首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cell-independent host resistance expressed against a primary lung infection with Cryptococcus neoformans was investigated. Following intratracheal inoculation of the yeast, BALB/cBy scid/scid mice or CD4+ plus CD8+ T cell-depleted BALB/cBy mice developed a primary lung infection that remained stable for several weeks before progressing and disseminating to kill the host. By contrast, normal BALB/cBy hosts resolved the infection after 4 to 8 weeks. Thy+ CD4- CD8- cells were found to accumulate in the pulmonary alveoli of infected scid/scid or normal mice. Depletion of these cells caused the infection to progress more rapidly and resulted 4 weeks later in a 30- to 70-fold increase in yeast numbers in the lungs and dissemination to extrapulmonary sites. Cytofluorometric studies revealed that the Thy+ CD4- CD8- cells responsible were negative for the CD3 T cell marker. A small percentage of these Thy+ CD3- cells expressed asialo-Gm1, but treatment with asialo-Gm1 antibody did not have the same infection-enhancing effect as Thy-1 monoclonal antibody treatment. Further experiments revealed that Thy-1 monoclonal antibody treatment had no effect on the establishment of infectious foci in the brain or liver following intravenous inoculation of the yeast. The data point to the existence of an early resistance mechanism for which Thy+ CD3- CD4- CD8- cells are essential. This mechanism of host defense, while insufficient for complete protection, may be capable of delaying the development of cryptococcal meningoencephalitis by restricting the growth of the yeast at primary sites of infection in the lungs, even in immunodeficient mice.  相似文献   

2.
Resistance to infection with Toxoplasma gondii was studied in mice lacking CD4 expression. Such mice developed more brain cysts and survived for a shorter time than did wild-type controls after peroral infection with ME49 cysts. After immunization with the ts-4 strain of T. gondii, CD4-deficient mice exhibited impaired resistance to a challenge infection with virulent RH tachyzoites. Thus, deficient CD4 expression increases the susceptibility of mice to a primary peroral T. gondii infection with cysts and impairs their ability to be successfully vaccinated. CD8(+) T cells from blood or spleens of Toxoplasma-infected, CD4-deficient mice expressed markers of activation at frequencies similar to those of infected wild-type mice. Production of IFN-gamma in vitro was moderately depressed, and levels of Toxoplasma-specific immunoglobulin G2a in serum were substantially lower than in wild-type mice. Administration of Toxoplasma-immune serum to ts-4-vaccinated CD4-deficient mice significantly improved their resistance to RH challenge. Also, the survival of CD4-deficient mice chronically infected with ME49 was significantly prolonged by administration of immune serum. These results demonstrate that in addition to CD8(+) T cells and IFN-gamma, which are known to be critical for resistance, CD4(+) cells also contribute significantly to protection against chronic T. gondii infections and against challenge infections with highly virulent tachyzoites in immunized mice via their role as helper cells for production of isotype-switched antibodies.  相似文献   

3.
Although naive C.B-17 and BALB/cBy mice die of meningoencephalitis within 5 weeks of intravenous infection with an opportunistic strain of Cryptococcus neoformans, immunized mice express an acquired, CD4+ T-cell-dependent immunity and survive an intravenous infection. Infusion of lymphocytes from immune mice into severe combined immunodeficiency (SCID) mice renders these mice more resistant to cryptococcal brain infection than uninfused controls. We have investigated the role of gamma interferon (IFN-gamma) and tumor necrosis factor (TNF) in acquired resistance to C. neoformans. Neutralization of either IFN-gamma or TNF impaired resistance of immune BALB/cBy or C.B-17 mice to cryptococci. At 10 days postinfection, there were approximately 10 times as many yeast cells in the brains of mice treated with either anticytokine antibody as in the brains of mice treated with control antibody. Simultaneous neutralization of IFN-gamma and TNF further exacerbated infection. Neutralization of IFN-gamma or TNF also impaired resistance in immune lymphocyte-infused SCID mice, resulting in significantly higher yeast burdens in brains of cytokine-neutralized mice than in brains of controls. Concurrent neutralization of IFN-gamma and TNF rendered SCID recipients of immune cells equivalent to uninfused SCID mice with respect both to brain yeast burdens at 10 days and to survival. Anti-TNF treatment alone also curtailed survival. Histological examination of the brains of cytokine-neutralized mice revealed deficiencies in ability to focus inflammatory cells at brain lesions. These data demonstrate that both IFN-gamma and TNF are important mediators of acquired resistance to cryptococcal meningoencephalitis.  相似文献   

