification’ of cement paste was insufficient. The preload reduced the cracks in the mortar, especially the crack induced due to the thermal mismatch in aggregates and hardened cement paste (HCP), and this may account for the increased compressive strength of stressed mortar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号