首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurobiology of social anxiety disorder (SAD) is not yet fully understood. Structural and functional neuroimaging studies in SAD have identified abnormalities in various brain areas, particularly the amygdala and elements of the salience network. This study is the first to examine resting-state functional brain connectivity in a drug-naive sample of SAD patients without psychiatric comorbidity and healthy controls, using seed regions of interest in bilateral amygdala, in bilateral dorsal anterior cingulate cortex for the salience network, and in bilateral posterior cingulate cortex for the default mode network. Twelve drug-naive SAD patients and pair-wise matched healthy controls, all drawn from the Netherlands Study of Depression and Anxiety sample, underwent resting-state fMRI. Group differences were assessed with voxel-wise gray matter density as nuisance regressor. All results were cluster corrected for multiple comparisons (Z>2.3, p<.05). Relative to control subjects, drug-naive SAD patients demonstrated increased negative right amygdala connectivity with the left middle temporal gyrus, left supramarginal gyrus and left lateral occipital cortex. In the salience network patients showed increased positive bilateral dorsal anterior cingulate connectivity with the left precuneus and left lateral occipital cortex. Default mode network connectivity was not different between groups. These data demonstrate that drug-naive SAD patients without comorbidity show differences in functional connectivity of the amygdala, and of areas involved in self-awareness, some of which have not been implicated in SAD before.  相似文献   

2.
目的利用fMRI研究TIA患者脑默认状态网络的变化。方法分别采集16例TIA发作间期患者和16名正常对照组静息态fMRI扫描,以扣带回/楔前叶及腹侧扣带前回/内侧前额叶作为种子点,分析与种子点连通的脑区,研究两组间默认状态网络的变化。结果 TIA组与正常组具有相似脑默认状态网络,TIA组与正常组比较,ROI功能连接减弱的脑区域包括:扣带前回、楔前叶、前额叶及海马等脑区,功能连接增强的区域主要存在小脑及丘脑。结论 TIA患者脑默认状态网络存在异常,扣带回、楔前叶及海马等脑区连通性的减弱反应TIA患者脑DMN失衡,丘脑和小脑的连通性增强,可能是脑TIA局部脑区功能减弱的补偿及保护性反应。  相似文献   

3.
In major depressive disorder (MDD), the anterior cingulate cortex (ACC) has been associated with clinical outcome as well as with antidepressant treatment response. Nonetheless, the association between individual differences in ACC structure and function and the response to cognitive behavioral therapy (CBT) is still unexplored. For this aim, twenty-five unmedicated patients with MDD were scanned with structural and resting state functional magnetic resonance imaging before the beginning of CBT treatment. ACC morphometry was correlated with clinical changes following psychotherapy. Furthermore, whole-brain resting state functional connectivity with the ACC was correlated with clinical measures. Greater volume in the left subgenual (subACC), the right pregenual (preACC), and the bilateral supragenual (supACC) predicted depressive symptoms improvement after CBT. Greater subACC volume was related to stronger functional connectivity with the inferior parietal cortex and dorsolateral prefrontal cortex. Stronger subACC-inferior parietal cortex connectivity correlated with greater adaptive rumination. Greater preACC volume was associated with stronger functional connectivity with the inferior parietal cortex and ventrolateral prefrontal cortex. In contrast, greater right supACC volume was related to lower functional connectivity with the inferior parietal cortex. These results suggest that ACC volume and its functional connectivity with the fronto-parietal cortex are associated with CBT response in MDD, and this may be mediated by adaptive forms of rumination. Our findings support the role of the subACC as a potential predictor for CBT response.  相似文献   

4.
Medication management in schizophrenia is a lengthy process, as the lack of clinical response can only be confirmed after at least 4 weeks of antipsychotic treatment at a therapeutic dose. Thus, there is a clear need for the discovery of biomarkers that have the potential to accelerate the management of treatment. Using resting-state functional MRI, we examined the functional connectivity of the ventral tegmental area (VTA), the origin of the mesocorticolimbic dopamine projections, in 21 healthy controls and 21 unmedicated patients with schizophrenia at baseline (pre-treatment) and after 1 week of treatment with the antipsychotic drug risperidone (1-week post-treatment). Group-level functional connectivity maps were obtained and group differences in connectivity were assessed on the groups'' participant-level functional connectivity maps. We also examined the relationship between pre-treatment/1-week post-treatment functional connectivity and treatment response. Compared with controls, patients exhibited significantly reduced pre-treatment VTA/midbrain connectivity to multiple cortical and subcortical regions, including the dorsal anterior cingulate cortex (dACC) and thalamus. After 1 week of treatment, VTA/midbrain connectivity to bilateral regions of the thalamus was re-established. Pre-treatment VTA/midbrain connectivity strength to dACC was positively correlated with good response to a 6-week course of risperidone, whereas pre-treatment VTA/midbrain connectivity strength to the default mode network was negatively correlated. Our findings suggest that VTA/midbrain resting-state connectivity may be a useful biomarker for the prediction of treatment response.  相似文献   

