共查询到20条相似文献,搜索用时 0 毫秒
1.
N-Acetylcysteine (NAC) has been widely used as an antioxidant in research, however, it has also been found to reduce the binding of TNF to its receptor independent of its antioxidative role. In this study, we investigated the effect of NAC on NF-kappaB activation. In HeLa cells, Hep3B cells, and A549 cells, DNA-binding activity of NF-kappaB was induced by NAC without any other stimulation but not by tetramethylthiourea (TMTU) or vitamin C, suggesting that ROS is not involved in the effect of NAC. The degradation of IkappaBalpha and nuclear translocation of NF-kappaB were not induced by NAC. The phosphorylation of p65 at serine 536 was induced by NAC, which is known to contribute to the enhancement of DNA-binding activity of NF-kappaB, however, NAC did not directly phosphorylate p65. The NAC-induced DNA-binding activity of NF-kappaB and phosphorylation of p65 were sensitive to a phosphatidylinositol (PI) 3-kinase inhibitor, partially sensitive to an IkappaB kinase (IKK) inhibitor, but not sensitive to a Bruton's tyrosine kinase (Btk) inhibitor. Moreover, both the DNA-binding activity and phosphorylation induced by NAC were reduced by the overexpression of a dominant negative Akt in HeLa cells. These results suggest that NAC activates mainly PI3K to phosphorylate p65 and subsequently induces DNA-binding activity of NF-kappaB, independent of its antioxidative function. 相似文献
2.
Shioda N Ishigami T Han F Moriguchi S Shibuya M Iwabuchi Y Fukunaga K 《Neuroscience》2007,148(1):221-229
We previously reported that orthovanadate composed of vanadate (V(5+)) activates phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling through inhibition of protein tyrosine phosphatases, thereby eliciting neuroprotection in brain ischemia/reperfusion injury. However, therapeutic doses of orthovanadate are associated with diarrhea due to inhibition of ATPase. By contrast, vanadyl (V(4+)) organic compounds show low cytotoxicity. Since both vanadate and vanadyl inhibit protein tyrosine phosphatases, we tested whether bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) [VO(OPT)] in a vanadyl form elicits a neuroprotection in brain ischemia. In a mouse transient middle cerebral artery occlusion (MCAO) model, pre- and post-treatments with VO(OPT) significantly reduced infarct volume in a dose-dependent manner. Like orthovanadate, activation of the PI3K/Akt pathway mediated neuroprotective action. VO(OPT) treatment inhibited reduced Akt phosphorylation at Ser-473 following brain ischemia and restored decreased phosphorylation of forkhead box class O (FOXO) family members such as FKHR, FKHRL1, and AFX. Consistent with inhibition of FOXO dephosphorylation, VO(OPT) treatment blocked elevated expression of Fas-ligand, Bim and active caspase-3 24 h after ischemia/reperfusion. Taken together, a vanadyl compound, VO(OPT) elicits neuroprotective effects on brain ischemia/reperfusion injury without apparent side effects. 相似文献
3.
We determined whether platelet-activating factor (PAF) activates mitogen-activated protein (MAP) kinases in human eosinophils, and if so, which signaling pathways are utilized for the MAP kinase activation. PAF activated 42-and 44-kDa MAP kinases (ERK1/ERK2) in eosinophils, which became maximal at 1 min after stimulation. The PAF receptor antagonist E6123 and pertussis toxin inhibited the PAF-induced MAP kinase activation in eosinophils. The phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, tyrosine kinase inhibitors herbimycin A and genistein, and an intracellular Ca2+ chelator BAPTA/AM inhibited PAF-induced MAP kinase activation in eosinophils, whereas protein kinase C inhibitors staurosporine and calphostin C had no effect. Furthermore, wortmannin as well as herbimycin A and genistein, but not BAPTA/AM, prevented PAF-induced tyrosine phosphorylation of Shc adapter protein in eosinophils. Finally, the specific MEK inhibitor PD98059 inhibited PAF-induced chemotaxis in eosinophils. Taken together, these results indicate that PAF activates MAP kinases in eosinophils through the activation of PI 3-kinase and a tyrosine kinase and the increase in intracellular Ca2+ and that PAF-induced MAP kinase activation mediates chemotaxis in eosinophils. 相似文献
4.
