首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
回波平面成像过程中会产生Ghost伪影.抑制Ghost伪影的常用方法是利用参考扫描对实际扫描图像进行校正.本研究提出了一种无须参考扫描且基于图像域的自动相位校正方法.这种方法是对含伪影的图像作二维傅里叶变换,利用变换后的奇偶行数据分别重建图像以求取成像过程中奇偶回波之间的相位偏移.利用线性拟合或Marquardt-Levenber非线性拟合得到的无卷褶相位值对伪影图像进行校正,能有效抑制Ghost伪影.  相似文献   

2.
目的:并行磁共振成像利用敏感度编码降低成像所需的梯度编码步数,从而缩短数据扫描时间,本文旨在提出一种磁共振并行成像重建新算法,提高加速因子较大时的图像重建质量。材料与方法:获得精确的空间敏感度分布是提高其图像重建质量的关键之一。但是由于可用于估计的数据较少,敏感度分布中总是存在一定的噪声与伪影干扰,根据理想的敏感度分布应该在成像区域外取值为零这一特点,本文提出带感兴趣区约束的并行成像算法,首先基于区域生长和形态学方法提取出成像物体的外部轮廓构造感兴趣区,然后将该区域外的敏感度置零后引人并行重建算法,以避免成像区域外的伪影与噪声对重建的影响。结果:通过8通道线圈并行采集的体模数据重建实验表明,在加速因子取4时,本文算法可以更有效地抑制重建图像中的噪声及伪影,实现高质量的图像重建。结论:通过在并行成像算法中引人带感兴趣区的约束。可使加速因子较大时并行磁共振成像的图像重建质量获得一定的提升。  相似文献   

3.
针对Hanning滤波器难以有效解决磁敏感加权成像过程中产生的相位伪影问题,提出一种基于相位展开技术的相位伪影处理方法。采用两个步骤有效消除磁敏感加权成像过程中产生的相位伪影。首先,采用传统的Hanning滤波器对相位伪影进行初步处理;然后,采用相位展开技术,对由Hanning滤波器处理后的残余伪影进行进一步处理,从而达到完全消除相位伪影的目的。对扫描层厚为0.6 mm的100层脑部SWI原始图像进行相位伪影的处理,结果表明,该方法能有效消除磁敏感加权图像中的相位伪影。采用该方法处理SWI图像中的相位伪影,可为后续采用最小密度投影方法显示清晰的血管影像奠定基础。  相似文献   

4.
为了抑制MRI成像过程中平移运动所造成的伪影,我们对平移运动伪影的后处理校正算法进行了研究,在采用蛇形算法和人工提取相结合提取兴趣区的基础上,利用基于频率域约束的相位恢复算法进行K空间相位校正。仿真和成像结果表明:该方法能准确地提取感兴趣区,有效地消除了MR图像中相位编码对应方向的平移运动伪影。  相似文献   

5.
背景:近年来,MRI由于具有高的空间分辨率和软组织对比度,在临床上的运用越来越广泛。但是其成像时间较长,所以容易受到患者身体运动的影响,产生运动伪影。 目的:去除MRI图像成像时产生的伪影,改善图像质量。 方法:使用改进的相位矫正算法,并结合水平集算法去除图像伪影。去除伪影后使用模糊增强改善处理后图像的质量。 结果与结论:实验证明使用改进的相位矫正算法得到的图像比使用原始的相位矫正算法得到的图像效果更加理想。  相似文献   

6.
运动伪影对MR图像质量的影响   总被引:2,自引:0,他引:2  
提高MR图像质量是医学影像工作者普遍关心的问题,但MR图像质量是一个受各种因素相互制约和关联的问题,即既要考虑提高图像信噪比和分辨率,又不能过分延长成像时间,所以是一个比较复杂的问题。而各种自主和不自主的运动引起的图像伪影又是影响图像质量的重要因素,故本文将着重讨论如何有效地控制运动伪影,以确保图像的质量。l运动伪影产生的原因运动伪影主要指身体活动,如人体的移动,组织器官的生理运动。由于心脏、呼吸及器官的运动等引起的伪影成为降低图像质量最常见的原因。MR时间较长,胸部及上腹部图像常形成很多运动伪影,…  相似文献   

7.
PROPELLER(推进器)采样技术能够利用K空间中心重叠采样区域的数据来估计采集过程中受检查者的运动进而加以补偿,对运动伪影的消除效果非常显著。然而,由于其重建时的运动估计是基于最大化频域空间上相关系数的配准算法,该算法为了实现旋转估计与平移估计的分离,在进行旋转估计时,仅仅采用K空间数据的模,在数据量有限的情况下造成估计精度较低,在重建图像上表现为模糊及星条状伪影。本研究基于最大化图像空间上的互信息提出一种PROPELLER采样数据的运动估计新算法,首先由每个K空间带进行傅立叶逆变换后取模重建出系列临时图像,对这些图像进行模糊增强后以互信息作为相似性测度迭代搜索最优的运动参数。实验证明,该方法能显著提高PROPELLER采样数据重建中运动估计与补偿的精度,从而更好地消除伪影,特别是用于有运动时T1加权头部成像时。  相似文献   

