首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli cause an inflammatory colitis in human patients characterized by neutrophil infiltration, proinflammatory cytokine expression, and crypt hyperplasia. Citrobacter rodentium causes a similar colitis in mice and serves as a model for enteropathogenic E. coli infection in humans. C. rodentium induces systemic T-cell-dependent antibody production that facilitates clearance of the bacteria and protects the host from reinfection. The role of innate immune cells in infectious colitis, however, is less well understood. In this study, we have determined the role of mast cells in the inflammatory response and disease induced by C. rodentium. Mice deficient in mast cells exhibit more severe colonic histopathology and have a higher mortality rate following infection with C. rodentium than do wild-type animals. Despite unimpaired neutrophil recruitment and lymphocyte activation, mast cell-deficient mice have a disseminated infection evident in crucial organ systems that contributes to sepsis. Importantly, mast cells also have the capacity to directly kill C. rodentium. Together, these results suggest that mast cells protect the host from systemic infection by reducing the bacterial load and preventing dissemination of the bacterium from the colon.  相似文献   

2.
Citrobacter rodentium, an attaching-effacing bacterial pathogen, establishes an acute infection of the murine colonic epithelium and induces a mild colitis in immunocompetent mice. This study describes the role of T-cell subsets and B lymphocytes in immunity to C. rodentium. C57Bl/6 mice orally infected with C. rodentium resolved infection within 3 to 4 weeks. Conversely, systemic and colonic tissues of RAG1(-/-) mice orally infected with C. rodentium contained high and sustained pathogen loads, and in the colon this resulted in a severe colitis. C57Bl/6 mice depleted of CD4(+) T cells, but not CD8(+) T cells, were highly susceptible to infection and also developed severe colitis. Mice depleted of CD4(+) T cells also had diminished immunoglobulin G (IgG) and IgA antibody responses to two C. rodentium virulence-associated determinants, i.e., EspA and intimin, despite having a massively increased pathogen burden. Mice with an intact T-cell compartment, but lacking B cells ( micro MT mice), were highly susceptible to C. rodentium infection. Systemic immunity, but not mucosal immunity, could be restored by adoptive transfer of convalescent immune sera to infected micro MT mice. Adoptive transfer of immune B cells, but not na?ve B cells, provided highly variable immunity to recipient micro MT mice. The results suggest that B-cell-mediated immune responses are central to resolution of a C. rodentium infection but that the mechanism through which this occurs requires further investigation. These data are relevant to understanding immunity to enteric attaching and effacing bacterial pathogens of humans.  相似文献   

3.
Citrobacter rodentium infection of mice induces cell-mediated immune responses associated with crypt hyperplasia and epithelial β-catenin signaling. Recent data suggest that phosphatidylinositol-3-kinase (PI3K)/Akt signaling cooperates with Wnt to activate β-catenin in intestinal stem and progenitor cells through phosphorylation at Ser552 (P-β-catenin(552)). Our aim was to determine whether epithelial PI3K/Akt activation is required for β-catenin signaling and host defense against C. rodentium. C57BL/6 mice were infected with C. rodentium and treated with dimethyl sulfoxide (DMSO) (vehicle control) or with the PI3K inhibitor LY294002 or wortmannin. The effects of infection on PI3K activation and β-catenin signaling were analyzed by immunohistochemistry. The effects of PI3K inhibition on host defense were analyzed by the quantification of splenic and colon bacterial clearance, and adaptive immune responses were measured by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Increased numbers of P-β-catenin(552)-stained epithelial cells were found throughout expanded crypts in C. rodentium colitis. We show that the inhibition of PI3K signaling attenuates epithelial Akt activation, the Ser552 phosphorylation and activation of β-catenin, and epithelial cell proliferative responses during C. rodentium infection. PI3K inhibition impairs bacterial clearance despite having no impact on mucosal cytokine (gamma interferon [IFN-γ], tumor necrosis factor [TNF], interleukin-17 [IL-17], and IL-1β) or chemokine (CXCL1, CXCL5, CXCL9, and CXCL10) induction. The results suggest that the host defense against C. rodentium requires epithelial PI3K activation to induce Akt-mediated β-catenin signaling and the clearance of C. rodentium independent of adaptive immune responses.  相似文献   

