首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although UDP-glucuronosyltransferases (UGTs) act as an important detoxification system for many endogenous and exogenous compounds, they are also involved in the metabolic activation of morphine to form morphine-6-glucuronide (M-6-G). The cDNAs encoding guinea pig liver UGT2B21 and UGT2B22, which are intimately involved in M-6-G formation, have been cloned and characterized. Although some evidence suggests that UGTs may function as oligomers, it is not known whether hetero-oligomer formation leads to differences in substrate specificity. In this work, evidence for a functional hetero-oligomer between UGT2B21 and UGT2B22 is provided by studies on the glucuronidation of morphine in transfected COS-7 cells. Cells transfected with UGT2B21 cDNA catalyzed mainly morphine-3-glucuronide formation although M-6-G was also formed to some extent. In contrast, cells transfected with UGT2B22 cDNA did not show any significant activity toward morphine. When UGT2B21 and UGT2B22 were expressed simultaneously in different ratios in COS-7 cells, extensive M-6-G formation was observed. This stimulation of M-6-G formation was not observed, however, when microsomes containing UGT2B21were mixed with those containing UGT2B22 in the presence of detergent. Furthermore, this effect was not very marked when human UGT1A1 and UGT2B21 were coexpressed in COS-7 cells. This is the first report suggesting that UGT hetero-oligomer formation leads to altered substrate specificity.  相似文献   

2.
The usefulness of epirubicin in the treatment of adult and childhood malignant diseases is related in part to the potential reduction in cardiac toxicity compared with that of other anthracyclines given at equivalent doses. An important pathway for epirubicin detoxification is UGT2B7-dependent glucuronidation. This study was implemented to provide a preclinical evaluation of the metabolism of epirubicin with respect to age-related changes in epirubicin glucuronidation in pediatric liver microsomes. Rates of epirubicin glucuronidation and levels of UGT2B7 were determined for liver microsomes from four pediatric age categories (n = 32) and one adult age category (n = 8). Both sets of data showed an increase in UGT2B7 activity and content with increasing age. Epirubicin glucuronidation activity in the adult group was statistically higher compared with all pediatric age groups (p < or = 0.01). UGT2B7 expression also was statistically higher in adults compared with children below 11 years of age, with evidence of significant differences in protein levels among the pediatric age categories. A positive correlation (r = 0.68) between UGT2B7 levels and postnatal age was observed, suggesting a progressive increase in UGT2B7 protein expression with increasing age. However, allometric scaling using the (3/4) power rule suggested no difference in activity between any of the pediatric age categories and the adult, although only a single neonatal sample was included in the analysis. In summary, these in vitro data show differences in epirubicin glucuronidation and UGT2B7 content within pediatric age groups and support the use of epirubicin in pediatric patients at least 6 months of age.  相似文献   

3.
4.
Flurbiprofen (FPF), available commercially as a racemic mixture, is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) with known stereoselective glucuronidation. The major enzyme catalyzing this conjugation reaction is UDP-glucuronosyltransferase (UGT) 2B7, with minor contributions by UGT1A9. This study examines the role of the genetic variants of UGT2B7 and 1A9 enzymes involved in the formation of acyl glucuronides (FPFGs). Variants caused by three single nucleotide polymorphisms (SNPs) (A71S, 211G>T; H268Y, 802C>T; and D398N, 1192G>A) in UGT2B7 and three SNPs (C3Y, 8G>A; M33T, 98T>C; D256N, 766G>A) in UGT1A9 showed activity changes toward different substrates. However the functional impacts of these SNPs on chiral substrates were not examined. Upon stable expression in Bac-to-Bac system, UGT2B7*71S (A71S), UGT2B7*2 (H268Y) and UGT2B7*5 (D398N) were all associated with a decrease in the formation of FPFGs. Compared with UGT2B7*1 (wild-type), UGT2B7*71S exhibited a >2-fold lower intrinsic clearance mainly by altered capacities (Vmax). Furthermore, a >14-fold decreased intrinsic clearance of the *1 protein was produced by UGT2B7*2 and UGT2B7*5. However, no significantly stereoselective difference for the formation of (R)- and (S)-FPFG was found among these UGT2B7 allozymes. UGT1A9*2 (C3Y) exhibited a higher Vmax (3.2-fold), Km (2.1-fold) and intrinsic clearance (1.6-fold) toward (S)-FPF than UGT1A9*1 (wild-type). UGT1A9*3 (M33T) almost lost the catalytic activity to FPF. A significantly stereoselective difference on the glucuronidation of rac-FPF was seen between the two variants compared with the wild type of UGT1A9.  相似文献   