8.
目的从成像空间出发,提出了一种新的纠正MRI刚性平移运动伪影的方法.方法利用梯度读出方向和相位编码方向的运动特性不同,分别采用不同的方法来消除刚性运动伪影.首先读出方向的运动,通过追踪频谱边缘非零区域和零区域的偏差进行估计,然后在频谱反方向移动相同的量来消除;利用改进的Snake算法,即梯度向量场方法提取目标区域的边界,然后利用相位迭代恢复算法消除残留的读出方向亚像素级伪影和相位编码方向的伪影.结果按国际通用方法生成SL头颅模板,通过对模板的仿真试验,证明修正后图像的信噪比大大提高,验证了方法的有效性和可靠性.结论本文提出的方法能够有效消除MR图像平移运动伪影,与传统的相位迭代恢复算法相比,对于较大运动伪影修正效果更好.  相似文献   

9.
熵正则化磁共振成像理论及迭代算法   总被引:1,自引:0,他引:1  
实际的磁共振成像系统 ,通常仅能收集有限的频谱数据 ,傅立叶变换法重建的图像存在Gibbs伪影 ,且分辨率有限。我们提出的熵正则化磁共振成像方法是考虑与原始频谱数据一致性的条件下 ,熵极大化而获得的结果。重建的图像具有无限的分辨率 ,降低Gibbs伪影及信号中的噪声。本算法的稳定性优于模型最大熵法[12 ] 。对截断及噪声的频谱数据的成像结果证实了我们方法的有效性  相似文献   

10.
目的:在磁共振成像领域,线扫描是最早的一种傅立叶成像方法,后逐渐被二维傅立叶成像方法取代,近年来线扫描方法又重新引起了人们的兴趣,本文介绍磁共振线扫描方法,并分析其优缺点;方法:从线扫描与二维傅立叶成像方法的原理人手,在多个方面比较两种方法的差异;结果:线扫描方法在成像速度及图像信噪比方面不如二维傅立叶成像方法。但在克服运动伪影、金属伪影及手术过程中实时磁共振检查等方面优于二维傅立叶成像方法;结论:线扫描方法是一种适用于中低场永磁型磁共振设备的成像方法,在术中磁共振成像方面有广泛的应用前景。  相似文献   

11.
磁共振成像中抑制伪影技术的研究进展   总被引:1,自引:0,他引:1  
磁共振成像可对人体各部位多角度、多平面成像,具有高组织分辨力、空间分辨力、无硬性伪迹及无放射损伤等优点,在医学上得到了广泛的应用。然而,磁共振成像中所产生的伪影会严重影响MRI的质量及对病灶的精确定位。我们主要介绍了近年来抑制自旋回波平面成像技术中所产生的伪影及自主性运动伪影的研究进展。大量研究表明,怎样快速有效地抑制各种原因产生的伪影,仍然是研究人员所面临的一个非常棘手的问题。因此,还需不断寻求新的方法及思路来解决这一难题。  相似文献   

12.
Single-shot echo planar imaging (EPI) of a mouse brain at high field is very challenging. Large susceptibility-induced gradients affect much of the brain volume, causing severe image deformations and signal loss. Segmented EPI and other conventional multi-shot approaches alleviate these problems but suffer from lower temporal resolution and motion artifacts. We demonstrate that interleaved snapshot EPI represents a simple and robust alternative approach and one that is particularly suitable for high-field T2*-weighted functional imaging of a mouse brain. Similarly to segmented multi-shot techniques, it significantly reduces the susceptibility-related artifacts. At the same time, it preserves the high temporal resolution and the snapshot capability of a conventional EPI by acquiring entire image within a single TR period. We discuss implementation details of the interleaved snapshot EPI sequence and the trade-offs involved between the imaging efficiency, the number of interleaved excitation-acquisition blocks and the artifact reduction. To document the sequence utility, murine brain in vivo imaging with the interleaved snapshot EPI method was compared with a conventional EPI. We found that at least five interleaved blocks were necessary to restore the signal in most cortical areas. We also show that a standard global shimming procedure provides sufficient homogeneity for multi-slice interleaved snapshot EPI acquisition. In contrast, the conventional EPI of comparable image quality would be limited to a single slice with highly optimized local shim. Finally, an in vitro comparison with turbo FLASH acquisition shows the interleaved snapshot EPI to have superior time resolution and signal-to-noise ratio.  相似文献   

13.
Single-shot echo-planar imaging (EPI) is an important method for MRI of the brain. A method has been developed to double the resolution of EPI in the phase-encode direction, without requiring increases in the maximum gradient amplitude or slew rate. The new approach is based on an EPI implementation of the TRAIL (two reduced acquisitions interleaved) method, in which two images, acquired in rapid succession, are spatially interleaved. In addition, two lines of k-space are acquired for each reversal of the readout gradient. Two full-length readouts are needed, therefore power deposition is increased and the total acquisition time is doubled compared with conventional EPI. However, the individual readouts do not increase in length, so there is no increase in image blurring, and distortion is halved as a result of the closer temporal spacing of the acquired k-space lines. A correction method is also presented to remove additional potential Nyquist ghosting. The new method is demonstrated in vivo at 4.7 T and could in principle be combined with existing approaches for increasing resolution, such as partial Fourier or parallel imaging.  相似文献   