4.
Previous studies have demonstrated that protection against New World leishmaniasis caused by Leishmania amazonensis can be elicited by immunization with the developmentally regulated Leishmania amastigote antigen, P-8. In this study, several independent experimental approaches were employed to investigate the protective immunological mechanisms involved. T-cell subset depletion experiments clearly indicate that elicitation of CD8(+) (as well as CD4(+)) effector responses is required for protection. Further, mice lacking beta(2)-microglobulin (and hence deficient in major histocompatibility complex class I antigen presentation) were not able to control a challenge infection after vaccination, indicating an essential protective role for CD8(+) T effector responses. Analysis of the events ongoing at the cutaneous site of infection indicated a changing cellular dynamic involved in protection. Early postinfection in protectively vaccinated mice, a predominance of CD8(+) T cells, secreting gamma interferon (IFN-gamma) and expressing perforin, was observed at the site of infection; subsequently, activated CD4(+) T cells producing IFN-gamma were primarily found. As protection correlated with the ratio of total IFN-gamma-producing cells (CD4(+) and CD8(+) T cells) to macrophages found at the site of infection, a role for IFN-gamma was evident; in addition, vaccination of IFN-gamma-deficient mice failed to provide protection. To further assess the effector mechanisms that mediate protection, mice deficient in perforin synthesis were examined. Perforin-deficient mice vaccinated with the P-8 antigen were unable to control infection. Thus, the elicitation of CD8(+) T cell effector mechanisms (perforin, IFN-gamma) are clearly required in the protective immune response against L. amazonensis infection in vaccinated mice.  相似文献   

5.
The importance of cell-mediated immunity (CMI) and CD4(+) T lymphocytes in host resistance against Cryptococcus neoformans is well documented and is exemplified by the high susceptibility to progressive infection with this pathogen of AIDS patients with reduced CD4(+) T-cell numbers. Although much has been learned about the role of CMI in the clearance of C. neoformans from the lungs and other internal organs, less is known about the protective mechanisms in the brain, the organ most frequently involved with a fatal outcome of cryptococcosis. We hypothesized that host resistance mechanisms against C. neoformans in the central nervous system (CNS) were similar to those outside the CNS (i.e., gamma interferon [IFN-gamma], CD4(+) T cells, and others). To test this hypothesis, we used a murine model of cryptococcal meningitis whereby cryptococci are introduced directly into the CNS. In experiments where mice were immunized to mount an anticryptococcal CMI response, our results indicate that immunization induced protective mechanisms that could be detected in the CNS by inhibition of the growth of viable yeast cells. Flow cytometric analyses of leukocytes in brain and spinal cord homogenates revealed that T lymphocytes, macrophages, and neutrophils accumulated in C. neoformans-infected brains of immune mice. In vivo depletion of CD4(+) T cells, but not CD8(+) T cells, resulted in significantly reduced leukocyte accumulation in the brains of immune mice. Furthermore, depletion of CD4(+) T cells or neutralization of IFN-gamma exacerbated CNS infection in immune mice, suggesting a critical role for CMI mechanisms in acquired protection in the CNS.  相似文献   

