首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T G Ohm  H Müller  E Braak 《Neuroscience》1991,42(3):823-840
Calbindin-D-28k and parvalbumin are calcium-binding proteins. The laminar distribution and morphological features of calbindin-D-28k-like immunoreactive structures were studied in 60-microns-thick sections of the human olfactory bulb. Except for the olfactory nerve layer, immunoreactive neurons were present in all layers of the olfactory bulb. They reached highest densities in the external plexiform layer and internal granule cell layer. Considerable numbers of calbindin-like nerve cells were also found in the olfactory tract and in distal portions of the anterior olfactory nucleus. When comparing the distribution of calbindin-positive structures to that of parvalbumin-positive ones a partially complementary distribution pattern was found. Calbindin-like immunoreactive portions of the anterior olfactory nucleus and olfactory tract were mirrored by immunonegative areas in adjacent sections stained for parvalbumin. Using the combined pigment-Nissl procedure we observed the presence of lipofuscin deposits in nearly 80% of all the calbindin-immunoreactive neurons analysed. Moreover, analysis of their lipofuscin deposits rendered the further differentiation of morphologically similar neuronal subpopulations possible. In contrast, all parvalbumin-like immunoreactive neurons remained free of lipofuscin granules.  相似文献   

2.
The presence of the neuropeptide C-terminal flanking peptide of neuropeptide-Y, C-PON, has been investigated in the main olfactory bulb of the rat using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. The distribution of immunoreactive structures to C-PON was examined in both horizontal and coronal sections. Endogenous C-PON was localized within two types of short-axon cells including (1) superficial short-axon cells in the glomerular layer and (2) deep short-axon cells lying in the deepest portion of the granule cell layer and in the adjacent white matter. In addition, varicose immunoreactive processes were detected in all layers, although they were more numerous in the deepest portion of the granule cell layer. Immunoreactive cell bodies and processes were also observed in the nucleus olfactorius anterior and in the intrabulbar portion of the anterior commissure. Nevertheless, immunoreactive structures were not localized in the lateral olfactory tract. The indirect immunofluorescence technique to detect endogenous C-PON in combination with the enzyme histochemical demonstration of NADPH-diaphorase activity, in single sections, showed that the NADPH-diaphorase procedure is a reliable marker for these C-PON positive cells. Also, indirectly, that, in the rat main olfactory bulb, C-PON and neuropeptide-Y are contained in the same cell types. Many glomeruli were stained following the NADPH-diaphorase procedure, but they were not C-PON immunoreactives. Results of this study provide evidence suggesting that C-PON may influence polysynaptically the function of mitral cells and, therefore, the olfactory bulb output.  相似文献   

3.
Enkephalin-like immunoreactivity was localized within the main olfactory bulb of the rat using immunohistochemical techniques. These studies utilized well characterized antisera directed to either leu5- or met5-enkephalin. Specificity was established by absorption of the antisera with either 10 μM synthetic leu5- or met5-enkephalin.Specific enkephalin-like immunoreactivity was observed within several different cell populations including (1) periglomerular cells, (2) granule cells and their processes within the external plexiform layer and (3) occasional short-axon (horizontal) cells within the granule and external plaxiform layers. The granule cell layer contained the greatest number of immunoreactive cells. Only a limited number of immunoreactive cells were found in both the periglomerular and granule cell layers, suggesting the enkephalin-containing neurons represent a sub-population within each layer.The absence of immunoreactive processes in the periventribular white matter, as well as the morphologies of immunoreactive bulbar neurons, indicates that enkephalin is found exclusively within intrinsic olfactory bulb neurons.  相似文献   

4.
We studied the anatomical distribution of dopaminergic structures in the normal, aged, human olfactory bulb and olfactory peduncle with a monoclonal antibody against tyrosine hydroxylase. Three different tyrosine hydroxylase containing cell groups are present in the olfactory bulbs: (1) a group of round, medium-sized cells within and around the glomeruli; (2) cells in the external plexiform layer; and (3) cells that are scattered in the stratum album. Occasionally, a few labeled neurons can be observed in the granule cell layer. In the olfactory peduncle a few labeled cells are present in the superficial layers just underneath the pia. Tyrosine hydroxylase containing terminal-like structures are present in the glomerular layer and the external plexiform layer. In a few cases dense terminal labeling is also observed in the cell groups that constitute the anterior olfactory nucleus. In the olfactory peduncle scattered labeled fibers are present. In addition, the present study makes clear that quantitative differences exist between the individual cases for which no explanation could be found.  相似文献   

