首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cholinergic activation regulates cognitive function, particularly long‐term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue‐conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
BACKGROUND: d-cycloserine (DCS) facilitates extinction of learned fear. The aim of this study was to examine whether DCS 1) affects reacquisition of fear (Experiment 1) and 2) produces generalized extinction of fear (Experiment 2). METHODS: Following fear conditioning, where a light or a tone conditioned stimulus (CS) was paired with a white-noise burst unconditioned stimulus (US), rats received nonreinforced exposure to one CS (i.e., extinction training). Fear was assessed by measuring CS-elicited freezing, a species-specific defense response. RESULTS: Rats given DCS exhibited facilitated extinction of fear but were able to reacquire fear of that CS in a similar manner as saline-treated control animals (Experiment 1). Furthermore, DCS-treated rats exhibited generalized extinction (i.e., they were less fearful of a non-extinguished CS) in comparison to controls (Experiment 2). CONCLUSIONS: DCS facilitates extinction of learned fear to the extinguished CS, but also appears to reduce fear of a nonextinguished CS. These findings suggest that this drug may have substantial clinical value in the treatment of anxiety disorders.  相似文献   

3.
Anxiety disorders, characterized by anxiety and fearfulness, are found to be able to cause abnormal emotional responses' associated with memories of negative events, which implicate pressure on society with an increasingly large burden. Better treatment has been of concern to the community. Venlafaxine (VEN), a nonclassical antidepressant agent, is applied in the treatment of social phobia, major depression (MD) and general anxiety disorder (GAD) and, to a certain extent, posttraumatic stress disorder (PTSD), which improves working memory and spatial memory as well as ameliorates emotion by affecting specified brain regions. In this study, we committed to seek a new way for using VEN on treatment of anxiety disorders. To investigate the effect of VEN on extinction of auditory-cue conditioned fear, conditioned rats received a treatment with VEN before extinction training and tests for freezing level of within-session and between-session extinction. To investigate the effect of VEN on reinstatement, all conditioned rats received a treatment with VEN over a period for 21 days. After a rest for 7 days, two tests for freezing level were conducted. We found that: (1) VEN (40mg/kg) treatment at 30min prior to extinction training significantly facilitated the between-session extinction, but not the within-session extinction; (2) chronic administration with VEN (40mg/kg) prevented the return of extinguished auditory-cue fear. These data elucidate the critical role of VEN in auditory-cue fear memory, suggesting that VEN may be an ideal choice for the exposure-based drug treatment and maintenance treatment in patients with GAD, SAD and PTSD.  相似文献   

4.
Exposure therapy builds on the mechanism of fear extinction leading to decreased fear responses. How the stress hormone cortisol affects brain regions involved in fear extinction in humans is unknown. For this reason, we tested 32 men randomly assigned to receive either 30 mg hydrocortisone or placebo 45 min before fear extinction. In fear acquisition, a picture of a geometrical figure was either partially paired (conditioned stimulus; CS+) or not paired (CS−) with an electrical stimulation (unconditioned stimulus; UCS). In fear extinction, each CS was presented again, but no UCS occurred. Cortisol increased conditioned skin conductance responses in early and late extinction. In early extinction, higher activation towards the CS− than to the CS+ was found in the amygdala, hippocampus and posterior parahippocampal gyrus. This pattern might be associated with the establishment of a new memory trace. In late extinction, the placebo compared with the cortisol group displayed enhanced CS+/CS− differentiation in the amygdala, medial frontal cortex and nucleus accumbens. A change from early deactivation to late activation of the extinction circuit as seen in the placebo group seems to be needed to enhance extinction and to reduce fear. Cortisol appears to interfere with this process thereby impairing extinction of recently acquired conditioned fear.  相似文献   

5.
Excessive fear and anxiety are hallmarks of a variety of disabling anxiety disorders that affect millions of people throughout the world. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear and anxiety is attracting increasing interest in the research community. In the laboratory, fear inhibition most often is studied through a procedure in which a previously fear conditioned organism is exposed to a fear-eliciting cue in the absence of any aversive event. This procedure results in a decline in conditioned fear responses that is attributed to a process called fear extinction. Extensive empirical work by behavioral psychologists has revealed basic behavioral characteristics of extinction, and theoretical accounts have emphasized extinction as a form of inhibitory learning as opposed to an erasure of acquired fear. Guided by this work, neuroscientists have begun to dissect the neural mechanisms involved, including the regions in which extinction-related plasticity occurs and the cellular and molecular processes that are engaged. The present paper will cover behavioral, theoretical and neurobiological work, and will conclude with a discussion of clinical implications.  相似文献   