5.
Glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT) enzymes is an important pathway in the metabolism of drugs as well as environmental chemicals. In this study, protein–protein interactions between human UGT2B7 and UGT1As and their effects on the enzymatic activities were investigated using double expression systems in HEK293 cells (UGT2B7/UGT1A1, UGT2B7/UGT1A4, UGT2B7/UGT1A6, and UGT2B7/UGT1A9). Native-PAGE analysis clearly revealed that UGT2B7 forms homo-oligomers. Furthermore, hetero-oligomers of UGT2B7 with UGT1As were observed by native-PAGE analysis. Immunoprecipitation assay revealed associations of UGT2B7 with UGT1A1, UGT1A4, UGT1A6, and UGT1A9. The thermal stability of UGT2B7 was significantly increased by the coexpressed UGT1A1, UGT1A4, UGT1A6, and UGT1A9, indicating an interaction between UGT2B7 and the UGT1As. To examine the effects of the protein–protein interactions on the enzymatic activities, kinetic analyses were performed. Coexpression of the UGT1As significantly decreased Km and increased Vmax of zidovudine O-glucuronidation by UGT2B7. Coexpression of UGT2B7 also affected the kinetics of estradiol 3-O-glucuronidation by UGT1A1, imipramine N-glucuronidation by UGT1A4, serotonin O-glucuronidation by UGT1A6, and propofol O-glucuronidation by UGT1A9. In conclusion, it was clearly demonstrated that human UGT2B7 interacts with UGT1A enzymes, affecting their kinetics. That such interactions might occur in human liver microsomes underscores the complexities in glucuronidations in human liver. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:442–454, 2010  相似文献   

6.
7.
Epirubicin is one of the most active agents for breast cancer. The formation of epirubicin glucuronide by liver UDP-glucuronosyltransferase (UGT) is its main inactivating pathway. This study aimed to investigate epirubicin glucuronidation in human liver microsomes, to identify the specific UGT isoform for this reaction, and to correlate epirubicin glucuronidation with other UGT substrates. Microsomes from human livers were used. UGTs specifically expressed in cellular systems, as well as two UGT2B7 variants, were screened for epirubicin glucuronidation. Epirubicin, morphine, and SN-38 glucuronides were measured by high-pressure liquid chromatography. The mean +/- S.D. formation rate of epirubicin glucuronide in human liver microsomes (n = 47) was 138 +/- 37 pmol/min/mg (coefficient of variation, 24%). This phenotype was normally distributed. We screened commercially available UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 for epirubicin glucuronidation. Only UGT2B7 converted epirubicin to its glucuronide. No differences in epirubicin glucuronidation were found in HK293 cells expressing the two UGT2B7 variants at position 268. Catalytic efficiency (V(max)/K(m)) of epirubicin glucuronidation was 1.4 microl/min/mg, a value higher than that observed for morphine, a substrate of UGT2B7. Formation of epirubicin glucuronide was significantly related to that of morphine-3-glucuronide (r = 0.76, p < 0.001) and morphine-6-glucuronide (r = 0.73, p < 0.001). No correlation was found with SN-38, a substrate of UGT1A1 (r = 0.04). UGT2B7 is the major human UGT catalyzing epirubicin glucuronidation, and UGT2B7 is the candidate gene for this phenotype. The reported tyrosine to histidine polymorphism in UGT2B7 does not alter the formation rate of epirubicin glucuronide, and undiscovered genetic polymorphisms in UGT2B7 might change the metabolic fate of this important anticancer agent.  相似文献   

8.
9.
Modulation of UDP-glucuronosyltransferase 2B7 (UGT2B7)-catalyzed morphine glucuronidation by cytochrome P450 (P450) was studied. The effects of P450 isozymes on the kinetic parameters of UGT2B7-catalyzed glucuronidation of the morphine 3-hydroxyl group were examined by simultaneous expression of UGT2B7 and either CYP3A4, -1A2, or -2C9 in COS-1 cells. Although coexpression of CYP3A4 with UGT2B7 had little effect on Vmax, the Km was increased by about 9.8-fold compared with the UGT2B7 single expression system. The other P450 isozymes (CYP1A2 and CYP2C9) had some effects on Km and Vmax values. Immunoprecipitation of UGT from solubilized human liver microsomes resulted in coprecipitation of CYP3A4 with UGT2B7. The protein-protein interaction between CYP3A4 and UGT2B7 was further confirmed by overlay assay using glutathione S-transferase-CYP3A4 fusion protein. Addition of CYP3A4 to untreated COS microsomes expressing UGT2B7 had no or minor effects on morphine glucuronidation. In contrast, the formation of morphine-3-glucuronide by detergent-treated microsomes from COS-1 cells expressing UGT2B7 was reduced by CYP3A4, whereas the formation of the 6-glucuronide was enhanced. These results strongly suggest that 1) the glucuronidation activity of UGT2B7 toward morphine is specifically modulated by interaction with CYP3A4 in microsomal membranes and that 2) CYP3A4 alters UGT2B7 regioselectivity so that the ratio of morphine activation/detoxication is increased. This study provides the first evidence that P450 is not only involved in oxidation of drugs but also modulates the function of UGTs.  相似文献   