5.
The olfactory bulb receives a large number of centrifugal fibers whose functions remain unclear. To gain insight into the function of the bulbar centrifugal system, the morphology of individual centrifugal axons from olfactory cortical areas was examined in detail. An anterograde tracer, Phaseolus vulgaris leucoagglutinin, was injected into rat olfactory cortical areas, including the pars lateralis of the anterior olfactory nucleus (lAON) and the anterior part of the piriform cortex (aPC). Reconstruction from serial sections revealed that the extrabulbar segments of centrifugal axons from the lAON and those from the aPC had distinct trajectories: the former tended to innervate the pars externa of the AON before entering the olfactory bulb, while the latter had extrabulbar collaterals that extended to a variety of targets. In contrast to the extrabulbar segments, no clear differences were found between the intrabulbar segments of axons from the lAON and from the aPC. The intrabulbar segments of centrifugal axons were mainly found in the granule cell layer but a few axons extended into the external plexiform and glomerular layer. Approximately 40% of centrifugal axons innervated both the medial and lateral aspects of the olfactory bulb. The number of boutons found on single intrabulbar segments was typically less than 1000. Boutons tended to aggregate and form complex terminal tufts with short axonal branches. Terminal tufts, no more than 10 in single axons from ipsilateral cortical areas, were localized to the granule cell layer with varying intervals; some tufts formed patchy clusters and others were scattered over areas that extended for a few millimeters. The patchy, widespread distribution of terminals suggests that the centrifugal axons are able to couple the activity of specific subsets of bulbar neurons even when the subsets are spatially separated.  相似文献   

6.
7.
Summary The distribution of dopamine-containing perikarya and fibres in the central nervous system of the eel, Anguilla anguilla, was determined by using a specific dopamine antiserum. Telencephalic dopamine-immunoreactive somato are located in the external cell layer of the olfactory bulb and throughout the rostrocaudal extent of the subpallium; immunoreactive fibres are located primarily in the bulb and in ventral and lateral portions of the hemispheres. Diencephalic dopamine-immunoreactive neurons are associated with the ventricles in the preoptic area and hypothalamus and in the posterior tubercle. Many of the neurons in the hypothalamus are liquor-contacting. Very few immunoreactive neurons are located in the mesencephalon, and no dopamine-containing cells are found in regions that can be homologized with the ventral tegmental area and substantia nigra of amniotes. There is a rich innervation of the medial octavolateralis nucleus and certain layers of the torus semicircularis and of the tectum. dopamine-containing neurons are located in the vagal lobe, by the vagal motor nucleus and in the area postrema, which provides a rich dopaminergic innervation of the brainstem motor column and of the reticular formation. Immunoreactive liquor-contacting neurons line the central canal and another type of labelled neuron lies dorsally in the spinal cord.  相似文献   

8.
Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.  相似文献   

9.
目的观察大鼠嗅球向梨状皮质的纤维投射及嗅球内一氧化氮合酶(NOS)阳性神经元的分布。方法采用还原型尼克酰胺腺嘌呤二核苷酸脱氢酶(NADPH-d)组织化学法结合辣根过氧化物酶(HRP)逆行追踪技术对20只SD大鼠嗅球向梨状皮质的纤维投射进行逆行追踪观察。结果同侧嗅球僧帽细胞层观察到HRP标记细胞。嗅球内丛层、颗粒细胞层观察到NOS阳性神经元,但未观察到HRP/NOS双标记细胞。结论嗅球僧帽细胞层发出纤维投射到同侧梨状皮质。嗅球内有NO的表达,但嗅球的NOS阳性神经元不投射到梨状皮质。  相似文献   

10.
The present study is an examination, using an indirect immunofluorescence method, of the distribution of visinin, a 24,000 dalton peptide, in the rat forebrain and diencephalon. Immunoreactive structures were localized in the neuronal elements showing an uneven distribution. Immunoreactive neurons were found in the olfactory bulb, anterior olfactory nucleus, cerebral cortex, amygdaloid complex, ventral portion of the nucleus caudatus putamen, septal area, nucleus accumbens, nucleus paratenialis, nucleus rhomboideus, nucleus reuniens, nucleus paraventricularis hypothalami, nucleus supraopticus, nucleus anterior hypothalami, preoptic area, hypothalamic periventricular nucleus, nucleus mammillaris medialis, medial habenular nucleus, zona incerta, nucleus lateralis thalami, nucleus tractus optici and gyrus dentatus. Immunoreactive fibers were observed in the above areas, particularly near the labelled cells, forming fiber plexuses of varying density. In addition, dense plexuses were also seen in the globus pallidus, anteroventral nucleus of the thalamus, substantia nigra and hippocampus. In the former three structures, no labelled cells were present and in the latter, a few scattered neurons were found, indicating that these fibers originate from extrinsic sources.  相似文献   

