首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

2.
Negative functional magnetic resonance imaging (fMRI) response in the striatum has been observed in several studies during peripheral sensory stimulation, but its relationship between local field potential (LFP) remains to be elucidated. We performed cerebral blood volume (CBV) fMRI and LFP recordings in normal rats during graded noxious forepaw stimulation at nine stimulus pulse widths. Albeit high LFP–CBV correlation was found in the ipsilateral and contralateral sensory cortices (r=0.89 and 0.95, respectively), the striatal CBV responses were neither positively, nor negatively correlated with LFP (r=0.04), demonstrating that the negative striatal CBV response is not originated from net regional inhibition. To further identify whether this negative CBV response can serve as a marker for striatal functional recovery, two groups of rats (n=5 each) underwent 20- and 45-minute middle cerebral artery occlusion (MCAO) were studied. No CBV response was found in the ipsilateral striatum in both groups immediately after stroke. Improved striatal CBV response was observed on day 28 in the 20-minute MCAO group compared with the 45-minute MCAO group (P<0.05). This study shows that fMRI signals could differ significantly from LFP and that the observed negative CBV response has potential to serve as a marker for striatal functional integrity in rats.  相似文献   

3.
The present study examined the hypothesis that mu-opioid receptors contribute to a behavioral stimulation produced by stimulation of dopamine receptors by comparing responses in mu-opioid receptor knockout and wild type mice. Apomorphine-induced climbing behavior was augmented by 65%, in wild type mice, but not in mu-knockout, following subcutaneous administration of morphine (15 mg/kg). Moreover, pretreatment with either naloxone (an opioid receptor antagonist) or haloperidol (a mixed D(1)/D(2) receptor antagonist) eliminated the enhancement by morphine of climbing behavior in wild type mice. These results indicate that expression of mu-opioid receptors plays an important role in the enhancement of climbing behavior induced by the dopamine receptor agonist, apomorphine. Furthermore, this augmentation is mediated by interaction between dopamine and mu-opioid receptors.  相似文献   

4.
Y Kai  Y Oomura  N Shimizu 《Brain research》1988,461(1):107-117
The effects of dorsal periaqueductal gray (D-PAG) stimulation and noxious stimuli on neural activity in the lateral hypothalamic area (LHA) were investigated in 56 adult male anesthetized rats. Strong tail pinch was used as noxious stimulation. We examined 234 extracellular and 75 intracellular recordings of LHA responses to electrical stimulation of D-PAG. To determine neurotransmitter candidates, the effects of the opioid agonist, morphine, and its antagonist, naloxone were investigated by systemic administration and microelectrophoresis. Of 234 spontaneously firing LHA neurons, 70 (30%) were inhibited by D-PAG stimulation. Of these 70 neurons, 26/40 tested (65%) were glucose-sensitive, 16/19 (84%) were inhibited by morphine and 12/18 (67%) were inhibited by tail pinch. Glucose-sensitive neurons were selectively inhibited by morphine and tail pinch. Naloxone attenuated inhibitory responses to D-PAG stimulation, tail pinch and electrophoretic morphine. From intracellular recordings these polysynaptic inhibitory responses to D-PAG stimulation were considered to be inhibitory postsynaptic potentials (IPSPs) with 6.1 +/- 3.2 ms (mean +/- S.D.) latency and reversal membrane potential of about -78 mV. Since LHA glucose-sensitive neurons receive, selectively, both inhibitory opioid inputs from the D-PAG and inhibitory inputs through noxious stimulation, we suggest that D-PAG might be an intermediate site for transmission of noxious stimuli to the LHA.  相似文献   