6.
Cryptococcosis is a life-threatening disease caused by the encapsulated yeast, Cryptococcus neoformans. Although infection with C. neoformans is initiated in the lungs, morbidity and mortality is mostly associated with infections of the central nervous system (CNS). Individuals with deficiencies in cell-mediated immunity, such as patients with AIDS, are more susceptible to disseminated cryptococcosis, highlighting the importance of cell-mediated immunity and CD4+ T cells in host resistance against C. neoformans. Using a mouse model of cryptococcal meningoencephalitis, we have shown that immunization of mice with a cryptococcal antigen induced a protective immune response that crossed the blood-brain barrier and initiated an immune response directly in the CNS if C. neoformans was present. The regional protective response was characteristic of a Type-1 (Th1) response in the types of cells present at the site of infection and in the cytokines and chemokines expressed. Here, we extend those findings and report that CD4+ T cells are required for survival of immune mice infected directly in the brain with C. neoformans and sensitized CD4 + T cells can transfer partial protection to naive mice infected intracerebrally with C. neoformans. Furthermore, CD4 + T cells were also important for optimal infiltration of inflammatory cells at the site of infection and in the expression of cytokines and chemokines associated with protection in the brain. Lastly, CD4+ T cells were required for optimal regional production and secretion of IFNgamma and in the significantly increased expression of iNOS in C. neoformans-infected brains of immune mice.  相似文献   

7.
In the present study, we elucidated the effect of synthetic CpG-containing oligodeoxynucleotides (ODN) on pulmonary and disseminated infection caused by Cryptococcus neoformans. CDF-1 mice were inoculated intratracheally with a highly virulent strain of this pathogen, which resulted in massive bacterial growth in the lung, dissemination to the brain and death. Administration of CpG-ODN promoted the clearance of C. neoformans in the lungs, decreased their dissemination to brain and prolonged the survival of infected mice. These effects correlated well with the enhanced production of interleukin (IL)-12 and interferon (IFN)-gamma and attenuated secretion of IL-4 in bronchoalveolar lavage fluids (BALF) and promoted development of Th1 cells, as indicated by the increased production of IFN-gamma by paratracheal lymph node cells upon restimulation with cryptococcal antigens. The IFN-gamma synthesis in BALF was inhibited by depletion of CD8(+) and CD4(+) T cells on days 7 and 14 after infection, respectively, but not by depletion of NK and gammadelta T cells. Consistent with these data, intracellular expression of IFN-gamma was detected predominantly in CD8(+) and CD4(+) T cells in the lung on days 7 and 14, respectively. The protective effect of CpG-ODN, as shown by the prolonged survival, was completely and partially inhibited by depletion of CD4(+) or CD8(+) T cells, respectively, but not by depletion of other cells. Finally, TNF-alpha was markedly induced by CpG-ODN, and the protective effect of this agent was strongly inhibited by neutralizing anti-TNF-alpha MoAb. Our results indicate that CpG-ODN alters the Th1-Th2 cytokine balance and promotes host resistance against infection with C. neoformans.  相似文献   

8.
Babesia microti produces a self-limiting infection in mice, and recovered mice are resistant to reinfection. In the present study, the role of T cells in protective immunity against challenge infection was examined. BALB/c mice which recovered from primary infection showed strong protective immunity against challenge infection. In contrast, nude mice which failed to control the primary infection and were cured with an antibabesial drug did not show protection against challenge infection. Treatment of immune mice with anti-CD4 monoclonal antibody (MAb) diminished the protective immunity against challenge infection, but treatment with anti-CD8 MAb had no effect on the protection. Transfer of CD4(+) T-cell-depleted spleen cells resulted in higher parasitemia than transfer of CD8(+) T-cell-depleted spleen cells. A high level of gamma interferon (IFN-gamma), which was produced by CD4(+) T cells, was observed for the culture supernatant of spleen cells from immune mice, and treatment of immune mice with anti-IFN-gamma MAb partially reduced the protection. Moreover, no protection against challenge infection was found in IFN-gamma-deficient mice. On the other hand, treatment of immune mice with MAbs against interleukin-2 (IL-2), IL-4, or tumor necrosis factor alpha did not affect protective immunity. These results suggest essential requirements for CD4(+) T cells and IFN-gamma in protective immunity against challenge infection with B. microti.  相似文献   