5.
Recent work has identified disruption of several brain networks involving limbic and cortical regions that contribute to the generation of diverse symptoms of major depressive disorder (MDD). Of particular interest are the networks anchored on the right anterior insula, which binds the cortical and limbic regions to enable key functions that integrate bottom-up and top-down information in emotional and cognitive processing. Emotional appraisal has been linked to a presumed hierarchy of processing, from sensory percepts to affective states. But it is unclear whether the network level dysfunction seen in depression relates to a breakdown of this presumed hierarchical processing system from sensory to higher cognitive regions, mediated by core limbic regions (e.g. insula). In 16 patients with current MDD, and 16 healthy controls, we investigated differences in directional influences between anterior insula and the rest of the brain using resting-state functional magnetic resonance imaging (fMRI) and Granger-causal analysis (GCA), using anterior insula as a seed region. Results showed a failure of reciprocal influence between insula and higher frontal regions (dorsomedial prefrontal cortex) in addition to a weakening of influences from sensory regions (pulvinar and visual cortex) to the insula. This suggests dysfunction of both sensory and putative self-processing regulatory loops centered around the insula in MDD. For the first time, we demonstrate a network-level processing defect extending from sensory to frontal regions through insula in depression. Within limitations of inferences drawn from GCA of resting fMRI, we offer a novel framework to advance targeted network modulation approaches to treat depression.  相似文献   

6.
The insula plays a critical role in maintaining nicotine dependence and reactivity to smoking cues. More broadly, the insula and the dorsal anterior cingulate cortex (dACC) are key nodes of the salience network (SN), which integrates internal and extrapersonal information to guide behavior. Thus, insula–dACC interactions may be integral in processing salient information such as smoking cues that facilitate continued nicotine use. We evaluated functional magnetic resonance imaging (fMRI) data from nicotine-dependent participants during rest, and again when they viewed smoking-related images. Greater insula–dACC coupling at rest was significantly correlated with enhanced smoking cue-reactivity in brain areas associated with attention and motor preparation, including the visual cortex, right ventral lateral prefrontal cortex, and the dorsal striatum. In an independent cohort, we found that insula–dACC connectivity was stable over 1-h delay and was not influenced by changes in subjective craving or expired carbon monoxide, suggesting that connectivity strength between these regions may be a trait associated with heightened cue-reactivity. Finally, we also showed that insula reactivity to smoking cues correlates with a rise in cue-reactivity throughout the entire SN, indicating that the insula''s role in smoking cue-reactivity is not functionally independent, and may actually represent the engagement of the entire SN. Collectively, these data provide a more network-level understanding of the insula''s role in nicotine dependence and shows a relationship between inherent brain organization and smoking cue-reactivity.  相似文献   

7.
Unipolar and bipolar depressive episodes have a similar clinical presentation that suggests common dysfunction of the brain’s reward system. Here, we evaluated the relationship of both dimensional depression severity and diagnostic category to reward system function in both bipolar and unipolar depression. In total, 89 adults were included, including 27 with bipolar depression, 25 with unipolar depression, and 37 healthy comparison subjects. Subjects completed both a monetary reward task and a resting-state acquisition during 3T BOLD fMRI. Across disorders, depression severity was significantly associated with reduced activation for wins compared with losses in bilateral ventral striatum, anterior cingulate cortex, posterior cingulate cortex, and right anterior insula. Resting-state connectivity within this reward network was also diminished in proportion to depression severity, most notably connectivity strength in the left ventral striatum. In addition, there were categorical differences between patient groups: resting-state connectivity at multiple reward network nodes was higher in bipolar than in unipolar depression. Reduced reward system task activation and resting-state connectivity therefore appear to be a brain phenotype that is dimensionally related to depression severity in both bipolar and unipolar depression. In contrast, categorical differences in reward system resting connectivity between unipolar and bipolar depression may reflect differential risk of mania. Reward system dysfunction thus represents a common brain mechanism with relevance that spans categories of psychiatric diagnosis.  相似文献   

