首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Neurodevelopmental disorders are a heterogeneous group of diseases. Clinical presentation often overlaps with neurodevelopmental disorders, and explaining the molecular origin often requires reverse phenotyping.Next-Generation Sequencing (NGS) allows fast and cost-effective high-throughput sequencing. Given this fact, NGS is a useful tool for reverse phenotyping, especially for rare diseases.We hereby present two similarly affected siblings with neurodevelopmental delay. Duo-whole exome sequencing was performed. The homozygous LSM1 variant was found as the most likely cause for the condition.Our report contributes to the literature on the phenotype the biallelic LSM1 mutations. Moreover, we highlight the importance of reverse phenotyping and reanalysis of the genetic data.  相似文献   

2.
    
Microcephaly is a frequent feature of neurodevelopmental disorders (NDDs). Our study presents the heterogeneous spectrum of genetic disorders in patients with microcephaly either in isolated form or in association with other neurological and extra-neural abnormalities. We present data of 91 patients from 87 unrelated families referred to our clinic during 2016–2020 and provide a comprehensive clinical and genetic landscape in the studied cohort. Molecular diagnosis using exome sequencing was made in 45 families giving a yield of 51.7%. In 9 additional families probable causative variants were detected. We identified disease causing variations in 49 genes that are involved in different functional pathways Among these, 36 had an autosomal recessive pattern, 8 had an autosomal dominant pattern (all inherited de novo), and 5 had an X-linked pattern. In 41 probands where sequence variations in autosomal recessive genes were identified 31 were homozygotes (including 16 from non-consanguineous families). The study added 28 novel pathogenic/likely pathogenic variations. The study also calls attention to phenotypic variability and expansion in spectrum as well as uncovers genes where microcephaly is not reported previously or is a rare finding. We here report phenotypes associated with the genes for ultra-rare NDDs with microcephaly namely ATRIP, MINPP1, PNPLA8, AIMP2, ANKLE2, NCAPD2 and TRIT1.  相似文献   

3.
    
Whole exome sequencing is recommended as the first tier test for neurodevelopmental disorders (NDDs) with trio being an ideal option for the detection of de novo variants. Cost constraints have led to adoption of sequential testing i.e. proband-only whole exome followed by targeted testing of parents. The reported diagnostic yield for proband exome approach ranges between 31 and 53%. Typically, these study designs have aptly incorporated targeted parental segregation before concluding a genetic diagnosis to be confirmed. The reported estimates however do not accurately reflect the yield of proband only standalone whole -exome, a question commonly posed to the referring clinician in self pay medical systems like India. To assess the utility of standalone proband exome (without follow up targeted parental testing), we retrospectively evaluated 403 cases of neurodevelopmental disorders referred for proband-only whole exome sequencing at Neuberg Centre for Genomic Medicine (NCGM), Ahmedabad during the period of January 2019 and December 2021. A diagnosis was considered confirmed only upon the detection of Pathogenic/Likely Pathogenic variants in concordance with patient's phenotype as well as established inheritance pattern. Targeted parental/familial segregation analysis was recommended as a follow up test where applicable. The diagnostic yield of the proband-only standalone whole exome was 31.5%. Only 20 families submitted samples for follow up targeted testing, and a genetic diagnosis was confirmed in twelve cases increasing the yield to 34.5%. To understand factors leading to poor uptake of sequential parental testing, we focused on cases where an ultra-rare variant was detected in hitherto described de novo dominant neurodevelopmental disorder. A total of 40 novel variants in genes associated with de novo autosomal dominant disorders could not be reclassified as parental segregation was denied. Semi-structured telephonic interviews were conducted upon informed consent to comprehend reasons for denial. Major factors influencing decision making included lack of definitive cure in the detected disorders; especially when couples not planning further conception and financial constraints to fund further targeted testing. Our study thus depicts the utility and challenges of proband-only exome approach and highlights the need for larger studies to understand factors influencing decision making in sequential testing.  相似文献   

4.
    
《Genetics in medicine》2022,24(9):1941-1951
PurposeWNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown.MethodWe ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID).ResultsWe identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition.ConclusionPathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.  相似文献   

5.
PurposeThis study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants.MethodsIndividuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope.ResultsWe reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies.ConclusionSOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.  相似文献   

6.
    
  相似文献   

7.
De novo monoallelic mutations in the GNB1 gene, encoding a β subunit of heterotrimeric G proteins, cause a newly recognized disorder with the typical clinical picture of severe developmental delay/intellectual disability, hypotonia and extrapyramidal symptoms. We describe another case of the condition with manifestations of cutaneous mastocytosis associated with a novel do novo mutation GNB1NM_001282539.1: c.230G > T; p.(Gly77Val). We also present the detailed clinical and etiopathogenetic discussion on previously diagnosed patients as well as suggestions for the link of the mutation with skin disease.  相似文献   

8.
    