11.
The catecholamine and serotonin innervation of the sheep olfactory bulb was studied using immunocytochemistry. Specific antisera raised against tyrosine hydroxylase, dopamine beta-hydroxylase, phenylethanolamineN-methyl transferase and serotonin were used. Tyrosine hydroxylase-positive cell bodies were present in all cell layers except in the anterior olfactory nucleus, the greatest number being found in the glomerular layer. Neither dopamine β -hydroxylase-positive nor serotonin-positive cell bodies were observed. Dopamine β-hydroxylase-positive fibers were widely distributed in the granule cell layer but less widely in other layers. The glomerular layer contained the greatest distribution of serotonergic positive fibers, but such fibres were also visualized in other cell layers. No phenylethanolamineN-methyl transferase-positive structures were found in this investigation.  相似文献   

12.
The distribution of GABA-immunoreactivity was studied in the brain of the silver eel (Anguilla anguilla) by means of antibodies directed against GABA. Immunoreactive neuronal somata were distributed throughout the brain. Positive perikarya were detected in the internal cellular layer of the olfactory bulb, and in all divisions of the telencephalon, the highest density being observed along the midline. Numerous GABA-reactive cell bodies were found in the diencephalon, particularly in the preoptic and tuberal regions of the hypothalamus, and the dorsolateral, dorsomedial and ventromedial thalamic nuclei. In the optic tectum, the majority of GABApositive cell bodies were located in the periventricular layer. A number of immunolabelled cell bodies were observed in different tegmental structures, notably the torus semicircularis. In the cerebellum, the Purkinje cells were either very intensely or very weakly immunoreactive. In the rhombencephalon, reactive cell bodies were observed in the eminentia granularis, the valvula cerebellaris, the octavolateral nucleus, the lobus vagus and in the vagal and glossopharyngeal motor nuclei. Intensely immunoreactive axons and terminals were observed in the external granular layer and internal cellular layer of the olfactory bulb. In the telencephalon, the highest density of reactive fibres and boutons was found in the fields of the medial wall. Many immunolabelled fibres were seen in the medial and lateral forebrain bundles. In the diencephalon, intense labelling of fibres and terminals were observed in the nuclei situated close to the midline. In the optic tectum the highest density of reactive fibres was seen in the sfgs, the layer to which the retina projects massively. Finally, in the rhombencephalon the strongest labelling of neurites was observed in the nuclei of the raphé, the nucleus octavocellularis magnocellularis and the nuclei of the IXth and Xth cranial nerves. The GABAergic system of the eel, which is well developed, appears to be generally comparable to that described in tetrapod vertebrates.  相似文献   

13.
The distribution of GABA-immunoreactivity was studied in the brain of the silver eel (Anguilla anguilla) by means of antibodies directed against GABA. Immunoreactive neuronal somata were distributed throughout the brain. Positive perikarya were detected in the internal cellular layer of the olfactory bulb, and in all divisions of the telencephalon, the highest density being observed along the midline. Numerous GABA-reactive cell bodies were found in the diencephalon, particularly in the preoptic and tuberal regions of the hypothalamus, and the dorsolateral, dorsomedial and ventromedial thalamic nuclei. In the optic tectum, the majority of GABApositive cell bodies were located in the periventricular layer. A number of immunolabelled cell bodies were observed in different tegmental structures, notably the torus semicircularis. In the cerebellum, the Purkinje cells were either very intensely or very weakly immunoreactive. In the rhombencephalon, reactive cell bodies were observed in the eminentia granularis, the valvula cerebellaris, the octavolateral nucleus, the lobus vagus and in the vagal and glossopharyngeal motor nuclei. Intensely immunoreactive axons and terminals were observed in the external granular layer and internal cellular layer of the olfactory bulb. In the telencephalon, the highest density of reactive fibres and boutons was found in the fields of the medial wall. Many immunolabelled fibres were seen in the medial and lateral forebrain bundles. In the diencephalon, intense labelling of fibres and terminals were observed in the nuclei situated close to the midline. In the optic tectum the highest density of reactive fibres was seen in the sfgs, the layer to which the retina projects massively. Finally, in the rhombencephalon the strongest labelling of neurites was observed in the nuclei of the raphé, the nucleus octavocellularis magnocellularis and the nuclei of the IXth and Xth cranial nerves. The GABAergic system of the eel, which is well developed, appears to be generally comparable to that described in tetrapod vertebrates.  相似文献   