10.
The stereoselective glucuronidation of propranolol (PL) in human and cynomolgus monkey liver microsomes, and the roles of human hepatic UDP-glucuronosyltransferase (UGT) isoforms involved in the enantiomeric glucuronidation of PL using recombinant UGT enzymes were investigated. In Michaelis-Menten plots, R- and S-PL glucuronidation by human liver microsomes showed sigmoidal kinetics whereas the kinetics of enantiomeric PL glucuronidation by cynomolgus monkey liver microsomes was monophasic. The Km, Vmax and CLint values of cynomolgus monkey liver microsomes were generally higher than the S50, Vmax and CLmax values of human liver microsomes in R- and S-PL glucuronidation. The glucuronidation of R- and S-PL was catalyzed by at least 3 UGT isoforms: UGT1A9, UGT2B4 and UGT2B7. Michaelis-Menten plots for R- and S-PL glucuronidation by UGT1A9 were monophasic, whereas the kinetics of UGT2B7 showed sigmoidal curves. Enantiomeric R-PL glucuronidation by UGT2B4 showed sigmoidal kinetics, whereas S-PL glucuronidation displayed monophasic kinetics. UGT1A9 showed remarkable stereoselectivity in Vmax and CLint values of R-PL < S-PL. These findings demonstrate that the profiles of enantiomeric PL glucuronidation in human and cynomolgus monkey liver microsomes are largely different and suggest that the human hepatic UGT isoforms UGT1A9, UGT2B4 and UGT2B7 play distinctive roles in enantiomeric PL glucuronidation.  相似文献   

11.
Caco-2 cells are a widely used model in drug development to study intestinal drug transport and metabolism. Recently, serotonin (5-hydroxytryptamine, 5-HT) has been characterized as a highly selective substrate of human UDP-glucuronosyltransferase UGT1A6 [Krishnaswamy S, Duan SX, von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxytryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Disp 2003; 31:133-9], an isoform which conjugates planar phenols and is inducible by Ah receptor agonists and by oxidative/electrophile stress. To gain more insight into intestinal 5-HT disposition, uptake and metabolism of this neurotransmitter was studied in Caco-2 cell monolayers. It was found that 5-HT was taken up from the basolateral and to a lesser extent from the apical surface. It was mainly excreted basolaterally as 5-HT glucuronide. 5-HT UGT activity and UGT1A6 mRNA were induced by Ah receptor agonists and by oxidative stress generated by tert-butylhydroquinone and by isomeric thymoquinone, a potential antitumor agent and constituent of Nigella sativa seeds, commonly used as a condiment in the Middle East. While UGT1A6 induction was clearly detectable in NAD(P)H:quinone oxidoreductase 1 (NQO1)-deficient Caco-2 cells, it was not induced in NQO1-efficient HT-29 colon adenocarcinoma cells. The results suggest that--in addition to its detoxification function--intestinal UGT1A6 contributes to intestinal homeostasis of 5-HT from dietary sources and from release by enterochromaffin cells.  相似文献   