5.
Numerous pharmacological data have been accumulated in support of the existence of physiological interactions between cholecystokinin (CCK) and opioids in the central nervous system. With the aim of further characterizing these interactions, an in vivo microdialysis approach was used to directly assess the possible influence of opioids on the extracellular levels of CCK-like material (CCKLM) in the frontal cortex of the awake, freely moving rat. Systemic administration of a high dose of morphine (10 mg/kg i.p.) produced a marked increase (up to +200%) of cortical CCKLM outflow, and this effect could be completely prevented by systemic (1.5 mg/kg i.p.) as well as intracortical (10 microM) administration of the opioid receptor antagonist naloxone. The opioid receptors activated by morphine appeared to be of the delta type because the intracortical infusion of naltrindole (10 microM) also prevented the effect of morphine, whereas CTOP (10 microM), a selective mu-opioid receptor antagonist, and nor-binaltorphimine (10 microM), a selective kappa-opioid receptor antagonist, were inactive. In addition, naltriben (10 microM), which acts selectively at the delta(2) subtype, also abolished the stimulatory effect of morphine on cortical CCKLM outflow, whereas 7-benzylidenenaltrexone (10 microM), a selective delta(1)-opioid receptor antagonist (10 microM), did not alter the morphine effect. Conversely, the direct stimulation of cortical delta(2)-opioid receptors by local infusion of [D-Ala(2)] deltorphin II mimicked the stimulatory effect of systemic morphine on CCKLM outflow. These data indicate that delta(2)-opioid receptors play a key role in opioid-CCK interactions in the rat frontal cortex.  相似文献   

6.
The influence of naturally occurring opioid peptides (Met-enkephalin (Met-Enk), dynorphin (DYN), β-endorphin (β-EP)) as well as morphine and the opiate antagonist naloxone and specific antisera on cerebral blood flow autoregulation was studied in anesthetized, artificially ventillated rats. Local hypothalamic blood flow (CBF, H2-gas clearance technique) and total cerebral blood volume (CBV, photoelectric method) were simultaneously recorded. Autoregulation was tested by determining CBF and CBV during consecutive stepwise lowering of the systemic mean arterial pressure to 80, 60 and 40 mm Hg, by hemorrhage. Resting CBF decreased following Met-Enk, DYN, β-EP or morphine administration without simultaneous changes in CBV. Naloxone administration, on the contrary, increased CBV without affecting local CBF. Autoregulation of cerebral blood flow was maintained until 80 mm Hg, but not completely at 60 and 40 mm Hg arterial pressure in the control group. General opiate receptor blockade by 1 mg/kg s.c. naloxone abolished autoregulation at all levels, since CBF and CBV passively followed the arterial pressure changes. Intracerebroventricularly injected naloxone (1 μg/kg) as well as a specific antiserum against β-EP, but not against Met-Enk or DYN, resulted in the very same effect as peripherally injected naloxone. The present findings suggest that central, periventricular β-endorphinergic mechanisms might play a major role in CBF autoregulation.  相似文献   

7.
The antinociceptive effects of morphine (5 μg) microinjected into the ventrolateral periaqueductal gray were determined using both the tail flick and the foot withdrawal responses to noxious radiant heating in lightly anesthetized rats. Intrathecal injection of appropriate antagonists was used to determine whether the antinociceptive effects of morphine were mediated byα2-noradrenergic, serotonergic, opioid, or cholinergic muscarinic receptors. The increase in the foot withdrawal response latency produced by microinjection of morphine in the ventrolateral periaqueductal gray was reversed by intrathecal injection of the cholinergic muscarinic receptor antagonist atropine, but was not affected by the a2-adrenoceptor antagonist yohimbine, the serotonergic receptor antagonist methysergide, or the opioid receptor antagonist naloxone. In contrast, the increase in the tail flick response latency produced by morphine was reduced by either yohimbine, methysergide or atropine. These results indicate that microinjection of morphine in the ventrolateral periaqueductal gray inhibits nociceptive responses to noxious heating of the tail by activating descending neuronal systems that are different from those that inhibit the nociceptive responses to noxious heating of the feet. More specifically, serotonergic, muscarinic cholinergic andα2-noradrenergic receptors appear to mediate the antinociception produced by morphine using the tail flick test. In contrast, muscarinic cholinergic, but not monoamine receptors appear to mediate the antinociceptive effects of morphine using the foot withdrawal response.  相似文献   