8.
Alcohol-dependence is associated with cognitive and biological alterations, and also with interpersonal impairments. Although overwhelming in clinical settings and involved in relapse, these social impairments have received little attention from researchers. Particularly, brain alterations related to social exclusion have not been explored in alcohol-dependence. Our primary purpose was to determine the neural correlates of social exclusion feelings in this population. In all, 44 participants (22 abstinent alcohol-dependent patients and 22 paired controls) played a virtual game (‘cyberball'') during fMRI recording. They were first included by other players, then excluded, and finally re-included. Brain areas involved in social exclusion were identified and the functional connectivity between these areas was explored using psycho-physiological interactions (PPI). Results showed that while both groups presented dorsal anterior cingulate cortex (dACC) activations during social exclusion, alcohol-dependent participants exhibited increased insula and reduced frontal activations (in ventrolateral prefrontal cortex) as compared with controls. Alcohol-dependence was also associated with persistent dACC and parahippocampal gyrus activations in re-inclusion. PPI analyses showed reduced frontocingulate connectivity during social exclusion in alcohol-dependence. Alcohol-dependence is thus linked with increased activation in areas eliciting social exclusion feelings (dACC–insula), and with impaired ability to inhibit these feelings (indexed by reduced frontal activations). Altered frontal regulation thus appears implied in the interpersonal alterations observed in alcohol-dependence, which seem reinforced by impaired frontocingulate connectivity. This first exploration of the neural correlates of interpersonal problems in alcohol-dependence could initiate the development of a social neuroscience of addictive states.  相似文献   

9.
Enhanced motivational salience towards smoking cues is a consequence of chronic nicotine use, but the degree to which this value increases beyond that of other appetitive cues is unknown. In addition, it is unclear how connectivity between brain regions influences cue reactivity and how cue reactivity and functional connectivity are related to nicotine dependence severity. This study examined neural responses during the presentation of smoking cues and appetitive control cues, as well as functional connectivity in 116 smokers with a range of nicotine dependence severity. Smoking cues elicited greater response above baseline than food cues in orbitofrontal cortex (OFC) and supplementary motor area (SMA) and less deactivation below baseline in middle frontal gyrus, inferior parietal lobe, and middle temporal gyrus. Psychophysiological interaction (PPI) analysis using right OFC as a seed revealed increased connectivity with somatosensory cortex and lateral inferior parietal lobe during smoking cues compared with food cues. Similarly, a PPI analysis using left insula as a seed showed stronger connectivity with somatosensory cortex, right insula, OFC, and striatum. Finally, relationships with nicotine dependence scores showed enhanced response in insula and dorsal anterior cingulate cortex in the smoking vs food comparison, and increased connectivity between insula and circuits involved in motivated behavior. Combined, these results suggest that smokers engage attentional networks and default mode networks involved in self-referential processing to a greater degree during smoking cues. In addition, individuals with greater nicotine dependence severity show increased engagement of sensorimotor and motor preparation circuits, suggesting increased reliance on habitual behavior.  相似文献   

10.
Multiple structural and functional neuroimaging measures vary over the course of the lifespan and can be used to predict chronological age. Accelerated brain aging, as quantified by deviations in the MRI-based predicted age with respect to chronological age, is associated with risk for neurodegenerative conditions, bipolar disorder, and mortality. Whether age-related changes in resting-state functional connectivity are accelerated in major depressive disorder (MDD) is unknown, and, if so, it is unclear if these changes contribute to specific cognitive weaknesses that often occur in MDD. Here, we delineated age-related functional connectivity changes in a large sample of normal control subjects and tested whether brain aging is accelerated in MDD. Furthermore, we tested whether accelerated brain aging predicts individual differences in cognitive function. We trained a support vector regression model predicting age using resting-state functional connectivity in 710 healthy adults aged 18–89. We applied this model trained on normal aging subjects to a sample of actively depressed MDD participants (n = 109). The difference between predicted brain age and chronological age was 2.11 years greater (p = 0.015) in MDD patients compared to control participants. An older MDD brain age was significantly associated with increased impulsivity and, in males, increased depressive severity. Unexpectedly, accelerated brain aging was also associated with increased placebo response in a sham-controlled trial of high-frequency repetitive transcranial magnetic stimulation targeting the dorsomedial prefrontal cortex. Our results indicate that MDD is associated with accelerated brain aging, and that accelerated aging is selectively associated with greater impulsivity and depression severity.Subject terms: Depression, Cognitive ageing  相似文献   