4.
The pathogenesis of a Citrobacter rodentium infection was evaluated in mice fed diets with a single deficiency in either selenium or vitamin E or with a double deficiency in both selenium and vitamin E compared to mice on nutritionally adequate diets. Mice fed the selenium- and vitamin E-deficient diet for 6 weeks had increased loads of C. rodentium in the colon and spleen, which were not observed in mice fed either of the singly deficient diets or the adequate diet. Infected mice fed the doubly deficient diet had increased colon crypt hyperplasia and an influx of infiltrating cells along with gross changes to crypt architecture, including ulceration and denuding of the epithelial layer. Cytokine and chemokine mRNA levels in the colon were measured by real-time PCR. Expression of proinflammatory cytokines and chemokines was upregulated on day 12 after infection with C. rodentium in mice fed the doubly deficient diet compared to mice fed the control diet. Heme oxygenase 1, an enzyme upregulated by oxidative stress, also was more highly induced in infected mice fed the doubly deficient diet. Production of C. rodentium antigen-specific IgM and IgG antibodies was not affected by feeding the doubly deficient diet. The results indicated that selenium and vitamin E play an important role in host resistance and in the pathology induced by C. rodentium, an infection that mimics disease caused by common food-borne bacterial pathogens in humans.  相似文献   

5.
Many studies have shown that genetic susceptibility plays a key role in determining whether bacterial pathogens successfully infect and cause disease in potential hosts. Surprisingly, whether host genetics influence the pathogenesis of attaching and effacing (A/E) bacteria such as enteropathogenic and enterohemorrhagic Escherichia coli has not been examined. To address this issue, we infected various mouse strains with Citrobacter rodentium, a member of the A/E pathogen family. Of the strains tested, the lipopolysaccharide (LPS) nonresponder C3H/HeJ mouse strain experienced more rapid and extensive bacterial colonization than did other strains. Moreover, the high bacterial load in these mice was associated with accelerated crypt hyperplasia, mucosal ulceration, and bleeding, together with very high mortality rates. Interestingly, the basis for the increased susceptibility was not due to LPS hyporesponsiveness, as the genetically related but LPS-responsive C3H/HeOuJ and C3H/HeN mouse strains were also susceptible to infection. Analysis of the intestinal pathology in these susceptible strains revealed significant crypt epithelial cell apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining) as well as bacterial translocation to the mesenteric lymph nodes. Further studies with infection of SCID (T- and B-lymphocyte-deficient) C3H/HeJ mice demonstrated that loss of lymphocytes had no effect on bacterial numbers but did reduce crypt cell apoptosis and delayed mortality. These studies thus identify the adaptive immune system, crypt cell apoptosis, and bacterial translocation but not LPS responsiveness as contributing to the tissue pathology and mortality seen during C. rodentium infection of highly susceptible mouse strains. Determining the basis for these strains' susceptibility to intestinal colonization by an A/E pathogen will be the focus of future studies.  相似文献   

6.
Citrobacter rodentium, a murine model pathogen for human enteropathogenic Escherichia coli, predominantly colonizes the lumen and mucosal surface of the colon and cecum and causes crypt hyperplasia and mucosal inflammation. Mice infected with C. rodentium develop a secretory immunoglobulin A (IgA) response, but the role of B cells or secretory antibodies in host defense is unknown. To address this question, we conducted oral C. rodentium infections in mice lacking B cells, IgA, secreted IgM, polymeric Ig receptor (pIgR), or J chain. Normal mice showed peak bacterial numbers in colon and feces at 1 week and bacterial eradication after 3 to 4 weeks. B-cell-deficient mice were equally susceptible initially but could not control infection subsequently. Tissue responses showed marked differences, as infection of normal mice was accompanied by transient crypt hyperplasia and mucosal inflammation in the colon and cecum at 2 but not 6 weeks, whereas B-cell-deficient mice had few mucosal changes at 2 weeks but severe epithelial hyperplasia with ulcerations and mucosal inflammation at 6 weeks. The functions of B cells were not mediated by secretory antibodies, since mice lacking IgA or secreted IgM or proteins required for their transport into the lumen, pIgR or J chain, cleared C. rodentium normally. Nonetheless, systemic administration of immune sera reduced bacterial numbers significantly in normal and pIgR-deficient mice, and depletion of IgG abrogated this effect. These results indicate that host defense against C. rodentium depends on B cells and IgG antibodies but does not require production or transepithelial transport of IgA or secreted IgM.  相似文献   