Exome sequencing is becoming widely popular and affordable, making it one of the most desirable methods for the identification of rare genetic variants for clinical diagnosis. Here, we report the clinical application of whole exome sequencing for the ultimate diagnosis of a ciliary chondrodysplasia case presented with an initial clinical diagnosis of Asphyxiating Thoracic Dystrophy (ATD, Jeune Syndrome). We have identified a novel homozygous missense mutation in WDR35 (c.206G > A), a gene previously associated with Sensenbrenner Syndrome, Ellis-van Creveld syndrome and Short-rib polydactyly syndrome type V. The genetic findings in this family led to the re-evaluation of the initial diagnosis and a differential diagnosis of Sensenbrenner Syndrome was made after cautious re-examination of the patient. Cell culture studies revealed normal subcellular localization of the mutant WDR35 protein in comparison to wildtype protein, pointing towards impaired protein-protein interaction and/or altered cell signaling pathways as a consequence of the mutated allele. This research study highlights the importance of including pathogenic variant identification in the diagnosis pipeline of ciliary chondrodysplasias, especially for clinically not fully defined phenotypes.  相似文献   

9.
PurposePatients undergoing clinical exome sequencing (ES) are routinely offered the option to receive secondary findings (SF). However, little is known about the views of individuals from underrepresented minority pediatric or prenatal populations regarding SF.MethodsWe explored the preferences for receiving hypothetical categories of SF (H-SF) and reasons for accepting or declining actual SF through surveying (n = 149) and/or interviewing (n = 47) 190 families undergoing pediatric or prenatal ES.ResultsUnderrepresented minorities made up 75% of the probands. In total, 150 families (79%) accepted SF as part of their child/fetus’s ES. Most families (63%) wanted all categories of H-SF. Those who declined SF as part of ES were less likely to want H-SF across all categories. Interview findings indicate that some families did not recall their SF decision. Preparing for the future was a major motivator for accepting SF, and concerns about privacy, discrimination, and psychological effect drove decliners.ConclusionA notable subset of families (37%) did not want at least 1 category of H-SF, suggesting more hesitancy about receiving all available results than previously reported. The lack of recollection of SF decisions suggests a need for alternative communication approaches. Results highlight the importance of the inclusion of diverse populations in genomic research.  相似文献   

10.
PurposeThe study aimed to investigate the role of PABPC1 in developmental delay (DD).MethodsChildren were examined by geneticists and pediatricians. Variants were identified using exome sequencing and standard downstream bioinformatics pipelines. We performed in silico molecular modeling and coimmunoprecipitation to test if the variants affect the interaction between PABPC1 and PAIP2. We performed in utero electroporation of mouse embryo brains to enlighten the function of PABPC1.ResultsWe describe 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Further symptoms were seizures and behavioral disorders. Molecular modeling predicted that the variants are pathogenic and would lead to decreased binding affinity to messenger RNA metabolism-related proteins, such as PAIP2. Coimmunoprecipitation confirmed this because it showed a significant weakening of the interaction between mutant PABPC1 and PAIP2. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not.ConclusionPathogenic variants in the PABP domain lead to DD, possibly because of interference with the translation initiation and subsequently an impaired neurogenesis in cortical development.  相似文献   

11.
    
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are emerging as a cause of numerous rare inherited diseases. Recently, biallelic variants in tyrosyl-tRNA synthetase 1 (YARS1) have been described in ten patients of three families with multi-systemic disease (failure to thrive, developmental delay, liver dysfunction, and lung cysts). Here, we report an additional subject with overlapping clinical findings, heterozygous for two novel variants in tyrosyl-tRNA synthetase 1 (NM_003680.3(YARS1):c.176T>C; p.(Ile59Thr) and NM_003680.3(YARS1):c.237C>G; p.(Tyr79*) identified by whole exome sequencing. The p.Ile59Thr variant is located in the highly conserved aminoacylation domain of the protein. Compared to subjects previously described, this patient presents a much more severe condition.Our findings support implication of two novel YARS1 variants in these disorders. Furthermore, we provide evidence for a reduced protein abundance in cells of the patient, in favor of a partial loss-of-function mechanism.  相似文献   

12.
全基因组外显子测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集,然后进行高通量测序的基因组分析方法.与传统测序方式相比,该技术具有耗时短、成本低、通量大,对样品的要求量少等特点,已经成为人们研究某些疾病致病基因的重要方法.此文就全基因组外显子测序的优缺点及其在遗传病中的应用作简要综述.  相似文献   

13.
    