11.
There is a need to identify clinically useful biomarkers in major depressive disorder (MDD). In this context the functional connectivity of the orbitofrontal cortex (OFC) to other areas of the affect regulation circuit is of interest. The aim of this study was to identify neural changes during antidepressant treatment and correlates associated with the treatment outcome. In an exploratory analysis it was investigated whether functional connectivity measures moderated a response to mirtazapine and venlafaxine. Twenty-three drug-free patients with MDD were recruited from the Department of Psychiatry and Psychotherapy of the Ludwig-Maximilians University in Munich. The patients were subjected to a 4-wk randomized clinical trial with two common antidepressants, venlafaxine or mirtazapine. Functional connectivity of the OFC, derived from functional magnetic resonance imaging with an emotional face-matching task, was measured before and after the trial. Higher OFC connectivity with the left motor areas and the OFC regions prior to the trial characterized responders (p<0.05, false discovery rate). The treatment non-responders were characterized by higher OFC-cerebellum connectivity. The strength of response was positively correlated with functional coupling between left OFC and the caudate nuclei and thalami. Differences in longitudinal changes were detected between venlafaxine and mirtazapine treatment in the motor areas, cerebellum, cingulate gyrus and angular gyrus. These results indicate that OFC functional connectivity might be useful as a marker for therapy response to mirtazapine and venlafaxine and to reconstruct the differences in their mechanism of action.  相似文献   

12.
Functional abnormalities in fear circuitry are likely to underlie the pathophysiology of pediatric posttraumatic stress disorder (PTSD), but the few studies to date have yielded conflicting findings. Furthermore, network level functional connectivity and age-related disruptions in fear circuitry have not been thoroughly explored. In a cross-sectional design, 24 healthy and 24 medication-free youth with severe PTSD completed an event-related emotion-processing task during functional MRI. Youth viewed threat and neutral images, half of which were paired with a neutral male face. Group- and age-related differences in brain activation were examined in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Amygdala functional connectivity was examined using a seed-based approach. PTSD youth showed hyperactivation of the dorsal anterior cingulate cortex (dACC) to threat images. In the dorsomedial PFC (dmPFC), age positively predicted activation in healthy youth but negatively predicted activation in PTSD youth. In the amygdala functional connectivity analysis, PTSD youth showed decreased amygdala–mPFC connectivity to threat images. Furthermore, age positively predicted amygdala–vmPFC connectivity in healthy youth, but negatively predicted connectivity in PTSD youth. Finally, dmPFC activation and amygdala–mPFC connectivity were inversely related to PTSD severity. Pediatric PTSD involves abnormal functional activation and connectivity in fear circuitry. Specifically, dACC hyperactivation is consistent with abnormal promotion of fear responses, whereas reduced amygdala–mPFC connectivity suggests impaired regulation of amygdala responses to threat. Importantly, age-dependent decreases in dmPFC activation and amygdala–vmPFC connectivity may indicate abnormal developmental processes in key emotion pathways in pediatric PTSD.  相似文献   

13.
Pregenual anterior cingulate cortex (pgACC) hyperactivity differentiates treatment responders from non-responders to various pharmacological antidepressant interventions, including ketamine, an N-methyl--aspartate receptor antagonist. Evidence of pgACC hyperactivition during non-emotional working memory tasks in patients with major depressive disorder (MDD) highlights the importance of this region for processing both emotionally salient and cognitive stimuli. However, it is unclear whether pgACC activity might serve as a potential biomarker of antidepressant response during working memory tasks as well, in line with previous research with emotionally arousing tasks. This study tested the hypothesis that during the N-back task, a widely used working memory paradigm, low pretreatment pgACC activity, as well as coherence between the pgACC and the amygdala, would be correlated with the clinical improvement after ketamine. Magnetoencephalography (MEG) recordings were obtained from 15 drug-free patients with MDD during working memory performance 1 to 3 days before receiving a single ketamine infusion. Functional activation patterns were analyzed using advanced MEG source analysis. Source coherence analyses were conducted to quantify the degree of long-range functional connectivity between the pgACC and the amygdala. Patients who showed the least engagement of the pgACC in response to increased working memory load showed the greatest symptomatic improvement within 4 h of ketamine administration (r=0.82, p=0.0002, false discovery rate (FDR) <0.05). Pretreatment functional connectivity between the pgACC and the left amygdala was negatively correlated with antidepressant symptom change (r=−0.73, p=0.0021, FDR <0.05).These data implicate the pgACC and its putative interaction with the amygdala in predicting antidepressant response to ketamine in a working memory task context.  相似文献   