7.
8.
Commensals limit disease caused by invading pathogens; however, the mechanisms and genes utilized by beneficial microbes to inhibit pathogenesis are poorly understood. The attaching and effacing mouse pathogen Citrobacter rodentium associates intimately with the intestinal epithelium, and infections result in acute colitis. C. rodentium is used to model the human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. To confirm that Bacillus subtilis, a spore-forming bacterium found in the gut of mammals, could reduce C. rodentium-associated disease, mice received wild-type B. subtilis spores and 24 h later were infected by oral gavage with pathogenic C. rodentium. Disease was assessed by determining the extent of colonic epithelial hyperplasia, goblet cell loss, diarrhea, and pathogen colonization. Mice that received wild-type B. subtilis prior to enteric infection were protected from disease even though C. rodentium colonization was not inhibited. In contrast, espH and hag mutants, defective in exopolysaccharides and flagellum production, respectively, did not protect mice from C. rodentium-associated disease. A motAB mutant also failed to protect mice from disease, suggesting that B. subtilis-mediated protection requires functional flagella. By expanding our current mechanistic knowledge of bacterial protection, we can better utilize beneficial microbes to prevent intestinal disease caused by pathogenic bacteria, ultimately reducing human disease. Our data demonstrate that wild-type B. subtilis reduced disease caused by C. rodentium infection through a mechanism that required espH and functional flagella.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are noninvasive bacterial pathogens that infect their hosts' intestinal epithelium, causing severe diarrheal disease. These infections also cause intestinal inflammation, although the mechanisms underlying the inflammatory response, as well as its potential role in host defense, are unclear. Since these bacteria are gram-negative, Toll-like receptor 4 (TLR4), the innate receptor for bacterial lipopolysaccharide may contribute to the host response; however, the role of TLR4 in the gastrointestinal tract is poorly understood, and its impact has yet to be tested against this family of enteric bacterial pathogens. Since EPEC and EHEC are human specific, we infected mice with Citrobacter rodentium, a mouse-adapted attaching and effacing (A/E) bacterium that infects colonic epithelial cells, causing colitis and epithelial hyperplasia, using a similar array of virulence proteins as EPEC and EHEC. We demonstrated that C. rodentium activates TLR4 and rapidly induced NF-kappaB nuclear translocation in host cells in a partially TLR4-dependent manner. Infection of TLR4-deficient mice revealed that TLR4-dependent responses mediate much of the inflammation and tissue pathology seen during infection, including the induction of the chemokines MIP-2 and MCP-1, as well as the recruitment of macrophages and neutrophils into the infected intestine. Surprisingly, spread of C. rodentium through the colon was delayed in TLR4-deficient mice, whereas the duration of the infection was unaffected, indicating that TLR4-mediated responses against this A/E pathogen are not host protective and are ultimately maladaptive to the host, contributing to both the morbidity and the pathology seen during infection.  相似文献   

10.
Notch and Wnt/β-catenin signals play essential roles in intestinal development and homeostasis. Citrobacter rodentium induces transmissible murine colonic hyperplasia (TMCH) and various degrees of inflammation, depending upon the genetic background. We aimed at delineating the role of the Notch and Wnt/β-catenin pathways in the regulation of colonic crypt hyperplasia and/or colitis following C. rodentium infection. During TMCH, relative levels of the Notch intracellular domain (NICD) increased significantly, along with increases in Jagged-1 and Hes-1 coinciding with the progression and regression phases of hyperplasia. Blocking of Notch signaling with dibenzazepine (DBZ) for 5 days before the onset of hyperplasia also blocked Wnt/β-catenin signaling. Targeting the Notch pathway for 5 days after the onset of hyperplasia failed to inhibit Wnt/β-catenin-regulated crypt hyperplasia. Chronic DBZ administration for 10 days blocked both Notch and Wnt signaling, disrupted the intestinal barrier, and induced colitis. Core-3(-/-) mice, which are defective in mucin secretion and are susceptible to experimental triggers of colitis, also exhibited significant colitis in response to C. rodentium plus DBZ. Chronic DBZ administration in these mice did not result in depletion of the putative stem cell marker doublecortin-like kinase-1 (DCLK1) in the crypts. Dietary bael (Aegle marmelos) extract (4%) and curcumin (4%) restored signaling via the Notch and Wnt/β-catenin pathways, thereby promoting crypt regeneration, and also replenished the mucus layer, leading to amelioration of C. rodentium- and DBZ-induced colitis in NIH:Swiss mice. Thus, the balancing act between cell proliferation and mucus production to restore barrier integrity seems to depend upon the interplay between the Wnt/β-catenin and Notch pathways in the TMCH model.  相似文献   