目的 探讨salvinorin A (SA)能否减轻大鼠蛛网膜下腔出血(SAH)后脑血管痉挛(CVS)及其机制.方法 成年雄性SD大鼠(n=97),采用颈内动脉刺破法建立大鼠SAH模型,随机分为假手术组(sham)、SAH模型组(SAH)、溶剂对照组(SAH+DMSO)和给药组(SAH+SA),SA及溶剂DMSO于SAH模型后24 h、48 h及72 h用生理盐水稀释后腹腔注射;SAH后72 h检测大鼠神经功能学评分,HE染色观察颈内动脉的血管内径和血管壁厚度,内皮素-1 (ET-1) ELISA试剂盒和一氧化氮(NO)试剂盒检测Willis环血管上ET-1浓度和NO含量,Western blotting检测磷酸化PI3K(p-PI3K)、PI3K、磷酸化Akt(p-Akt)、Akt及内皮型一氧化氮合酶(eNOS)蛋白的表达,免疫荧光染色观察eNOS蛋白的表达位置.结果 SAH后72 h,SA能够升高SAH后的神经功能水平,增加SAH后血管内径,降低血管壁厚度,SA降低SAH后Willis环血管上ET-1浓度并升高NO含量;SA能够升高p-PI3K/PI3K、p-Akt/Akt及eNOS蛋白的表达,该作用可以被PI3K抑制剂渥曼青霉素(wortmannin)和eNOS的抑制剂L-NAME所抑制;免疫荧光染色发现,eNOS表达于血管内皮细胞.结论 SA能够通过PI3K/Akt/eNOS通路缓解SAH后CVS. 相似文献
5.
6.
Tedeschi A Lorini M Galbiati S Gibelli S Miadonna A 《International journal of immunopharmacology》2000,22(10):797-808
It has been demonstrated that tyrosine kinase (TK) and phosphatidylinositol 3-kinase (PI3-K) are involved in IgE-mediated stimulation of human basophils; conversely, little is known about the biochemical pathways activated by IL-3 and GM-CSF. The aim of this study was to evaluate the effects of TK and PI3-K inhibitors on basophil histamine release induced by anti-IgE, IL-3 and GM-CSF. Since IL-3 and GM-CSF cause histamine release from normal human basophils only when the inhibitory effect of extracellular Na(+) has been removed, peripheral blood leukocytes were suspended in isotonic solutions containing either 140 mM NaCl or 140 mM N-methyl-D-glucamine(+). After stimulation with anti-IgE, IL-3 or GM-CSF, histamine release was measured by an automated fluorometric method. The effects of preincubation with four different TK inhibitors (AG-126, genistein, lavendustin A, tyrphostin 51) and one PI3-K inhibitor (wortmannin) were evaluated. AG-126, genistein and lavendustin A exerted a significant dose-dependent inhibitory effect on basophil histamine release induced by anti-IgE (either in high or in low Na(+) medium), IL-3 and GM-CSF. Among the TK inhibitors, lavendustin A exerted the most potent activity, followed by AG-126 and genistein. Tyrphostin 51 caused a weak inhibition of histamine release induced by IL-3, GM-CSF and anti-IgE in a low Na(+) medium, but not in a physiological Na(+)-containing medium. The PI3-K inhibitor wortmannin exerted the most effective inhibitory activity on the histamine release induced by the three agonists. The combined effects of lavendustin A and wortmannin were less than additive, suggesting that TK and PI3-K are involved in the same activation pathway in human basophils. These results suggest a possible role of TK and PI3-K in basophil histamine release induced by anti-IgE, IL-3 and GM-CSF. TK and PI3-K are indeed potential therapeutic targets for antiallergic drugs. 相似文献
7.