9.
Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.  相似文献   

10.
Cell-mediated immunity plays an important role in immunity to the pathogenic fungus Cryptococcus neoformans. However, the antigen specificity of the T-cell response to C. neoformans remains largely unknown. In this study, we used two approaches to determine the antigen specificity of the T-cell response to C. neoformans. We report here that a diverse T-cell receptor (TCR) Vbeta repertoire was maintained throughout the primary response to pulmonary C. neoformans infection in immunocompetent mice. CD4+ T-cell deficiency resulted in relative expansion of all CD8+ T-cell subsets. During a secondary immune response, preferential usage of a TCR Vbeta subset in CD4+ T cells occurred in single individuals, but the preferences were "private" and not shared between individuals. Both CD4+ and CD8+ T cells from the secondary lymphoid tissues of immunized mice proliferated in response to a variety of C. neoformans antigens, including heat-killed whole C. neoformans, culture filtrate antigen, C. neoformans lysate, and purified cryptococcal mannoprotein. CD4+ and CD8+ T cells from the secondary lymphoid tissues of mice undergoing a primary response to C. neoformans proliferated in response to C. neoformans lysate. In response to stimulation with C. neoformans lysate, lung CD4+ and CD8+ T cells produced the effector cytokines tumor necrosis factor alpha and gamma interferon. These results demonstrate that a diverse T-cell response is generated in response to pulmonary C. neoformans infection.  相似文献   

11.
A Nakane  A Numata  Y Chen    T Minagawa 《Infection and immunity》1991,59(10):3439-3445
The effects of in vivo administration of antibodies against T-cell subsets and asialo GM1 (ASGM1)-bearing cells on endogenous gamma interferon (IFN-gamma) production and host defense in Listeria monocytogenes-infected mice were investigated. Endogenous IFN-gamma titers in the bloodstreams and spleen extracts of mice on day 2 of infection were partially suppressed by administration of rabbit anti-ASGM1 antibody, but not by anti-CD4 monoclonal antibody (MAb) or anti-CD8 MAb. Of the different combinations of these three antibodies, the most suppressive effect on IFN-gamma production was observed after administration of anti-CD4 Mab and anti-ASGM1 antibody, although anti-CD8 MAb combined with anti-CD4 MAb partially inhibited IFN-gamma production. In contrast, antilisterial resistance was suppressed by the administration of anti-CD8 MAb but not by anti-CD4 MAb or anti-ASGM1 antibody. Antilisterial resistance in mice in which both CD4+ cells and ASGM1+ cells had been depleted was performed as efficiently as in normal mice in spite of the fact that endogenous IFN-gamma production was markedly suppressed. Furthermore, these mice also eliminated L. monocytogenes cells efficiently from the spleens even when they were pretreated with anti-mouse IFN-gamma MAb. These results indicate that CD4+ T cells, CD8+ T cells, and ASGM1+ cells are all responsible for endogenous IFN-gamma production and that antilisterial resistance and endogenous IFN-gamma production are not absolutely correlated.  相似文献   

12.
The role of CD4+ and CD8+ T cells in the response to intranasal infection with a Mycobacterium avium complex isolate (MAC) was investigated. Depletion of CD4+ T cells by injected antibody exacerbated infection in the lung, spleen, and liver. There were decreased numbers of inflammatory cells in the lungs of CD4-depleted mice and a significant decrease in lung cytotoxic activity. The neutrophil response was unaffected, and in CD4-depleted mice, unlike intact infected mice, these cells were found with large numbers of associated MAC. Purified CD4+ splenic T cells produced gamma interferon (IFN-gamma) in vitro in response to MAC antigen. IFN-gamma production by cultured spleen, lung, or mediastinal lymph node cells was markedly reduced in CD4-depleted mice. In contrast, CD8+ T cells did not produce IFN-gamma in vitro, and depletion of CD8+ T cells from infected mice had no effect on bacterial growth or lung cell activation. Depletion of IFN-gamma by injected monoclonal antibody had effects similar to those of CD4 depletion, namely, exacerbation of infection and decreased lung cell cytotoxicity. We conclude that CD4+ T cells are the main T cells involved in the lung response to MAC infection and that this response is at least partially dependent on the production of IFN-gamma.  相似文献   