8.
Chen SR  Pan HL 《Brain research》2006,1081(1):119-125
Systemically administered mu opioids may produce analgesia through inhibition of the ascending nociceptive transmission and activation of descending pathways. However, the relative importance of the spinal and supraspinal sites in the analgesic action of systemic opioids remains uncertain. It has been shown that systemic morphine can inhibit dorsal horn neurons independent of the descending system. In this study, we determined the extent to which spinal mu opioid receptors mediate the analgesic effect of systemic mu opioids. Rats were instrumented with an intrathecal catheter with the tip placed in the lumbar spinal cord. Nociception was measured by testing the paw withdrawal threshold in response to a noxious radiant heat or pressure stimulus. Surprisingly, intrathecal pretreatment with naloxone or H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, a specific mu opioid receptor antagonist) completely blocked the inhibitory effect of intravenous morphine on mechanical nociception. Intrathecal naloxone or CTAP also abolished the effect of intravenous morphine on the withdrawal latency of the hindpaw, but not the forepaw, measured with a radiant heat stimulus. Furthermore, the inhibitory effect of subcutaneous fentanyl on mechanical nociception was eliminated by CTAP injected intrathecally. Intrathecal CTAP similarly abolished the effect of subcutaneous fentanyl on thermal nociception of the hindpaw but not the forepaw. Therefore, this study provides new information that when spinal mu opioid receptors are blocked, subsequent systemic administration of mu opioids fails to produce an analgesic effect. This finding highlights the important role of mu opioid receptors in the spinal cord in the antinociceptive action of opioids.  相似文献   

9.
Isolated neural lobes of the rat pituitary gland were incubated in Krebs-HEPES solution which contained the dopamine uptake inhibitor GBR 12921 and in some experiments additionally pargyline. The release of endogenous dopamine evoked by electrical stimulation of the pituitary stalk was determined by high-performance liquid chromatography with electrochemical detection. (±)- Naloxone increased the evoked dopamine release maximally by 440% (EC50 209 nM). The (+)-enantiomer of naloxone (up to 10 μM) did not affect the release of dopamine. The preferential κ-opioid receptor antagonist MR 2266 increased the evoked dopamine release maximally by 135% (EC50 7 nM). MR 2267, the inactive (+)-enantiomer of MR 2266, had no effect on dopamine release. The δ-opioid receptor selective antagonist ICI 174864 increased the release of dopamine maximally by 120% (EC50 10 nM). The non-selective opioid receptor agonist etorphine up to 10 μM had no effect on the evoked dopamine release. In conclusion, endogenous opioids in the neurohypophysis strongly inhibit the release of endogenous dopamine from this gland. Activation of κ- and δ-opioid receptors appears to be involved in the inhibitory action of the endogenous opioids on the neurohypophysial release of dopamine.  相似文献   

10.
Earlier studies indicate that striatal dopamine D(2) receptors are involved in pain regulation in non-neuropathic conditions. We assessed whether striatal dopamine D(2) receptors contribute to pain regulation also in neuropathic conditions. The spared nerve injury model of neuropathy was induced by unilateral ligation of the tibial and common peroneal nerves in the rat. In awake nerve-injured animals, pain-related withdrawal responses to calibrated monofilaments or noxious heating were attenuated following striatal administration of a dopamine D(2) receptor agonist quinpirole. Pain-related responses were attenuated only in the nerve-injured limb ipsilateral to the injection and in the midline (tail). In unoperated controls, striatal administration of quinpirole at an antihypersensitive dose did not influence withdrawal responses to mechanical stimulation. Attenuation of pain-related responses induced by striatal administration of quinpirole was reversed by intrathecal administration of a dopamine D(2) receptor antagonist (eticlopride) or a non-selective 5-HT receptor antagonist (methysergide), but not by an alpha(2)-adrenoceptor antagonist (atipamezole). In the rostroventromedial medulla of lightly anesthetized neuropathic animals, striatal administration of quinpirole significantly decreased the activity of presumably pronociceptive cells that are activated by noxious stimulation. The innocuous H-reflex in lightly anesthetized control animals was not suppressed by striatal administration of quinpirole at an antihypersensitive dose. The results indicate that striatal dopamine D(2) receptors attenuate neuropathic hypersensitivity. The antihypersensitive effect induced by striatal dopamine D(2) receptors in peripheral neuropathy involves suppression of impulse discharge of presumably pronociceptive neurons in the rostroventromedial medulla, and a descending influence acting on spinal 5-HT and dopamine D(2) receptors.  相似文献   