Macrophage-stimulating protein (MSP) promotes the phagocytosis of C3bi-coated erythrocytes by resident peritoneal macrophages, although the mechanism by which this occurs is largely unknown. We show that MSP-induced complement-mediated phagocytosis requires the RON receptor tyrosine kinase and the alphaMbeta2 integrin, as evidenced by the inability of RON-/- and alphaM-/- peritoneal macrophages to augment phagocytosis of complement-coated sheep erythrocytes in response to MSP. MSP stimulation of macrophages results in tyrosine phosphorylation and AKT activation, and inhibitor studies demonstrate a phagocytic requirement for tyrosine kinase and phosphatidylinositol 3-kinase (PI-3K) activity as well as activity of the atypical protein kinase C (PKC) isoform zeta, which localizes to MSP-induced phagosomes containing complement-coated beads. Additionally, MSP augments the ability of peritoneal macrophages to bind to intercellular adhesion molecule-1 (ICAM-1) via the alphaMbeta2 integrin. MSP-induced ICAM-1 adhesion is also dependent on tyrosine kinase activity, PI-3K, and PKC zeta, indicating that these signaling requirements are upstream of complement receptor 3 activation. 相似文献
8.
Basophils are key effector cells of allergic reactions. Although proinflammatory cytokines, such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5, inhibit eosinophil apoptosis in vitro, little is known about basophil apoptosis, and the signalling mechanisms required for basophil survival remain undefined. To address this issue, we used a novel negative-selection system to isolate human basophils to a purity of > 95%, and evaluated apoptosis by morphology using light and transmission electron microscopy, and by annexin-V binding and propidium iodide incorporation using flow cytometry. In this study, we demonstrated that the spontaneous rate of apoptotic basophils was higher than that of eosinophils as, at 24 hr, 57.6 +/- 4.7% of basophils underwent apoptosis compared with 39.5 +/- 3.8% of eosinophils. In addition, basophil cell death was significantly inhibited when cultured with IL-3 for 48 hr (84.6 +/- 4.9% vehicle-treated cells versus 40.9 +/- 3.9% IL-3-treated cells). IL-3 also up-regulated basophil CD69 surface expression. The effects of IL-3 on apoptosis and CD69 surface expression of human basophils were completely blocked by LY294002 (LY), a potent inhibitor of phosphatidylinositol 3-kinase (PI3-K), but only partially inhibited by lactacystin, a proteasome inhibitor that prevents degradation of IkappaB and NF-kappaB translocation. These observations reveal the novel finding that IL-3 prevents basophil apoptosis through the activation of PI3-K, which is only partially NF-kappaB dependent. As basophils are active participants in allergic reactions and IL-3 is one of the abundant proinflammatory cytokines in secretions from allergic tissue, we suggest that IL-3-mediated inhibition of basophil apoptosis may exacerbate the inflammation associated with allergic disorders. 相似文献
9.
Nore BF Vargas L Mohamed AJ Brandén LJ Bäckesjö CM Islam TC Mattsson PT Hultenby K Christensson B Smith CI 《European journal of immunology》2000,30(1):145-154
Bruton's tyrosine kinase (Btk) is a member of the Tec family of protein tyrosine kinases (PTK) characterized by an N-terminal pleckstrin homology domain (PH) thought to directly interact with phosphoinositides. We report here that wild-type (wt) and also a gain-of-function mutant of Btk are redistributed following a wide range of receptor-mediated stimuli through phosphatidylinositol 3-kinase (PI 3-K) activation. Employing chimeric Btk with green fluorescent protein in transient transfections resulted in Btk translocation to the cytoplasmic membrane of live cells through various forms of upstream PI 3-K activation. The redistribution was blocked by pharmacological and biological inhibitors of PI 3-K. A gain-of-function mutant of Btk was found to be a potent inducer of lamellipodia and/or membrane ruffle formation. In the presence of constitutively active forms of Rac1 and Cdc42, Btk is co-localized with actin in these regions. Formation of the membrane structures was blocked by the dominant negative form of N17-Rac1. Therefore, Btk forms a link between a vast number of cell surface receptors activating PI 3-K and certain members of the Rho-family of small GTPases. In the chicken B cell line, DT40, cells lacking Btk differed from wt cells in the actin pattern and showed decreased capacity to form aggregates, further suggesting that cytoskeletal regulation mediated by Btk may be of physiological relevance. 相似文献
10.