13.
Variable-region-identical mouse immunoglobulin G1 (IgG1), IgG2b, and IgG2a monoclonal antibodies to the capsular polysaccharide of Cryptococcus neoformans prolong the lives of mice infected with this fungus, while IgG3 is either not protective or enhances infection. CD4+ T cells are required for IgG1-mediated protection, and CD8+ T cells are required for IgG3-mediated enhancement. Gamma interferon is required for both effects. These findings revealed that T cells and cytokines play a role in the modulation of cryptococcal infection by antibodies and suggested that it was important to more fully define the cytokine requirements of each of the antibody isotypes. We therefore investigated the efficacy of passively administered variable-region-identical IgG1, IgG2a, IgG2b, and IgG3 monoclonal antibodies against intravenous infection with C. neoformans in mice genetically deficient in interleukin-12 (IL-12), IL-6, IL-4, or IL-10, as well as in the parental C57BL/6J strain. The relative inherent susceptibilities of these mouse strains to C. neoformans were as follows: IL-12(-/-) > IL-6(-/-) > C57BL/6J approximately IL-4(-/-) > IL-10(-/-). This is consistent with the notion that a Th1 response is necessary for natural immunity against cryptococcal infection. However, none of the IgG isotypes prolonged survival in IL-12(-/-), IL-6(-/-), or IL-4(-/-) mice, and all isotypes significantly enhanced infection in IL-10(-/-) mice. These results indicate that passive antibody-mediated protection against C. neoformans requires both Th1- and Th2-associated cytokines and reveal the complexity of the mechanisms through which antibodies modulate infection with this organism.  相似文献   

14.
DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against the consequences of peripheral challenge was limited. Phenotypic analysis revealed that DNA vaccine-primed CD8+ T cells in uninfected mice differed from virus-primed CD8+ T cells particularly regarding expression of very-late antigen (VLA)-4, an adhesion molecule important for targeting T cells to inflammatory sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our results suggest that this is due to qualitative limitations of the primed CD8+ T cells.  相似文献   

15.
Cryptococcus neoformans is a ubiquitous fungus that can cause life-threatening infections during immunosuppressive states such as AIDS and after bone marrow transplantation. In this study we investigated the antifungal efficacy of an agonist antibody to CD40, an important costimulator of immune function, in combination with interleukin 2 (IL-2) in a murine model of disseminated cryptococcosis. Only the combination of anti-CD40 and IL-2 significantly prolonged the survival time of infected mice. This protection was correlated with decreased yeast burdens in the brain and kidney. Increased immune cell populations in the spleens, as well as increased serum gamma interferon (IFN-gamma) and tumor necrosis factor alpha levels were observed in infected mice treated with anti-CD40 and IL-2. Further experiments with IFN-gamma knockout mice demonstrated that the protection induced by anti-CD40 and IL-2 treatment was dependent on IFN-gamma. Depletion of CD4+ T cells did not affect the increased serum IFN-gamma levels induced by anti-CD40 and IL-2 treatment and, importantly, did not affect the antifungal effect of combination therapy. These studies indicate that immunotherapy using anti-CD40 and IL-2 has therapeutic potential in augmenting host resistance to disseminated cryptococcosis and that IFN-gamma is essential for efficacy.  相似文献   