11.
12.
Previously, we have identified a large gene (lifA, for lymphocyte inhibitory factor A) in enteropathogenic Escherichia coli (EPEC) encoding a protein termed lymphostatin that suppresses cytokine expression in vitro. This protein also functions as an adhesion factor for enterohemorrhagic E. coli (EHEC) and Shiga toxin-producing E. coli and is alternatively known as efa1 (EHEC factor for adherence 1). The lifA/efa1 gene is also present in Citrobacter rodentium, an enteric pathogen that causes a disease termed transmissible murine colonic hyperplasia (TMCH), which induces colitis and massive crypt cell proliferation, in mice. To determine if lifA/efa1 is required for C. rodentium-induced colonic pathology in vivo, three in-frame mutations were generated, disrupting the glycosyltransferase (GlM12) and protease (PrMC31) motifs and a domain in between that does not encode any known activity (EID3). In contrast to infection with wild-type C. rodentium, that with any of the lifA/efa1 mutant strains did not induce weight loss or TMCH. Enteric infection with motif mutants GlM12 and PrM31 resulted in significantly reduced colonization counts during the entire 20-day course of infection. In contrast, EID3 was indistinguishable from the wild type during the initial colonic colonization, but cleared rapidly after day 8 of the infection. The colonic epithelium of all infected mice displayed increased epithelial regeneration. However, significantly increased regeneration was observed by day 20 only in mice infected with the wild-type in comparison to those infected with lifA/efa1 mutant EID3. In summary, lifA/efa1 is a critical gene outside the locus for enterocyte effacement that regulates bacterial colonization, crypt cell proliferation, and epithelial cell regeneration.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are noninvasive attaching and effacing (A/E) bacterial pathogens that cause intestinal inflammation and severe diarrheal disease. These pathogens utilize a type III secretion system to deliver effector proteins into host epithelial cells, modulating diverse cellular functions, including the release of the chemokine interleukin-8 (IL-8). While studies have implicated the effectors NleE (non-locus of enterocyte effacement [LEE]-encoded effector E) and NleH1 in suppressing IL-8 release, by preventing NF-κB nuclear translocation, the impact of these effectors only partially replicates the immunosuppressive actions of wild-type EPEC, suggesting another effector or effectors are involved. Testing an array of EPEC mutants, we identified the non-LEE-encoded effector C (NleC) as also suppressing IL-8 release. Infection by ΔnleC EPEC led to exaggerated IL-8 release from infected Caco-2 and HT-29 epithelial cells. NleC localized to EPEC-induced pedestals, with signaling studies revealing NleC inhibits both NF-κB and p38 mitogen-activated protein kinase (MAPK) activation. Using Citrobacter rodentium, a mouse-adapted A/E bacterium, we found that ΔnleC and wild-type C. rodentium-infected mice carried similar pathogen burdens, yet ΔnleC strain infection led to worsened colitis. Similarly, infection with ΔnleC C. rodentium in a cecal loop model induced significantly greater chemokine responses than infection with wild-type bacteria. These studies thus advance our understanding of how A/E pathogens subvert host inflammatory responses.  相似文献   