Moon SO Kim W Kim DH Sung MJ Lee S Kang KP Yi AS Jang KY Lee SY Park SK 《International journal of tissue reactions》2005,27(3):115-124
Radiocontrast media can induce vascular endothelial cell apoptosis. Apoptotic damage to the vascular endothelium is an important mechanism in vascular disease. Several growth factors with anti-apoptotic effects may help protect the vascular endothelium from apoptosis. The present study evaluated whether the radiocontrast agent iopromide induces apoptosis in human umbilical vein endothelial cells and also whether angiopoietin-1 (Ang1) protects against iopromide-induced apoptosis through the p70 S6 kinase-dependent signaling pathway. Iopromide induced apoptosis in vascular endothelial cells in a dose-dependent manner. Ang1 reduced iopromide-induced apoptosis in a dose-dependent manner. Wortmannin and LY294002, phosphatidylinositol 3'-kinase inhibitors, decreased the Ang1-induced anti-apoptotic effect. Ang1 mediates the activation of mTOR/ribosomal protein p70 S6 kinase through phosphatidylinositol-3' kinase. Wortmannin and rapamycin, an inhibitor of mTOR, suppressed Ang1-induced p70 S6 kinase phosphorylation and partially inhibited the Ang1-induced anti-apoptotic effect. These results suggest that Ang1 may protect vascular endothelial cells from iopromide-induced apoptosis through phosphatidylinositol 3'-kinase and mTOR/S6 kinase. Pretreatment with Ang1 could help maintain normal vascular endothelial cell integrity before and during systemic radiocontrast administration. 相似文献
11.
We have previously found that both mitogen-activated protein kinase (MAPK)- and Rho kinase (ROCK)-related signaling pathways are necessary for the induction of pulmonary artery smooth muscle cell (SMC) proliferation by serotonin (5-hydroxytryptamine [5-HT]). In the present study, we investigated the possible additional participation of a phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (S6K1) pathway in this growth response. We found transient activation of Akt (Ser473) and more prolonged activation of S6K1 by 5-HT. Inhibition of PI3K with Wortmannin and LY294002 completely blocked these activations, but not that of MAPK or the ROCK substrate myosin phosphatase targeting subunit. Similarly, inhibition of MAPK and ROCK failed to block the Akt activation. Inhibition of Akt with NL-71-101 and downregulation of Akt expression with Akt small interfering RNA blocked 5-HT-induced S6K1 phosphorylation. Wortmannin, LY294002, and NL-71-101 dose-dependently inhibited 5-HT-induced SMC proliferation. 5-HT stimulated mTOR phosphorylation and the mTOR inhibitor, rapamycin, blocked activations of S6K1 and S6 ribosomal protein, and inhibited 5-HT-induced SMC proliferation. Akt phosphorylation and cell proliferation were also blocked by the antioxidants, N-acetyl-l-cysteine, Ginko biloba 501, and tiron, the reduced nicotinamide adenine dinucleotide phosphate oxidase inhibitor, diphenyleneiodonium, and the 5-HT2 receptor antagonists ketanserin and mianserin, but not by the 5-HT serotonin transporter or 5-HT 1B/1D receptor antagonists. We conclude from these studies that a parallel PI3K- and reactive oxygen species-dependent Akt/mTOR/S6K1 pathway participates independently from MAPK and Rho/ROCK in the mitogenic effect of 5-HT on pulmonary artery SMCs. From these and other studies, we postulate that independent signaling pathways leading to 5-HT-induced SMC proliferation are initiated through multiple 5-HT receptors and serotonin transporter at the cell surface. 相似文献
12.
13.
14.
Salmonella typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates 总被引:3,自引:0,他引:3 下载免费PDF全文
Activation of the extracellularly regulated kinase (ERK) pathway is part of the early biochemical events that follow lipopolysaccharide (LPS) treatment of macrophages or their infection by virulent and attenuated Salmonella strains. Phagocytosis as well as the secretion of invasion-associated proteins is dispensable for ERK activation by the pathogen. Furthermore, the pathways used by Salmonella and LPS to stimulate ERK are identical, suggesting that kinase activation might be solely mediated by LPS. Both stimuli activate ERK by a mechanism involving herbimycin-dependent tyrosine kinase(s) and phosphatidylinositol 3-kinase. Phospholipase D activation and stimulation of protein kinase C appear to be intermediates in this novel pathway of MEK/ERK activation. 相似文献
15.