16.
The role of T-cell receptor (TCR) gammadelta T cells in the induction of protective TCR alphabeta T cells against infection by the intracellular bacteria Listeria monocytogenes was analysed. We found that depletion of gammadelta T cells by anti-TCR delta monoclonal antibody treatment before intravenous immunization of mice with a sublethal dose of viable L. monocytogenes resulted in reduction of protection against secondary challenge infection in the immunized mice. The gammadelta T-cell depletion also reduced induction of protective alphabeta T cells capable of transferring the protection against challenge infection of L. monocytogenes into naive mice. Furthermore, the protective T cells that were affected by the gammadelta T-cell depletion were suggested to be CD8+ cytotoxic T cells rather than CD4+ T cells by the following observations. First, induction of cytotoxic T lymphocytes specific to a L. monocytogenes-derived H-2Kd-restricted peptide (listeriolysin O 91-99) was significantly suppressed by gammadelta T-cell depletion before immunization. Second, gammadelta T-cell depletion did not affect cytokine production and proliferation of T cells from immunized mice in response to in vitro stimulation with heat-killed Listeria which preferentially stimulates CD4+ T cells. Third, CD8+ alphabeta T cells from control immunized mice transferred protection against infection of L. monocytogenes into naive mice but only a limited degree of protection was transferred by CD8+ T cells from the gammadelta T-cell-depleted immunized mice; and fourth, CD4+ alphabeta T cells from the gammadelta T-cell-depleted mice transferred a similar level of protection as those from the control immunized mice. All these results suggest that gammadelta T cells participate in establishment of protective immunity against intracellular bacteria by supporting priming of bacterial antigen-specific CD8+ cytotoxic T cells.  相似文献   

17.
CD4+ T cells have been found to play a critical role in immune protection against Chlamydia trachomatis infection. Since both humoral and cell-mediated antichlamydial immunity have been implicated in host protection, the crucial effector functions provided by the CD4+ T cells may rely on Th1 or Th2 functions or both. In the present study, we evaluated the development of natural immunity following vaginal infection with C. trachomatis serovar D in female gamma interferon receptor-deficient (IFN-gammaR-/-) mice with a disrupted Th1 effector system. We found that in comparison with wild-type mice, the IFN-gammaR-/- mice exhibited a severe ascending primary infection of prolonged duration which stimulated almost 10-fold-stronger specific local immunoglobulin A (IgA) and IgG responses in the genital tract. Following resolution of the primary infection and despite the augmented antibody responses to chlamydiae, the IFN-gammaR-/- mice were completely unprotected against reinfection, suggesting that local antibodies play a subordinate role in host protection against chlamydial infection. Immunohistochemical analysis of frozen sections of the genital tract revealed many CD4+ T cells in the IFN-gammaR-/- mice, with a dominance of interleukin 4-containing cells in mice following resolution of the secondary infection. However, in contrast to the findings with wild-type mice, the typical clusters of CD4+ T cells were not found in the IFN-gammaR-/- mice. Few and similarly distributed CD8+ T cells were observed in IFN-gammaR-/- and wild-type mice. Whereas chlamydia-infected macrophages from wild-type mice had no inclusion bodies (IB) and produced significant amounts of nitric oxide (NO) in the presence of IFN-gamma, macrophages from IFN-gammaR-/- mice contained many IB but no NO. These results indicate that CD4+ Th1 cells and IFN-gamma, rather than local antibodies, are critical elements in host immune protection stimulated by a natural ascending C. trachomatis infection in the female genital tract.  相似文献   