6.
7.
Metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in models of Parkinson’s disease. Interestingly, metformin has antioxidant properties and is involved in regulating the production of cytokines released during the neuroinflammatory process. Several studies have reported that 3,4-methylenedioxymethamphetamine (MDMA), a recreational drug mostly consumed by young adults, produces a persistent loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and caudate putamen (CPu) of mice. The aim of this study was to investigate the potential neuroprotective effect of metformin against short- and long-term neurotoxicity induced by MDMA and its role on MDMA-induced hyperthermia. Adult mice received metformin (2 × 200 mg/kg, 11-h intervals, administered orally), MDMA (4 × 20 mg/kg, 2-h interval, administered intraperitoneally), or MDMA plus metformin (2 × 200 mg/kg, 1 h before the first MDMA administration and 4 h after the last). On the second and third day, mice were treated with vehicle or metformin (1 × 200 mg/kg) and sacrificed 48 h and 7 days after the last MDMA administration. The neuroprotective effect of metformin on MDMA-induced dopaminergic damage was evaluated by dopamine transporter (DAT) and tyrosine hydroxylase (TH) immunohistochemistry in SNc and CPu. Metformin prevented the MDMA-induced loss of TH-positive neurons in the SNc and TH- and DAT-positive fibers in CPu, both at 48 h and 7 days after the last MDMA administration. These results show that metformin is neuroprotective against the short- and long-lasting dopaminergic neurodegeneration induced by MDMA.  相似文献   

8.
Neuropeptides have an important role in several psychiatric conditions. Among them, neuropeptide Y (NPY) seems to be essential to modulate some features of stress-related disorders. Post-traumatic stress disorder (PTSD), characterized by inappropriate fear generalization to safe situations may be modulated by NPY manipulation since this neuropeptide is involved in the promotion of coping with stress. Experimentally, coping strategies have been obtained after exposure in enriched environment (EE) rather than standard one. Thus, in the present study we aimed to assess whether short-term EE situation and NPY-Y1 receptor (Y1r) modulation may affect the extinction of contextual fear conditioning, an experimental approach to PTSD. Here we show that EE-rats have the contextual fear extinction facilitated, and this facilitation was reverted by central infusion of BIBO3304, a nonpeptide Y1r antagonist. In addition, protein analysis revealed an upregulation of hippocampal Y1r in conditioned EE-rats, but no changes were observed in EE-rats that were not conditioned. Our results demonstrated that protective properties of EE on fear extinction can be regulated, at least in part, by activation of NPY-signaling through Y1r within hippocampus, an area that plays a major role in contextual memories. Overall, the activation of Y1r is important to promote better and faster perception of self-location (context), and to reduce fear generalization in rats exposed to EE.  相似文献   

9.
10.
It has been suggested that noradrenaline in the central nervous system is involved in fear and anxiety. To test this postulate extensive depletion of ascending noradrenaline systems was accomplished by intracerebral injection of the selective neurotoxin 6-hydroxydopamine. Fear and anxiety were assessed using a Sidman avoidance task and a conditioned emotional response paradigm. No alteration in fear motivated acquisition learning of either of these tasks were detected. Resistance to extinction was seen on the conditioned emotional task, perhaps because of its continuously reinforced nature, but not on the Sidman avoidance, perhaps as a consequence of the reinforcement contingencies which render this task more similar to a partially reinforced schedule. No evidence for a role of ascending noradrenaline systems in fear or anxiety was hence obtained, but a further demonstration of a role in extinction processes was found.  相似文献   

11.
Fear extinction is a form of inhibitory learning that allows for the adaptive control of conditioned fear responses. Although fear extinction is an active learning process that eventually leads to the formation of a consolidated extinction memory, it is a fragile behavioural state. Fear responses can recover spontaneously or subsequent to environmental influences, such as context changes or stress. Understanding the neuronal substrates of fear extinction is of tremendous clinical relevance, as extinction is the cornerstone of psychological therapy of several anxiety disorders and because the relapse of maladaptative fear and anxiety is a major clinical problem. Recent research has begun to shed light on the molecular and cellular processes underlying fear extinction. In particular, the acquisition, consolidation and expression of extinction memories are thought to be mediated by highly specific neuronal circuits embedded in a large‐scale brain network including the amygdala, prefrontal cortex, hippocampus and brain stem. Moreover, recent findings indicate that the neuronal circuitry of extinction is developmentally regulated. Here, we review emerging concepts of the neuronal circuitry of fear extinction, and highlight novel findings suggesting that the fragile phenomenon of extinction can be converted into a permanent erasure of fear memories. Finally, we discuss how research on genetic animal models of impaired extinction can further our understanding of the molecular and genetic bases of human anxiety disorders.  相似文献   