14.
磁共振成像过程中,患者的轻微运动可产生运动伪影。运动伪影会使MR图像模糊,从而影响医生对病灶区域的准确检测。传统抑制运动伪影的方法大多基于运动模型已知的情况下,忽略频率编码期间产生的运动,对K空间数据进行处理达到修正伪影的目的。本研究针对任意的刚性平移运动可由无数的匀速直线运动复合而成的特点,建立了匀速直线运动模糊图像的数学模型,并尝试在图像域内用状态空间的方法和Hough变换的理论进行处理,对小幅度水平匀速运动模糊图像的修正取得了满意的结果。在处理任意方向的匀速直线运动时,由于谱线在旋转时不可避免地进行近似插值处理,虽然校正后的图像也有较大的改善,但还有待进一步研究。另外,对较大幅度水平匀速运动模糊图像的修正,还需要寻求更好的方法来准确估计谱线中相邻暗线之间的距离。通过上述理论及实验的分析验证可以看出,本研究所提出的方法对处理MRI运动模糊图像的研究有一定的理论意义。  相似文献   

15.
Ghost伪影是回波平面成像(EPI)中一个很普遍的伪影,一般的方法是在扫描实际图像前利用参考扫描的方法对伪影进行消除。本研究提出了一个利用K空间原始数据的共轭对称性来消除ghost伪影的方法,且可以自动进行而不需要参考扫描。理想的K空间数据是共轭对称的。首先利用K空间的上述特性估计产生ghost伪影的K空间数据奇数和偶数行间的相位差,然后用迭代的方法对K空间数据进行校正,直到达到最好的ghost伪影消除效果。实验证明,所提出的方法可以有效的对ghost伪影进行消除。  相似文献   

16.
主要介绍了目前两种基于图像的EPI ghost伪影消除方法(Buonocore的方法和Lee的方法),并进行了仿真实验。比较了2种方法的优缺点。通过比较,Buonocore的方法较好,而且,一种被Lee认为不合适的计算方法可以取得较好的效果。  相似文献   

17.
HIFU治疗系统超声成像中的雾状伪像分析   总被引:2,自引:0,他引:2  
高强度聚焦超声治疗系统超声成像中产生的雾状伪像,掩盖了人体组织的真实成像,影响了HIFU治疗的安全性和有效性。为正确识别雾状伪像,减少误诊,本研究分析了雾状伪像的物理成因,建立其数学模型,依据模型完成了对雾状伪像的定位和特征分析。临床超声图像的实验表明,分析结果与雾状伪像的实际特性吻合,验证了雾状伪像成因分析和模型的正确性。  相似文献   

18.
Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme similar to the autocalibrating TSENSE method. This scheme is a generalization of the UNFOLD method used for removing aliasing in undersampled acquisitions. The more general scheme may be used to modulate each EPI ghost image to a separate temporal frequency as described in this paper. Copyright (c) 2006 John Wiley & Sons, Ltd.  相似文献   

19.
It is now feasible to create spatial maps of activity in the human brain completely non-invasively using magnetic resonance imaging. Magnetic resonance imaging (MRI) images in which the spin magnetization is refocussed by gradient switching are sensitive to local changes in magnetic susceptibility, which can occur when the oxygenation state of blood changes. Cortical neural activity causes increases in blood flow, which usually result in changes in blood oxygenation. Hence changes of image intensity can be observed, given rise to the so-called Blood Oxygenation Level Dependent (BOLD) contrast technique. Use of echo-planar imaging methods (EPI) allows the monitoring over the entire brain of such changes in real time. A temporal resolution of 1–3 s, and a spatial resolution of 2 mm in-plane, can thus be obtained. Generally in a brain mapping experiment hundred of brain image volumes are acquired at repeat times of 1–6 s, while brain tasks are performed. The data are transformed into statistical maps of image difference, using the technique known as statistical parametric mapping (SPM). This method, based on robust multilinear regression techniques, has become the method of reference for analysis of positron emission tomography (PET) image data. The special characteristics of functional MRI data require some modification of SPM algorithms and strategies, and the MRI data must be gaussianized in time and space to conform to the assumptions of the statistics of Gaussian random fields. The steps of analysis comprise: removal of head movement effects, spatial smoothing, and statistical interference, which includes temporal smoothing and removal by fitting of temporal variations slower than the experimental paradigm. By these means, activation maps can be generated with great flexibility and statistical power, giving probability estimates for activated brain regions based on intensity or spatial extent, or both combined. Recent studies have shown that patterns of activation obtained in human brain for a given stimulus are independent of the order and spatial orientation with which MRI images are acquired, and hence that inflow effects are not important for EPI data with a TR much longer than T1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号