12.
Carvedilol ((+/-)-1-carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol) is metabolized primarily into glucuronide conjugates. In the present study, we identified the human UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of carvedilol by thin-layer chromatography using microsomes from human liver or insect cells expressing recombinant UGT isoforms. We observed two forms of carvedilol glucuronides, namely G1 and G2, in hepatic microsomes. The glucuronidation of carvedilol was catalyzed by at least three recombinant UGT isoforms: UGT1A1, UGT2B4, and UGT2B7. UGT2B4 formed both G1 and G2, whereas UGT1A1 and UGT2B7 were responsible for the formation of glucuronide G2 and G1, respectively. The enzyme kinetics for carvedilol glucuronidation by UGT1A1, UGT2B4, and UGT2B7 in addition to human liver microsomes were examined by Lineweaver-Burk analysis. The values of Km and Vmax for human liver microsomes were 26.6 microM and 106 pmol/min/mg protein for G1, and 46.0 microM and 44.5 pmol/min/mg protein for G2, respectively. The Km values for UGT1A1, UGT2B4, and UGT2B7 for G1 and G2 (22.1-55.1 microM) were comparable to those of the liver microsomes, whereas the Vmax values were in the range of 3.33 to 7.88 pmol/min/mg protein. The Km and Vmax/Km values for UGT2B4 and UGT2B7 for G1 were similar, whereas UGT2B4 had lower Km and higher Vmax/Km values for G2 compared with those of UGT1A1. These results suggest that G1 formation is catalyzed by UGT2B4 and UGT2B7, whereas G2 is formed by UGT2B4 and UGT1A1. These three hepatic UGT isoforms may have important roles in carvedilol metabolism.  相似文献   

13.
《Biochemical pharmacology》2012,83(12):2016-2023
Although homodimerization of UGT1A proteins is well established, direct evidence for dimerization of UGT2B7, which is arguably the most important enzyme involved in human drug glucuronidation, is currently lacking. This study characterized UGT2B7 homodimerization by co-immunopreciptation and generated a UGT2B7 homology model that identified the dimerization domain. It was demonstrated that co-expressed, solubilized UGT2B7 proteins differentially tagged with hemagglutinin (UGT2B7-HA) and c-MYC (UGT2B7-cMYC) co-immunoprecipitated as active homodimers that catalyzed 4-methylumbelliferone glucuronidation. Substrate binding affinities (assessed as S50 values) of the tagged and co-expressed tagged proteins were essentially identical to that of native UGT2B7. Co-association was not observed in a ‘mixed’ UGT2B7-HA and UGT2B7-cMYC protein preparation. Generation of a UGT2B7 homology model established from plant and human templates was achieved using SYBYLX1.2 with all residues energy minimized using the Tripos Force Field. The UGT2B7 model allowed elucidation of a putative protein dimerization domain within the B′–C loop of each UGT2B7 monomer. The eighteen amino acid dimerization domain is present in all UGT2B enzymes and comprises a proposed dimerization signature motif (FPPSYVPVVMS). Stabilization of the dimer interface is maintained by the formation of two salt bridges, aromatic π–π stacking interactions, two S-aromatic (face) interactions, and the presence of ‘proline brackets’. The homology model further provides important insights into structure–function relationships of this enzyme and the mechanism responsible for the atypical glucuronidation kinetics for substrates of UGT2B7 and other human UGT enzymes.  相似文献   

14.
Hydrolysis of stevioside and rebaudioside A in the gastrointestinal tract after oral intake leads to the formation of steviol, the aglycone, which is absorbed into the circulation. Although in vivo studies have shown that steviol is cleared from the body via glucuronidation, the role of liver vs. intestine in steviol glucuronidation has not been well defined and related UDP-glucuronosyltransferases (UGTs) have not been identified. The present study investigated steviol glucuronidation and obtained kinetic parameters in liver and intestinal microsomes of human and rat, as well as in recombinant human UGT systems. Results suggest that organ specificity exists in the intrinsic clearance of the glucuronidation reaction. Steviol glucuronidation was primarily mediated by UGT2B7 at low concentration and UGT2B7 and UGT1A3 at high concentration. Inhibition studies with selected UGT2B7 substrates indicate that diclofenac displayed a relatively strong inhibition (Ki, 4.2 μM) against steviol glucuronidation in human liver microsomes. Taken together, the identification of the involvement of UGT2B7 in steviol glucuronidation would provide a mechanistic basis for the evaluation of the interaction between steviol and diclofenac. As metabolic clearance of botanical-derived products can be the objects (victims) of botanical–drug interactions, further studies are needed to investigate the in vivo relevance of such interactions.  相似文献   