12.
The amphetamine analog 3,4-methylenedioxymethamphetamine (MDMA) is also known as the recreational drug of abuse, Ecstasy. Several neuropeptides are found in striatal neurons postsynaptic to dopamine and serotonin nerve terminals, and changes in neuropeptide neurotransmission may be important for behavioral effects of 3,4-methylenedioxymethamphetamine. This study used in situ hybridization to characterize the effects of 3,4-methylenedioxymethamphetamine on four neuropeptide mRNAs: preprodynorphin, preprotachykinin, neurotensin/neuromedin N, and preproenkephalin. Male, Sprague-Dawley rats received a single administration of 10 mg/kg 3,4-methylenedioxymethamphetamine and were sacrificed 30 min or 3 h later. Three hours after administration, 3,4-methylenedioxymethamphetamine increased preprodynorphin, preprotachykinin, and neurotensin/neuromedin N mRNAs. These increases were most prominent in ventral and medial aspects of the rostral-middle striatum, and then became more dorsally restricted in the caudal striatum. At the 30-minute time point, MDMA significantly decreased the signal for preproenkephalin mRNA in a general manner but did not affect the signal for the other neuropeptide precursors. These data suggest that 3,4-methylenedioxymethamphetamine has a generalized, transient, inhibitory effect on striatopallidal neuron gene expression, and then preferentially influences striatonigral neuropeptide systems at the later time point in a regionally selective manner.  相似文献   

13.
Corticosterone, the naturally occurring glucocorticoid of rodents is secreted in response to stressors and is known for its facilitating and detrimental effects on emotional learning and memory. The large variability in the action of corticosterone on processing of emotional memories is postulated to depend on genetic background and the spatio-temporal domain in which the hormone operates. To address this hypothesis, mice of two strains with distinct corticosterone secretory patterns and behavioural phenotype (BALB/c and C57BL/6J) were treated with corticosterone (250 μg/kg, i.p.), either 5 min before or directly after acquisition in a fear conditioning task. As the paradigm allowed assessing in one experimental procedure both context- and cue-related fear behaviour, we were able to detect generalization and specificity of fear. BALB/c showed generalized strong fear memory, while C57BL/6J mice discriminated between freezing during context- and cue episodes. Corticosterone had opposite effects on fear memory depending on the strain and time of injection. Corticosterone after acquisition did not affect C57BL/6J mice, but destabilized consolidation and facilitated extinction in BALB/c. Corticosterone 5 min before acquisition strengthened stress-associated signals: BALB/c no longer showed lower fear memory, while C57BL/6J mice displayed increased fear memory and impaired extinction in cue episodes. We propose that corticosterone-induced facilitation of fear memory in C57BL/6J mice can be used to study the development of fear memories, corticosterone administration in BALB/c mice presents a model to examine treatment. We conclude that genetic background and time of corticosterone action are modifiers of fear memory with interesting translational implications for anxiety-related diseases.  相似文献   

14.
We have shown recently that 3,4-methylenedioxymethamphetamine (MDMA) has symptomatic antiparkinsonian activity in rodent models of Parkinson's disease. In search of its mechanism of action, we further investigated the enantiomers of MDMA in the rotational behavioral model and catalepsy test. Catalepsy testing was done in drug-naive unlesioned animals. The parkinsonian symptoms rigor and akinesia (i.e., catalepsy) were induced by intraperitoneal administration of haloperidol 0.5 mg/kg and measured repeatedly as descent latency from a horizontal bar and a vertical grid. MDMA and both its enantiomers were effective in counteracting haloperidol-induced catalepsy, but if given as racemic, the effects were more pronounced than with the enantiomers. For testing of rotational behavior, male Sprague Dawley rats were lesioned unilaterally with 6-hydroxydopamine (6-OHDA) at the medial forebrain bundle. Administration of S-MDMA (5 mg/kg) produced ipsilateral rotations. R-MDMA was far less effective in inducing ipsilateral rotations in 6-OHDA unilaterally lesioned rats, but when S-MDMA was given additionally rotations immediately increased. Regarding their overall antiparkinsonian effects, the S-enantiomer of MDMA was more effective than its R-congener. R-MDMA was able to increase the actions of S-MDMA.  相似文献   

15.
Aims: Classical fear conditioning and extinction has been used to understand the neurobiology of fear learning and its inhibition. The recall of an extinction memory involves the ventromedial prefrontal cortex and the amygdala, and patients with posttraumatic stress disorder (PTSD) have been shown to exhibit deficits in this process. Furthermore, extinction forms the basis of exposure therapies commonly used to treat PTSD patients. It is possible that effective pharmacological and/or psychological treatment regimens could influence the activity of these regions, and thereby increase the ability to retain an extinction memory. However, to test this, a fear conditioning and extinction paradigm must demonstrate within‐subject reproducibility over time. We, therefore, sought to test the within‐subject reliability of a previously used 2‐day, classical fear conditioning and extinction paradigm. Methods: Eighteen healthy participants participated in a 2‐day paradigm on three occasions, each separated by at least 12 weeks. Conditioning and extinction took place on Day 1, and extinction recall and fear renewal were evaluated on Day 2 on each of the three occasions. The conditioned stimulus was a visual cue and the unconditioned stimulus was a mild electric shock to the fingers. Skin conductance was recorded throughout the experiment to measure conditioned responses. Results: We found that conditioning and extinction recall were not significantly different across time and were correlated within subjects. Conclusion: These data illustrate the reliability of this paradigm and its potential usefulness in evaluating the influence of a given treatment on the fear extinction network in longitudinal within‐subject designs.  相似文献   