14.
15.
To determine the role of interleukin-12 (IL-12) in primary and secondary immunity to a model intracellular bacterium, we have comprehensively evaluated infection with Francisella tularensis LVS in three murine models of IL-12 deficiency. Mice lacking the p40 protein of IL-12 (p40 knockout [KO] mice) and mice treated in vivo with neutralizing anti-IL-12 antibodies survived large doses of primary and secondary LVS infection but never cleared bacteria and exhibited a chronic infection. In dramatic contrast, mice lacking the p35 protein (p35 KO mice) of heterodimeric IL-12 readily survived large doses of primary sublethal LVS infection as well as maximal secondary lethal challenge, with only a slight delay in clearance of bacteria. LVS-immune wild-type (WT) lymphocytes produced large amounts of gamma interferon (IFN-gamma), but p35 KO and p40 KO lymphocytes produced much less; nonetheless, similar amounts of NO were found in all cultures containing immune lymphocytes, and all immune lymphocytes were equally capable of controlling intracellular growth of LVS in vitro. Purified CD4(+) and CD8(+) T cells from both WT and p40 KO mice controlled intracellular growth, even though T cells from WT mice produced much more IFN-gamma than those from p40 KO mice, and p40 KO T cells did not adopt a Th2 phenotype. Thus, while IL-12 p70 stimulation of IFN-gamma production may be important for bacteriostasis, IL-12 p70 is not necessary for appropriate development of LVS-immune T cells that are capable of controlling intracellular bacterial growth and for clearance of primary or secondary LVS infection. Instead, an additional mechanism dependent on the IL-12 p40 protein, either alone or in another complex such as the newly discovered heterodimer IL-23, appears to be responsible for actual clearance of this intracellular bacterium.  相似文献   

16.
Citrobacter rodentium is the causative agent of transmissible murine colonic hyperplasia. The disease is characterized by severe but temporary epithelial hyperplasia with limited inflammation in the descending colon of adult mice on a variety of genetic backgrounds. The natural history of infection with this murine pathogen has been characterized in outbred Swiss Webster (SW) mice but not in the cognate inbred FVB strain. In contrast to subclinical infection in SW mice, 12-week-old FVB mice developed overt disease with significant weight loss and mortality beginning by 9 days postinoculation (dpi). By 21 dpi, more than 75% of infected FVB mice died or had to be euthanized, whereas no mortality developed in SW mice. Mortality in FVB mice was fully prevented by fluid therapy. Fecal shedding of bacteria was similar in both groups through 9 dpi; however, a slight but significant delay in bacterial clearance was observed in FVB mice by 12 to 18 dpi. SW mice developed hyperplasia with minimal inflammation in the descending colon. FVB mice developed epithelial cell hyperproliferation, severe inflammation with erosions and ulcers, and epithelial atypia by 6 dpi in the descending colon. In the majority of surviving FVB mice, colonic lesions, including epithelial atypia, were reversible, although a small percentage (5 to 7%) exhibited chronic colitis through 7 months postinoculation. The existence of susceptible and resistant lines of mice with similar genetic backgrounds will facilitate the identification of host factors responsible for the outcome of infection and may lead to the development of novel strategies for preventing and treating infectious colitis.  相似文献   

17.
Citrobacter rodentium belongs to the attaching and effacing family of enteric bacterial pathogens that includes both enteropathogenic and enterohemorrhagic Escherichia coli. These bacteria infect their hosts by colonizing the intestinal mucosal surface and intimately attaching to underlying epithelial cells. The abilities of these pathogens to exploit the cytoskeleton and signaling pathways of host cells are well documented, but their interactions with the host's antimicrobial defenses, such as inducible nitric oxide synthase (iNOS), are poorly understood. To address this issue, we infected mice with C. rodentium and found that iNOS mRNA expression in the colon significantly increased during infection. Immunostaining identified epithelial cells as the major source for immunoreactive iNOS. Finding that nitric oxide (NO) donors were bacteriostatic for C. rodentium in vitro, we examined whether iNOS expression contributed to host defense by infecting iNOS-deficient mice. Loss of iNOS expression caused a small but significant delay in bacterial clearance without affecting tissue pathology. Finally, immunofluorescence staining was used to determine if iNOS expression was localized to infected cells by staining for the C. rodentium virulence factor, translocated intimin receptor (Tir), as well as iNOS. Interestingly, while more than 85% of uninfected epithelial cells expressed iNOS, fewer than 15% of infected (Tir-positive) cells expressed detectable iNOS. These results demonstrate that both iNOS and intestinal epithelial cells play an active role in host defense during C. rodentium infection. However, the selective expression of iNOS by uninfected but not infected cells suggests that this pathogen has developed mechanisms to locally limit its exposure to host-derived NO.  相似文献   