15.
Although homodimerization of UGT1A proteins is well established, direct evidence for dimerization of UGT2B7, which is arguably the most important enzyme involved in human drug glucuronidation, is currently lacking. This study characterized UGT2B7 homodimerization by co-immunopreciptation and generated a UGT2B7 homology model that identified the dimerization domain. It was demonstrated that co-expressed, solubilized UGT2B7 proteins differentially tagged with hemagglutinin (UGT2B7-HA) and c-MYC (UGT2B7-cMYC) co-immunoprecipitated as active homodimers that catalyzed 4-methylumbelliferone glucuronidation. Substrate binding affinities (assessed as S50 values) of the tagged and co-expressed tagged proteins were essentially identical to that of native UGT2B7. Co-association was not observed in a ‘mixed’ UGT2B7-HA and UGT2B7-cMYC protein preparation. Generation of a UGT2B7 homology model established from plant and human templates was achieved using SYBYLX1.2 with all residues energy minimized using the Tripos Force Field. The UGT2B7 model allowed elucidation of a putative protein dimerization domain within the B′–C loop of each UGT2B7 monomer. The eighteen amino acid dimerization domain is present in all UGT2B enzymes and comprises a proposed dimerization signature motif (FPPSYVPVVMS). Stabilization of the dimer interface is maintained by the formation of two salt bridges, aromatic π–π stacking interactions, two S-aromatic (face) interactions, and the presence of ‘proline brackets’. The homology model further provides important insights into structure–function relationships of this enzyme and the mechanism responsible for the atypical glucuronidation kinetics for substrates of UGT2B7 and other human UGT enzymes.  相似文献   

16.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

17.
UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.  相似文献   

18.
5-(4'-Hydroxyphenyl)-5-phenylhydantoin (4'-HPPH), a major metabolite of phenytoin in human, is exclusively metabolized to a glucuronide. 4'-HPPH has a chiral center. (S)-4'-HPPH is a predominant form produced from phenytoin in humans, and (R)-4'-HPPH is an extremely toxic form with respect to gingival hyperplasia. In the present study, we investigated stereoselective 4'-HPPH O-glucuronide formation in human liver microsomes. Human liver microsomes predominantly formed (S)-4'-HPPH O-glucuronide rather than (R)-4'-HPPH O-glucuronide from racemic 4'-HPPH. Among human UDP-glucuronosyltransferase (UGT) enzymes, UGT1A1, UGT1A9, and UGT2B15 showed 4'-HPPH O-glucuronide formation. Interestingly, UGT1A1 stereoselectively formed (R)-4'-HPPH O-glucuronide, whereas UGT1A9 and UGT2B15 stereoselectively formed (S)-4'-HPPH O-glucuronide from racemic 4'-HPPH. By using UGT1A double-expression systems in HEK293 cells that we previously established, the effects of UGT-UGT interactions on 4'-HPPH O-glucuronide formation were investigated. It was demonstrated that coexpression of UGT1A4 increased the V(max) values of (S)- and (R)-4'-HPPH O-glucuronide formation catalyzed by UGT1A1 but decreased the V(max) values of (S)- and (R)-4'-HPPH O-glucuronide formation catalyzed by UGT1A9. Coexpression of UGT1A6 increased the S(50) values and decreased the V(max) values of (S)- and (R)-4'-HPPH glucuronide formation catalyzed by UGT1A1 and UGT1A9. However, the interaction did not alter the stereoselectivity. In conclusion, we found that 4'-HPPH O-glucuronide formation in human liver microsomes is catalyzed by UGT1A1, UGT1A9, and UGT2B15 in a stereoselective manner, being modulated by interaction with other UGT1A isoforms.  相似文献   

19.
20.
Human UDP-glucuronosyltransferase 2B7 (UGT2B7) is one of the major isoforms involved in the glucuronidation of endogenous compounds and xenobiotics. This isoform is the only human UGT shown to glucuronidate retinoids and their oxidized derivatives. In this study, the effects of all-trans retinoic acid (atRA), 9-cis RA, and the RAR agonist TTNPB, on UGT2B7 and UGT2B15 mRNA expression in Caco-2 cells have been examined. Each of these retinoids significantly suppressed UGT2B7 mRNA expression in a concentration-dependent manner with IC50 values of 3.5, 0.3, and 0.2 microM, respectively. However, no inhibition was observed when two other UGTs, UGT2B15 or -1A6, were exposed to atRA, 9-cis RA, or TTNPB, demonstrating that the inhibitory effect of retinoids might be specific for the UGT2B7 isoform. Further, experiments with oxidized atRA derivatives, 4-OH-atRA, 4-oxo-atRA, and 5,6-epoxy-atRA showed that these RA degradation products have no inhibitory effect on UGT2B7 mRNA expression. These data lead us to hypothesize that biologically active forms of RA suppress the expression of UGT2B7 in intestinal cells. This information provides a new pathway by which retinoids may enhance their own toxicity when accumulated in the body at pharmacological concentrations by down-regulating the enzymes involved in their biotransformation into soluble derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号