14.
Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work.  相似文献   

15.
Repetitive transcranial magnetic stimulation (rTMS) has become a popular treatment option for treatment-resistant depression (TRD). However, suboptimal response rates highlight the need for improved efficacy through optimisation of treatment protocol and patient selection. We investigate whether the limbic salience network and its connectivity with prefrontal stimulation sites predict immediate and longer-term responsiveness to rTMS. Twenty-seven patients with TRD were randomly allocated to receive 16 sessions of either conventional rTMS or intermittent theta-burst (iTBS) over 4 weeks; delivered using connectivity profiling and neuronavigation to target person-specific dorsolateral prefrontal cortex (DLPFC). At baseline and 3-month follow-up, patients underwent clinical assessment and scanning session, and 1-month clinical follow-up. Resting-state fMRI data were entered into seed-based functional and effective connectivity analyses between right anterior insula (rAI) and DLPFC target, and independent components analysis to extract resting-state networks. Cerebral blood flow (CBF) was also assessed in the rAI. All brain measures were compared between baseline and follow-up, and related to treatment response at 1- and 3-months. Baseline fronto-insular effective connectivity and salience network connectivity were significantly positively correlated, while baseline rAI CBF was negatively correlated, with early (1-month) response to rTMS treatment but not sustained response (3-months), suggesting persistence of therapeutic response is not associated with baseline features. Connectivity or CBF measures did not change between the two time points. We demonstrate that fronto-insular and salience-network interactions can predict early response to rTMS in TRD, suggesting that these network nodes may be key regions toward developing rTMS response biomarkers.  相似文献   

16.
Major depressive disorder (MDD) is associated with structural and functional alterations in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Enhanced ACC activity at rest (measured using various imaging methodologies) is found in treatment-responsive patients and is hypothesized to bolster treatment response by fostering adaptive rumination. However, whether structural changes influence functional coupling between fronto-cingulate regions and ACC regional homogeneity (ReHo) and whether these functional changes are related to levels of adaptive rumination and treatment response is still unclear. Cortical thickness and ReHo maps were calculated in 21 unmedicated depressed patients and 35 healthy controls. Regions with reduced cortical thickness defined the seeds for the subsequent functional connectivity (FC) analyses. Patients completed the Response Style Questionnaire, which provided a measure of adaptive rumination associated with better response to psychotherapy. Compared with controls, depressed patients showed thinning of the right anterior PFC, increased prefrontal connectivity with the supragenual ACC (suACC), and higher ReHo in the suACC. The suACC clusters of increased ReHo and FC spatially overlapped. In depressed patients, suACC ReHo scores positively correlated with PFC thickness and with FC strength. Moreover, stronger fronto-cingulate connectivity was related to higher levels of adaptive rumination. Greater suACC ReHo and connectivity with the right anterior PFC seem to foster adaptive forms of self-referential processing associated with better response to psychotherapy, whereas prefrontal thinning impairs the ability of depressed patients to engage the suACC during a major depressive episode. Bolstering the function of the suACC may represent a potential target for treatment.  相似文献   

17.
Individuals with both post-traumatic stress disorder and major depressive disorder (PTSD+MDD) often show greater social and occupational impairment and poorer treatment response than individuals with PTSD alone. Increasing evidence reveals that the amygdala, a brain region implicated in the pathophysiology of both of these conditions, is a complex of structurally and functionally heterogeneous nuclei. Quantifying the functional connectivity of two key amygdala subregions, the basolateral (BLA) and centromedial (CMA), in PTSD+MDD and PTSD-alone could advance our understanding of the neurocircuitry of these conditions. 18 patients with PTSD+MDD, 28 with PTSD-alone, and 50 trauma exposed healthy controls (TEHC), all from a cohort who survived the same large earthquake in China, underwent resting-state functional magnetic resonance imaging. Bilateral BLA and CMA functional connectivity (FC) maps were created using a seed-based approach for each participant. The analysis of covariance of FC was used to determine between-group differences. A significant interaction between amygdala subregion and diagnostic group suggested that differences in connectivity patterns between the two seeds were mediated by diagnosis. Post-hoc analyses revealed that PTSD+MDD patients showed weaker connectivity between right BLA and (a) left anterior cingulate cortex/supplementary motor area, and (b) bilateral putamen/pallidum, compared with PTSD-alone patients. Higher CMA connectivities left ACC/SMA were also observed in PTSD+MDD compared with PTSD-alone. An inverse relationship between the connectivity of right BLA with right putamen/pallidum and MDD symptoms was found in PTSD+MDD. These findings indicate a relationship between the neural pathophysiology of PTSD+MDD compared with PTSD-alone and TEHC and may inform future clinical interventions.  相似文献   