11.
1. 1. Considerable experimental attention has been directed at understanding the role of opioid peptides in mediating stress effects. Fewer studies have utilized non-physical or ‘psychological’ methods to investigate the role of the opioid system in stress.
2. 2. Recent studies have shown that conditioned fear, a psychological stressor, can augment morphine induced analgesia and acute dependence. Two experiments were conducted to assess withdrawal-like behavioral changes induced by the general opioid antagonist naloxone, in the absence of morphine, following exposure to a context conditioned fear stimulus.
3. 3. Experiment 1 demonstrated that a high dose of naloxone (10 mg/kg) produced a specific increase in one behavioral index of negative affect, forepaw tremor behavior, in rats exposed to a context fear stimulus.
4. 4. Experiment 2 assessed the relative effects of several naloxone (0, 1, 5, 10 mg/kg) doses in inducing withdrawal-like behavioral changes in animals exposed to a conditioned fear context. This experiment revealed that low doses of naloxone produced an overall increase in all behaviors. High naloxone doses tended to increase only forepaw tremor behavior.
5. 5. The results are discussed ih terms of opioid systems and stress.
  相似文献   

12.
13.
Hypodopaminergia in the ventral striatum is a putative neurobiological correlate of withdrawal in opioid-dependent individuals. This perspective stands in contrast to brain imaging studies with chronic opioid users showing that naloxone-enhanced dopamine (DA) release in the dorsal striatum is positively correlated with withdrawal aversion. Here, we examined regional differences in striatal DA function associated with opioid withdrawal in rats exposed to intermittent morphine injections for 31 days. Basal concentrations of DA were reduced (i.e., indicating a hypodopaminergic state) in the ventral striatum on Day 10 of morphine exposure, whereas a more prolonged period of morphine treatment was required to reveal hypodopaminergia in the dorsal striatum on Day 31. The ventral striatum consistently exhibited naloxone-induced transient reductions in DA below the hypodopaminergic basal levels, whereas morphine enhanced DA efflux. In the dorsal striatum, DA responsivity to naloxone shifted from a significant decrease on Day 10 to a notable increase above hypodopaminergic basal levels on Day 31, corroborating the findings in the human dorsal striatum. Unexpectedly, the magnitude of morphine-evoked increases in DA efflux on Day 31 was significantly blunted relative to values on Day 10. These findings indicate that prolonged-intermittent access to morphine results in a sustained hypodopaminergic state as reflected in basal levels in the striatum, which is accompanied by regional differences in DA responsivity to naloxone and morphine. Overall, our findings suggest that prolonging the duration of morphine exposure to 31 days is sufficient to reveal neuroadaptations that may underlie the transition from initial drug exposure to opioid dependence.  相似文献   

14.
Investigators have administered the opioid receptor antagonist, naloxone, to interrogate the hypothalamic-pituitary-adrenal (HPA) axis response under the assumption that this technique provides a measure of endogenous opioid activity. However it has never been tested whether provocation of the HPA axis with naloxone provides a surrogate marker for direct measurement of endogenous opioid activity using PET imaging as the gold standard. To test this hypothesis, eighteen healthy subjects underwent a PET scan with the mu-opioid receptor (MOR) selective ligand [(11)C]carfentanil (CFN). The following day ACTH and cortisol responses were assessed using a technique which allows administration of 5 incremental doses of naloxone (0, 25, 50, 100 and 250μg/kg) in a single session. Relationships between ACTH and cortisol responses and [(11)C]CFN binding potential (BP(ND)) were examined in 5 brain regions involved in the regulation of the HPA axis and/or regions with high concentrations of MOR. All subjects mounted graded ACTH and cortisol responses to naloxone administrations. There were significant negative relationships between cortisol response to naloxone and [(11)C]CFN BP(ND) in ventral striatum, putamen and caudate. When sex and smoking were added as covariates to the model, these correlations were strengthened and there was a significant correlation with the hypothalamus. There were no significant correlations between ACTH and any volumes of interest. The opioid receptor antagonist naloxone is not merely a non-specific pharmacologic activator of the HPA axis; it provides information about individual differences in opioid receptor availability.  相似文献   