16.
Simulated exposure therapy for spider phobia served as a clinically naturalistic model to study effects of sleep on extinction. Spider-fearing, young adult women (N = 66), instrumented for skin conductance response (SCR), heart rate acceleration (HRA) and corrugator electromyography (EMG), viewed 14 identical 1-min videos of a behaving spider before a 12-hr delay containing a normal night's Sleep (N = 20) or continuous daytime Wake (N = 23), or a 2-hr delay of continuous wake in the Morning (N = 11) or Evening (N = 12). Following the delay, all groups viewed this same video 6 times followed by six 1-min videos of a novel spider. After each video, participants rated disgust, fearfulness and unpleasantness. In all 4 groups, all measures except corrugator EMG diminished across Session 1 (extinction learning) and, excepting SCR to a sudden noise, increased from the old to novel spider in Session 2. In Wake only, summed subjective ratings and SCR to the old spider significantly increased across the delay (extinction loss) and were greater for the novel vs. the old spider when it was equally novel at the beginning of Session 1 (sensitization). In Sleep only, SCR to a sudden noise decreased across the inter-session delay (extinction augmentation) and, along with HRA, was lower to the novel spider than initially to the old spider in Session 1 (extinction generalization). None of the above differentiated Morning and Evening groups suggesting that intervening sleep, rather than time-of-testing, produced differences between Sleep and Wake. Thus, sleep following exposure therapy may promote retention and generalization of extinction learning.  相似文献   

17.
Histone acetylation has been implicated with the pathogenesis of neuropsychiatric disorders and targeting histone deacetylases (HDACs) using HDAC inhibitors was shown to be neuroprotective and to initiate neuroregenerative processes. However, little is known about the role of individual HDAC proteins during the pathogenesis of brain diseases. HDAC1 was found to be upregulated in patients suffering from neuropsychiatric diseases. Here, we show that virus-mediated overexpression of neuronal HDAC1 in the adult mouse hippocampus specifically affects the extinction of contextual fear memories, while other cognitive abilities were unaffected. In subsequent experiments we show that under physiological conditions, hippocampal HDAC1 is required for extinction learning via a mechanism that involves H3K9 deacetylation and subsequent trimethylation of target genes. In conclusion, our data show that hippocampal HDAC1 has a specific role in memory function.  相似文献   

18.
Previous research has indicated that D-cycloserine [DCS; a N-methyl-D-aspartate (NMDA) partial agonist] facilitates the extinction of conditioned fear as well as the extinction of cocaine conditioned place preference. Sprague Dawley rats were first trained to self-administer cocaine and then we compared their extinction behavior (lever pressing) following treatment with vehicle; 15 mg/kg DCS; or 30 mg/kg DCS. We showed that 30 mg/kg DCS, but not 15 mg/kg significantly accelerated extinction of cocaine self-administration behavior when compared with saline by almost half (4 days vs. 9 days). At 2 weeks when all animals had extinguished, there were no longer differences between the groups. The present findings support of the potential of NMDA partial agonists as prospectively valuable in facilitating the extinction of cocaine-seeking behavior. More specifically, we demonstrate that 30 mg/kg DCS was effective at significantly accelerating the extinction of cocaine self-administration behavior in rats. These results provide further support for the potential of DCS as a treatment strategy for addiction.  相似文献   

19.
Hippocampal involvement in contextual modulation of fear extinction   总被引:1,自引:0,他引:1  
Ji J  Maren S 《Hippocampus》2007,17(9):749-758
Extinction of fear conditioning in animals is an excellent model for the study of fear inhibition in humans. Substantial evidence has shown that extinction is a new learning process that is highly context-dependent. Several recovery effects (renewal, spontaneous recovery, and reinstatement) after extinction suggest that the contextual modulation of extinction is a critical behavioral mechanism underlying fear extinction. In addition, recent studies demonstrate a critical role for hippocampus in the context control of extinction. A growing body of evidence suggests that the hippocampus not only plays a role in contextual encoding and retrieval of fear extinction memories, but also interacts with other brain structures to regulate context-specificity of fear extinction. In this article, the authors will first discuss the fundamental behavioral features of the context effects of extinction and its underlying behavioral mechanisms. In the second part, the review will focus on the brain mechanisms for the contextual control of extinction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号