Activation of p38 mitogen-activated protein kinase attenuates Leishmania donovani infection in macrophages 下载免费PDF全文
Leishmania-induced macrophage dysfunctions have been correlated with altered signaling events. In this work, we report that SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), increases Leishmania donovani survival in human peripheral blood mononuclear macrophages. Consistent with this finding, activation of p38 and c-jun N-terminal kinase (JNK) MAPK signaling pathways by anisomycin significantly reduced parasite survival within these cells. However, the majority of the effect was seen in a 50% reduction in the percentage of macrophages infected, with little effect on the highly infected macrophages. The observed effect was likely to be due to the p38 MAPK pathway since SB203580 was able to completely reverse the effect of anisomycin. These findings suggest that the previously reported p38 MAPK inhibition by Leishmania infection may be partially overcome by anisomycin. Similar effects were observed in pretreated macrophages or in treatment of infected macrophages. These results suggests that p38 MAPK activation may have a potential therapeutic value in the treatment of visceral leishmaniasis. 相似文献
16.
Maria von Willebrand Gottfried Baier Clment Couture Paul Burn Tomas Mustelinm 《European journal of immunology》1994,24(1):234-238
Activation of resting T lymphocytes by ligands to the T cell receptor (TcR)/CD3 complex is initiated by phosphorylation of a number of key regulatory proteins on specific tyrosine residues. One such protein is the heterodimeric enzyme phosphatidylinositol-3-kinase (PI3K). We recently found that this enzyme is also rapidly activated following TcR/CD3 triggering and that immunoprecipitated PI3K was activated in vitro by direct tyrosine phosphorylation. Here we show that TcR/CD3-induced tyrosine phosphorylation and activation of PI3K in Jurkat T leukemia cells depend on the presence of the p56lck tyrosine kinase: in a variant of the Jurkat T cell line lacking p56lck, JCaM1, these responses were absent. We also show that p56lck directly activates PI3K purified from transfected COS-1 cells, indicating that other T cell-specific proteins are not required for the process. Finally, tryptic peptide maps show that p56lck phosphorylates three tyrosine residues in the p85α subunit of PI3K and two in p110 of PI3K. Our results suggest that p56lck is required for activation of PI3K in Jurkat T cells and can itself directly activate it by phosphorylating one or several stimulatory sites. 相似文献
17.
18.
19.
N. Jan Chalupny Alejandro Aruffo James M. Esselstyn Po-Ying Chan Jürgen Bajorath James Blake Lisa K. Gilliland Jeffrey A. Ledbetter Mark A. Tepper 《European journal of immunology》1995,25(10):2978-2984
CD 19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD 19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD 19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD 19. We investigated the capacity of CD 19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD 19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD 19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD 19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD 19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD 19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD 19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase. 相似文献
20.
We previously demonstrated that lipoteichoic acid (LTA) might activate phosphatidylcholine-phospholipase C (PC-PLC) and phosphatidylinositol-phospholipase C (PI-PLC) to induce protein kinase C activation, which in turn initiates nuclear factor-kappaB (NF-kappaB) activation and finally induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) release in RAW 264.7 macrophages. In this study, we further investigated the roles of tyrosine kinase, phosphatidylinositiol 3-kinase (PI3K)/Akt, and p38 mitogen-activated protein kinase (MAPK) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Tyrosine kinase inhibitors (genistein and tyrphostin AG126), PI3K inhibitors (wortmannin and LY 294002), and a p38 MAPK inhibitor (SB 203580) attenuated LTA-induced iNOS expression and NO release in concentration-dependent manners. Treatment of RAW 264.7 macrophages with LTA caused time-dependent activations of Akt and p38 MAPK. The LTA-induced Akt activation was inhibited by wortmannin, LY 294002, genistein, and tyrphostin AG126. The LTA-induced p38 MAPK activation was inhibited by genistein, tyrphostin AG126, wortmannin, LY 294002, and SB 203580. The LTA-induced formation of an NF-kappaB-specific DNA-protein complex in the nucleus was inhibited by wortmannin, LY 294002, genistein, tyrphostin AG126, and SB 203580. Treatment of macrophages with LTA caused an increase in kappaB-luciferase activity, and this effect was inhibited by tyrphostin AG126, wortmannin, LY 294002, the Akt dominant negative mutant (AktDN), and SB 203580. Based on those findings, we suggest that LTA might activate the PI3K/Akt pathway through tyrosine kinase to induce p38 MAPK activation, which in turn initiates NF-kappaB activation, and ultimately induces iNOS expression and NO release in RAW 264.7 macrophages. 相似文献