14.
Nerve growth factor receptor, as recognized by the monoclonal antibody 192-IgG, was localized to multiple regions of the adult rat forebrain. Immunoreactive cell bodies and fibers were seen in both sensory and motor regions which are known to contain cholinergic and non-cholinergic neurons. Specifically, nerve growth factor receptor immunoreactivity was present in cells lining the olfactory ventricle, rostral portion of the lateral ventricle, in basal forebrain nuclei, caudate putamen, globus pallidus, zona incerta and hypothalamus. Immunoreactive cells which were situated subpially along the olfactory ventricle and anterior portions of the lateral ventricle, and in the arcuate nucleus resembled neuroglia but could not definitively identified at the light microscopic level. Animals pretreated with intracerebroventricular colchicine displayed significantly increased nerve growth factor receptor immunoreactivity in all previously positive neurons and particularly in the medial preoptic area and ventral premammillary nucleus of the hypothalamus. In such animals, receptor immunoreactivity also appeared in previously non-immunoreactive cells of the hippocampal CA3 region and polymorph layer of the dentate gyrus as well as in the mitral cell layer of the olfactory bulb. Nerve growth factor receptor-immunoreactive fibers and varicosities were seen in the olfactory bulb, piriform cortex, neocortex, amygdala, hippocampus, thalamus, olivary pretectal nucleus and hypothalamus. In most regions, such fiber-like immunoreactive structures likely represented axon terminals, although in some areas, neuroglial or extracellular localizations could not be excluded. In this context, diffuse, non-fibrillar receptor immunoreactivity occurred in the lateral habenular nucleus and medial terminal nucleus of the accessory optic tract. Furthermore, intense nerve growth factor receptor immunoreactivity occurred along certain regions of the pial surface on the ventral surface of the brain. The distribution of nerve growth factor receptor-immunoreactive cell bodies and fibers in multiple sensory and motor nuclei suggests wide-spread influences of nerve growth factor throughout the adult rat forebrain. There is a high degree of overlap with regions containing choline acetyltransferase immunoreactivity. However, significant disparities exist suggesting that certain nerve growth factor receptor-containing non-cholinergic neurons of the rat forebrain may also be affected by nerve growth factor.  相似文献   

15.
The olfactory bulb of the musk shrew, Suncus murinus, is characterized by the presence of various interneurons. Our previous report (Kakuta et al., 2001) demonstrated that positive immunoreactions for calretinin were observed in periglomerular and perinidal cells in the glomerular layer, small ovoid neurons in the external plexiform layer, and granule cells in the granule cell layer of the olfactory bulb in the musk shrew aged 1 to 5 weeks, in addition to calretinin-immunoreactive bipolar cells distributed in the anterior subependymal layer and in each layer of the olfactory bulb. To examine the origin and migration of interneurons of the olfactory bulb, we labeled generated cells by injecting 28-day-old musk shrews with 5-bromo-2'-deoxyuridine (BrdU), and detected the labeled progeny cells that survived after several intervals. BrdU-labeled cells originated in the subependymal layer around the anterior horn of the lateral ventricle, and rostrally migrated in the subependymal layer from the anterior wall of the lateral ventricle into the center of the olfactory bulb, where they radially migrated into the granule cell layer, external plexiform layer, and glomerular layer. It took 2 days to migrate rostrally in the subependymal layer from the anterior lateral ventricle to the center of the olfactory bulb, and 2 to 6 days to migrate radially from the bulbar subependymal layer into the three layers mentioned. The rate of rostralward migration of the labeled cells was estimated to be 38 microm/h, while that of radial migration, 7 to 25 microm/h. The present BrdU-labeling study, together with our previous immunohistochemical study (Kakuta et al., 2001), indicates that anterior subependymal cells differentiate into granule cells in the granule cell layer, into Van Gehuchten cells in the external plexiform layer, and into periglomerular and perinidal cells in the glomerular layer of the olfactory bulb in the musk shrew.  相似文献   

16.
大鼠嗅球乙酰胆碱酯酶阳性传入纤维起源的实验研究   总被引:1,自引:0,他引:1  
本文应用荧光素逆行标记与乙酰胆碱酯酶(AchE)组织化学相结合技术,探索了嗅球AchE阳性传入纤维的起源。经观察在注射区同侧的下列核(区)可发现荧酶双标记细胞:嗅前核后部、斜角带核、屏状核、中缝背核、中央上核和蓝斑。  相似文献   