18.
It is well established that resistance to acute primary Toxoplasma gondii infection is mediated by a gamma interferon (IFN-gamma)-dependent mechanism. The present in vivo experiments were undertaken to investigate the cellular basis for this resistance. We show here that immunocompetent T. gondii-infected C57BL/6 (B6) mice treated with anti-IFN-gamma or with anti-Thy-1 or anti-asialo-GM1 antibodies die sooner than infected mice treated with antibodies that deplete both CD4+ and CD8+ T lymphocytes. Thy-1+ CD4- CD8- cells accumulated in the peritoneal cavities of B6 mice during the early stages of an intraperitoneal infection but did not accumulate in sham-infected control mice, and substantial numbers of Thy-1+ CD4- CD8- cells were recovered from the peritoneal cavities of infected B6 mice treated with antibodies that depleted CD4+ and CD8+ lymphocytes. Depletion of Thy-1+ cells reduced IFN-gamma to undetectable levels, whereas depletion of CD4+ and CD8+ cells did not reduce IFN-gamma levels. Thus T. gondii infection in immunocompetent B6 mice elicits Thy-1+ CD4- CD8- cells which either produce protective IFN-gamma themselves or control its production by other cells. It is likely that the function of these Thy-1+ CD4- CD8- cells is to control T. gondii tachyzoites during the early stages of primary infection before specific CD4(+)- and/or CD8(+)-dependent immunity develops.  相似文献   

19.
We showed recently that activation of Valpha14(+) natural killer T cells (NKT cells) by alpha-galactosylceramide (alpha-GalCer) resulted in increased gamma interferon (IFN-gamma) production and host resistance to intravenous infection with Cryptococcus neoformans. In other studies, interleukin-18 (IL-18) activated NKT cells in collaboration with IL-12, suggesting the possible contribution of this cytokine to alpha-GalCer-induced IFN-gamma synthesis. Here we examined the role of IL-18 in alpha-GalCer-induced Th1 response by using IL-18KO mice with this infection. In these mice, levels of IFN-gamma in serum and its synthesis in vitro by spleen cells stimulated with live organisms were not reduced, but rather enhanced, compared to those in wild-type (WT) mice, while such production was completely absent in IL-12KO mice. The enhanced production of IFN-gamma correlated with increased IL-12 synthesis but not with reduced production of IL-4, which was rather increased. IFN-gamma synthesis in IL-18KO mice was abolished by neutralizing anti-IL-12 antibody and significantly inhibited by neutralization of endogenous IL-4 with a specific monoclonal antibody. In addition, administration of recombinant IL-4 significantly enhanced the production of IFN-gamma in WT mice. Finally, the enhanced production of IFN-gamma in IL-18KO mice correlated with increased host defense against cryptococcal infection, as indicated by enhancement in alpha-GalCer-related clearance of microorganisms. Our results indicated that in IL-18KO mice, IFN-gamma synthesis was enhanced through overproduction of IL-12 and IL-4 after intravenous infection with C. neoformans and a ligand-specific activation of Valpha14(+) NKT cells.  相似文献   

20.
We examined the effect of alpha-galactosylceramide (alpha-GalCer) on the synthesis of gamma interferon (IFN-gamma) and local resistance in mice infected intravenously with Cryptococcus neoformans. The level of IFN-gamma in serum increased on day 3, reached a peak level on day 7, and decreased to the basal level on day 14 postinfection in mice treated with alpha-GalCer, while in vehicle-treated mice, no increase was detected at any time points except for a small increase on day 7. Such effects were not observed in NKT-KO mice. In CD4KO mice, minor synthesis of IFN-gamma was detected on day 3 in sera but was completely abolished by day 7. The alpha-GalCer-induced IFN-gamma production on day 3 was partially reduced in mice depleted of NK cells by treatment with anti-asialo-GM(1) antibody (Ab). Spleen cells obtained from infected and alpha-GalCer-treated mice on day 7 produced a large amount of IFN-gamma upon restimulation with live organisms, while only a marginal level of production was detected in splenocytes from infected and vehicle-treated mice. Such effects were abolished in CD4KO and NKT-KO mice. Finally, the fungal loads in the lungs and spleen on days 7 and 14 were significantly reduced in alpha-GalCer-treated mice compared to those in control mice. In NKT-KO mice, local resistance elicited by alpha-GalCer was completely abolished, although no obvious exacerbation of infection was detected. Furthermore, treatment with anti-IFN-gamma monoclonal Ab mostly abrogated the protective effect of this agent. Thus, our results indicated that activation of Valpha14(+) NKT cells resulted in an increased Th1 response and local resistance to C. neoformans through production of IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号