18.
Infection of inbred mouse strains with Citrobacter rodentium represents an ideal model to reveal the genetic factors controlling host resistance to noninvasive enteric bacterial pathogens. We have chosen a positional cloning approach to identify putative gene(s) that control the known difference in survival between resistant C57BL/6J and susceptible C3H/HeJ and C3H/HeOuJ mice. Our work has identified one major locus within proximal chromosome 15 that is responsible for the marked susceptibility of both C3H strains, and we formally exclude Tlr4 from control of survival to this pathogen. We have named this new host resistance locus Cri1 (Citrobacter rodentium infection 1). The Cri1 genetic interval currently spans ~16 Mb and it confers survival to the infection in a recessive manner. Transfer of the Cri1 locus from the surviving B6 mice into a congenic mouse with a C3Ou genetic background confirms its overall chromosomal localization and its highly significant effect on host survival. The C3Ou.B6-Cri1 mice thus produced have also enabled us to dissociate the control of mouse survival from the control of bacterial load early in the infection as well as from control of colonic hyperplasia.  相似文献   

19.
The sphingosine-1-phosphate (S1P) analogue FTY720 is therapeutically efficacious in multiple sclerosis and in the prevention of transplant rejection. It prevents the migration of lymphocytes to sites of pathology by trapping them within the peripheral lymph nodes, mesenteric lymph nodes (MLNs), and Peyer's patches. However, evidence suggests that its clinical use may increase the risk of mucosal infections. We investigated the impact of FTY720 treatment on susceptibility to gastrointestinal infection with the mouse enteric pathogen Citrobacter rodentium. This attaching and effacing bacterium induces a transient bacterial colitis in immunocompetent mice that resembles human infection with pathogenic Escherichia coli. FTY720 treatment induced peripheral blood lymphopenia, trapped lymphocytes in the MLNs, and prevented the clearance of bacteria when mice were infected with luciferase-tagged C. rodentium. FTY720-treated C. rodentium-infected mice had enhanced colonic inflammation, with significantly higher colon mass, colon histopathology, and neutrophil infiltration than vehicle-infected animals. In addition, FTY720-treated infected mice had significantly lower numbers of colonic dendritic cells, macrophages, and T cells. Gene expression analysis demonstrated that FTY720-treated infected mice had an impaired innate immune response and a blunted mucosal adaptive immune response, including Th1 cytokines. The data demonstrate that the S1P analogue FTY720 adversely affects the immune response to and clearance of C. rodentium.  相似文献   

20.
Antibiotics are often used in the clinic to treat bacterial infections, but the effects of these drugs on microbiota composition and on intestinal immunity are poorly understood. Citrobacter rodentium was used as a model enteric pathogen to investigate the effect of microbial perturbation on intestinal barriers and susceptibility to colitis. Streptomycin and metronidazole were used to induce alterations in the composition of the microbiota prior to infection with C. rodentium. Metronidazole pretreatment increased susceptibility to C. rodentium-induced colitis over that of untreated and streptomycin-pretreated mice, 6 days postinfection. Both antibiotic treatments altered microbial composition, without affecting total numbers, but metronidazole treatment resulted in a more dramatic change, including a reduced population of Porphyromonadaceae and increased numbers of lactobacilli. Disruption of the microbiota with metronidazole, but not streptomycin treatment, resulted in an increased inflammatory tone of the intestine characterized by increased bacterial stimulation of the epithelium, altered goblet cell function, and thinning of the inner mucus layer, suggesting a weakened mucosal barrier. This reduction in mucus thickness correlates with increased attachment of C. rodentium to the intestinal epithelium, contributing to the exacerbated severity of C. rodentium-induced colitis in metronidazole-pretreated mice. These results suggest that antibiotic perturbation of the microbiota can disrupt intestinal homeostasis and the integrity of intestinal defenses, which protect against invading pathogens and intestinal inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号