15.
Massive increases in extracellular dopamine have been reported in the ischemic rodent striatum, implicating this neurotransmitter in toxic events. We have examined whether dopamine receptor antagonists are protective against hypoxic insult, using brain slices containing the rostral striatum obtained from adult male C57/BLIcrfa(t) mice. Slices were subjected in vitro to 20 min nitrogen hypoxia, with or without addition of: (i) 50 microM haloperidol (D2 receptor antagonist and sigma ligand), (ii) 10 microM SCH23390 (selective D1 receptor antagonist), (iii) 10 microM eticlopride (selective D2 receptor antagonist), (iv) 10 microM SCH23390 and 10 microM eticlopride in combination, and (v) 10 microM MK-801 (noncompetitive NMDA receptor antagonist). Subsequently, slices were reoxygenated, fixed 2 h postinsult, and processed for light microscopy. Damage was assessed by calculating pyknotic profiles as a percentage of total neuronal profiles present. No pyknotic profiles were detected in normoxic control tissue, but this phenotype predominated in most slices subject to hypoxia alone (60.1 +/- 30.6% pyknotic profiles). Marked protection was produced by haloperidol (7.1 +/- 7.6%, P = 0.002), MK-801 (8.6 +/- 6.9%, P = 0.007), and the combined application of SCH23390 and eticlopride (5.9 +/- 9.4%, P = 0.001). No protection was demonstrated for SCH23390 or eticlopride when applied separately. These data suggest that hypoxic damage in the rostral mouse striatum is mediated via NMDA, D1, and D2 receptors. Protection against hypoxic damage by dopamine receptor antagonists requires the combined blockade of both classes of dopamine receptor.  相似文献   

16.
Mice self-administer morphine into the lateral septum (LS), but the neuronal connections underlying this behaviour remain unknown. The present study tested whether the acquisition of intra-LS morphine self-administration depends on dopaminergic mechanisms. Mice were allowed to self-inject morphine (5 or 20 ng/50 nl) or vehicle directly into the LS using a spatial discrimination Y-maze task. Fos imaging was used to evaluate neuronal activation in cerebral structures directly connected to the LS or belonging to the dopaminergic system. The involvement of dopaminergic and opioidergic mechanisms was assessed by pre-treating naive mice peripherally with the D1 antagonist SCH23390, the D2/D3 antagonist sulpiride or the opiate antagonist naloxone before daily self-administration sessions. Mice acquired self-administration behaviour for intra-LS morphine that was associated with increased Fos expression in the ventral tegmental area (VTA), dorsal and ventral striatum and prefrontal cortex. Pre-treating animals with naloxone, SCH23390 or sulpiride completely prevented them from acquiring intra-LS morphine self-administration. All three antagonists consistently blocked Fos expression in the prefrontal cortex, but not in the VTA and striatum. Taken together, our results show that morphine self-administration into the LS depends on dopaminergic (D1 and D2/D3) and opioidergic mechanisms. Furthermore, they suggest that opioid peptides released in the LS could participate in regulating the activity of mesotegmental dopaminergic neurons.  相似文献   

17.
Previous studies on rats have shown that the opioid antagonist naloxone attenuates amphetamine-induced stimulation of locomotor activity and increases in extracellular dopamine in the brain. However, in this study, naloxone did not attenuate amphetamine-induced rotational behavior or increases of extracellular dopamine in the intact striatum of nigrally-lesioned rats. These results suggest differences in the way in which endogenous opioids contribute to the behavioral and neurochemical effects of amphetamine in nigrally-lesioned compared to intact rats  相似文献   