18.
There is an increasing use of “Novel Psychoactive Substances” containing synthetic cannabinoids worldwide. Synthetic cannabinoids (SC) are highly addictive and cause severe adverse effects. The purpose of our study was to assess whether chronic use of SC alters brain volume and function. Fifteen SC chronic users and 15 healthy control participants undertook an MRI scan to assess brain volume and function while performing a working memory N-back task and a response-inhibition Go-No-Go task. SC users showed impaired performance on the N-back task but not on the Go-No-Go task. They also showed reduced total gray matter volume compared with control participants, as well as reduced gray matter volume in several cortical regions including the middle frontal gyrus, frontal orbital gyrus, inferior frontal gyrus, insula, anterior cingulate cortex and the precuneus. Moreover, SC users showed diminished brain activations in the precuneus, cuneus, lingual gyrus, hippocampus and cerebellum while performing the N-back task. No differences were found in brain activation while performing the response-inhibition task. This is the first study showing overall reduced grey matter volume and specific reduced grey matter volumes in chronic SC users. Furthermore, this study showed for the first time impairment in the neural brain mechanisms responsible for working memory in SC users. Our results of reduced grey matter density and diminished activation during a working memory task in SC users, may suggest vulnerability of the frontal-parietal network in chronic SC users.  相似文献   

19.
Cannabis produces a broad range of acute, dose-dependent psychotropic effects. Only a limited number of neuroimaging studies have mapped these effects by examining the impact of cannabis on resting state brain neurophysiology. Moreover, how genetic variation influences the acute effects of cannabis on resting state brain function is unknown. Here we investigated the acute effects of ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, on resting state brain neurophysiology, and their modulation by catechol-methyl-transferase (COMT) Val158Met genotype. Thirty-nine healthy volunteers participated in a pharmacological MRI study, where we applied Arterial Spin Labelling (ASL) to measure perfusion and functional MRI to assess resting state connectivity. THC increased perfusion in bilateral insula, medial superior frontal cortex, and left middle orbital frontal gyrus. This latter brain area showed significantly decreased connectivity with the precuneus after THC administration. THC effects on perfusion in the left insula were significantly related to subjective changes in perception and relaxation. These findings indicate that THC enhances metabolism and thus neural activity in the salience network. Furthermore, results suggest that recruitment of brain areas within this network is involved in the acute effects of THC. Resting state perfusion was modulated by COMT genotype, indicated by a significant interaction effect between drug and genotype on perfusion in the executive network, with increased perfusion after THC in Val/Met heterozygotes only. This finding suggests that prefrontal dopamine levels are involved in the susceptibility to acute effects of cannabis.  相似文献   

20.
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder that has poor long-term outcomes and remains a major public health concern. Recent theories have proposed that ADHD arises from alterations in multiple neural pathways. Alterations in reward circuits are hypothesized as one core dysfunction, leading to altered processing of anticipated rewards. The nucleus accumbens (NAcc) is particularly important for reward processes; task-based fMRI studies have found atypical activation of this region while the participants performed a reward task. Understanding how reward circuits are involved with ADHD may be further enhanced by considering how the NAcc interacts with other brain regions. Here we used the technique of resting-state functional connectivity MRI (rs-fcMRI) to examine the alterations in the NAcc interactions and how they relate to impulsive decision making in ADHD. Using rs-fcMRI, this study: examined differences in functional connectivity of the NAcc between children with ADHD and control children; correlated the functional connectivity of NAcc with impulsivity, as measured by a delay discounting task; and combined these two initial segments to identify the atypical NAcc connections that were associated with impulsive decision making in ADHD. We found that functional connectivity of NAcc was atypical in children with ADHD and the ADHD-related increased connectivity between NAcc and the prefrontal cortex was associated with greater impulsivity (steeper delayed-reward discounting). These findings are consistent with the hypothesis that atypical signaling of the NAcc to the prefrontal cortex in ADHD may lead to excessive approach and failure in estimating future consequences; thus, leading to impulsive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号