17.
用荧光逆行标记技术,探索大鼠嗅球传入纤维起源。一侧嗅球注入DAPI后,可在下列核(区)内找到DAPI逆行标记细胞:嗅前核、伏隔核、斜角带核、梨状皮质,视前大细胞核、中缝背核、中央上核和蓝斑.以DAPI-PI配对分别注入两侧嗅球后,可在嗅前核和中缝背核找到DAPI-PI逆行双标记细胞。  相似文献   

18.
Summary The present anatomical findings point to the existence of a separate subdivision of the olfactory system whose connections are quite different from the principal part. The main olfactory bulb has olfactory afferents from the receptors of the general olfactory mucosa, while the accessory bulb has afferents from receptors in the vomeronasal organ. The main bulb projects to the olfactory tubercle and pyriform cortex, while the accessory bulb projects to the amygdala. In turn these areas are further related with the medial forebrain bundle in the case of the pyriform cortex and olfactory tubercle, and with the medial preoptic area and medial hypothalamus in the case of the amygdala. The main and accessory olfactory bulbs are further distinguished by their centrifugal connections, the main bulb receiving fibres from the olfactory tubercle passing through the lateral olfactory tract, and the accessory olfactory bulb receiving fibres from the amygdala through the stria terminalis. The centrifugals to the accessory olfactory bulb resemble those to the main bulb in that both appear to terminate upon granule cells, although further projections to the external plexiform layer or to the periglomerular region have not been demonstrated for the accessory bulb. By virtue of its neural connections the accessory olfactory system is ideally placed to mediate the effects of olfactory stimuli on reproduction.  相似文献   

19.
Aim: Localization of isolated clusters of anterior olfactory nucleus (AON) in a human olfactory bulb and tract. Materials and methods: This investigation was done on human olfactory bulbs and their tracts, collected from the freshly donated cadavers, before embalming, in the Department of Anatomy, IPGMER, Kolkata. H&E stained histological slides were prepared along the whole length of specimens and examined under a Leica DM 2000 microscope and with a Leica Quin image analyzer. Results: The anterior olfactory nucleus was detected in the form of a major cluster and in two smaller clusters of neurons. The major cluster was located at the caudal pole of the bulb and was composed of medium-sized triangular cells which had an average diameter of 13.92 ± 3.43 μm. Out of the two minor clusters, one was detected at the beginning and another at the middle of the olfactory tract. Here neurons were little larger in size and their diameter ranged approximately 15–17 μm. Olfactory striae also accommodated some neurons in a scattered manner. Conclusion: This observation will be helpful in exploration of the complex role of AON in the organization and function of the olfactory system and its clinical significance in human.  相似文献   

20.
The olfactory bulb with its unique architecture was studied for neuronal maturation in human fetuses. Neuroblasts stream into the olfactory bulb from the rostral telencephalon and secondarily migrate radially. The transitory olfactory ventricular recess regresses postnatally. Olfactory is the only sensory system without thalamic projections but incorporates intrinsic thalamic equivalents. The bulb is a repository of progenitor cells. Maturation of the bulb and tract was studied in 18 normal human fetuses of 16–41 weeks gestation; mid‐gestational twins with hydrocephalus; 7 arrhinencephaly/holoprosencephaly; 2 olfactory dysgeneses. Multiple immunoreactivities were performed. Synaptophysin around mitral neurons, in a few synaptic glomeruli and concentric lamination of the outer granular layer, was seen at 16 weeks. Outer granular neurons exhibited NeuN at 16 weeks, only 2/3 were reactive at term. Concentric alternating sheets of granular neurons and their dendrodendritic synapses are seen during maturation. Calretinin reactivity is seen in neurons and neurites, primary olfactory nerve axons, periglomerular cells and neuroepithelial cells surrounding the ventricular recess; reactivity occurs later in synaptic glomeruli than with synaptophysin; not all glomeruli are strongly reactive even at term. Nestin‐ and vimentin‐reactive bipolar progenitor cells were demonstrated at all ages and extend into the olfactory tract. Myelin is demonstrated by Luxol fast blue (LFB) only postnatally. In hydrocephalus, the olfactory recess is dilated. Mitral cell dispersion, disrupted glomeruli, heterotopia and maturational delay are seen in some dysgeneses. Malformations exhibit unique findings. Fusion of hypoplastic bulbs can occur. Abnormal architecture is seen in hemimegalencephaly. More documentation of olfactory dysgenesis is needed in other major brain malformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号