18.
These studies examined the effects of cocaine on thalamic neurons that respond maximally either to noxious or to innocuous somatic stimulation. Cocaine attenuated high intensity electrically-evoked nociceptive responses of all 25 units studied in the parafascicular and central lateral nuclei of the medial thalamus. A dose of 1 mg/kg intravenously (i.v.) suppressed medial thalamic unit discharge evoked by both noxious somatic stimulation (49.4 +/- 8.7% of control response) and spinal cord stimulation (76.2 +/- 6.6% of control response). The effect of cocaine on unit responses to noxious somatic stimulation was dose-related in the range of 0.3-3.5 mg/kg i.v. and was attenuated by eticlopride, a D-2 selective dopamine receptor antagonist. Morphine also suppressed noxious somatic evoked responses of medial thalamic units in a dose-dependent manner. Units in the lateral (ventrobasal) thalamus (n = 4) that responded only to innocuous stimuli were not affected by cocaine at doses up to 3.5 mg/kg i.v. Ibotenic acid lesions in the parafascicular nucleus of the medial thalamus attenuated the analgesic effect of cocaine in the formalin test. These results suggest that both cocaine and the parafascicular nucleus interact with dopaminergic mechanisms that attenuate nociceptive spinal projections to the medial thalamus.  相似文献   

19.
Summary The principle output of the nucleus accumbens innervates the ventral pallidum and rostral substantia innominata. GABA and opioid peptides are among the neurotransmitter candidates for this projection. The goal of the present experiments was to delineate further the physiology and pharmacology of the accumbens projection to the ventral pallidum. The trans-synaptic responsiveness of ventral pallidal and rostral substantia innominata neurons to electrical stimulation of the nucleus accumbens was examined concurrently with the ability of microiontophoretically applied morphine (an opioid agonist), naloxone (an opioid antagonist) and bicuculline (a GABA antagonist) to modulate evoked responses. Accumbens stimulation altered the firing rate in 60% of the 132 neurons tested. Fifty-two percent of responding neurons exhibited simple excitations or inhibitions in response to accumbens stimulation, while 48% exhibited complex response sequences with two or more evoked components. Predominant responses consisted of a short latency (<10 ms) and short duration (10 ms) excitation (51 % of responding neurons) and an inhibition with a variable, onset latency and, duration (52% of responding neurons). Evoked responses often occurred within limited areas within the ventral pallidum suggesting that activation of descending afferents can influence discrete targets within the region. A large majority (>80%) of neurons evoked by accumbens stimulation also exhibited a current-dependent and naloxone-sensitive increase in spontaneous firing to microiontophoretically applied morphine. Morphine shortened the duration of the accumbens-evoked, short latency excitation and attenuated the magnitude of the long-latency inhibition. Evoked responses in the presence of morphine were opposite to those observed with naloxone, but similar to bicuculline. Thus, opioid receptor activation may be functionally antagonistic to GABAergic neurotransmission in the ventral pallidum. The prominence of accumbens-evoked and morphine-sensitive neurons within the ventral pallidum corroborates the density of accumbens and opioid input to this brain region, and demonstrates that opioids serve as an important influence on neuronal activity and information processing in the ventral-striatopallidal pathway.  相似文献   

20.
Cocaine (25 mg/kg i.p.) produces analgesia in the rat within 5 min and for a duration of 90 min as determined by the formalin test or for 30 min as determined by the hot plate test. Cocaine analgesia is unaffected by doses of naloxone that are sufficient to attenuate morphine analgesia in both tests. Chlorpromazine (3 mg/kg i.p.), SCH 23390 (100 micrograms/kg i.p.; a D1 dopamine receptor antagonist), and eticlopride (75 micrograms/kg i.p.; a D2 dopamine receptor antagonist) each attenuate cocaine analgesia in both tests at doses that alone do not affect performance in either test. Measurements of blood pressure and heart rate indicate that cocaine analgesia is not due to the activation of baroreceptor reflex afferents. We conclude that cocaine is a supraspinally acting, dopamine-mediated, non-opiate analgesic in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号