《Genetics in medicine》2023,25(8):100866
  相似文献   

14.
    
  相似文献   

15.
16.
17.
    
We set out to investigate whether a de-novo paradigm could explain genetic causes of chronic ultra-refractory epilepsy, with onset later than the typical age for the epileptic encephalopathies. We performed exome sequencing on nine adult patients with MRI-negative epilepsy and no preceding intellectual disability. All had an onset of seizures after five years old and had chronic ultra-refractory epilepsy defined here as having failed more than six anti-epileptic drugs and currently experiencing ≥4 disabling seizures per month. Parents were sequenced to identify de-novo mutations and these were assessed for likelihood of pathogenicity based on the American College of Medical Genetics and Genomics (ACMG) criteria. We confirmed the presence of functional and predicted-damaging de-novo mutations in 3/9 patients. One of these pathogenic de-novo mutations, in DNM1L, was previously reported in a patient with severe epilepsy and chronic pharmacoresistance adding to the evidence for DNM1L as an epilepsy gene. Exome sequencing is a successful strategy for identifying de-novo mutations in paediatric epileptic encephalopathies and rare neurological disorders. Our study demonstrates the potential benefit of considering ultra-refractory epilepsy patients with later onset for genetic testing. Identifying genetic mutations underpinning severe epilepsy of unknown aetiology may provide new insight into the underlying biology and offers the potential for therapeutic intervention in the form of precision medicine in older patients.  相似文献   

18.
PurposeGenetic disorders often present in the neonatal intensive care unit (NICU), and detecting or confirming these diagnoses has been shown to impact care. However, the availability and use of genetic testing, particularly exome or genome sequencing, among NICUs varies widely. We therefore sought to investigate practice patterns related to genetic testing in NICUs around the country to identify and quantify potential discrepancies.MethodsWe designed a survey that was distributed to neonatologists via email. The survey contained questions related to test availability and desirability, the process of test ordering in NICU, and general comfort with ordering and interpreting genetic testing. Demographic data related to the survey participants and characteristics of their NICU were also obtained.ResultsIn total, 162 neonatologists completed the survey, representing 40 states and 112 distinct NICUs. Although nearly all (93.2%) neonatologists attributed a high level of importance to identifying a genetic diagnosis for their patients, genetic consultations were only available at 78% of NICUs and exome or genome sequencing was not available on a regular basis (69% of NICUs).ConclusionAlthough, among US neonatologists surveyed, most feel that genetic tests are indicated for their patients, these are not always clinically available. Further research into implementation barriers is warranted.  相似文献   

19.
PurposeFew studies have systematically analyzed the structure and content of laboratory exome sequencing reports from the same patient.MethodsWe merged 8 variants from patients into “normal” exomes to create virtual patient–parent trios. We provided laboratories worldwide with the data and patient phenotype information (developmental delay, dysmorphic features, and cardiac hypertrophy). Laboratories analyzed the data and issued a diagnostic exome report. Reports were scored using a coding matrix developed from existing guidelines.ResultsIn total, 41 laboratories representing 17 countries issued reports. Reporting of quality control statistics and technical information was poor (46.3%). Although 75.6% of the reports clearly stated the classification of all reported variants, few reports listed extensive evidence supporting variant classification. Only 53.1% of laboratories that reported unsolicited or secondary findings gave advice regarding health-related follow-up and 20.5% gave advice regarding cascade testing for relatives. Of the 147 variants reported, 105 (71.4%) were classified in agreement with classifications based on American College of Medical Genetics and Genomics/Association for Molecular Pathology and Association for Clinical Genomic Science guidelines. Concordance was higher for known pathogenic variants (86.3%) than for novel unpublished variants (56.8%).ConclusionThe considerable variability identified in the components that laboratories included in their reports and their classification of variants suggests that existing guidelines are not being used consistently with significant implications for patient care.  相似文献   

20.
    
RBL2/p130 is one of three highly conserved members of the retinoblastoma (RB) protein family. It is strongly upregulated during neuronal differentiation and brain development, and is critical for survival of post-mitotic neurons. Similar to RB1, it has been implicated as a tumor suppressor gene and has been shown to be dysregulated in various types of cancer. Recent publications describe biallelic, germline loss of function variants in RBL2 in individuals with profound developmental delay. We report a child with profound developmental delay, microcephaly, and hypotonia, who developed fulminant exophthalmos at age 6 years. Brain MRI followed by a biopsy of an intra-orbital mass revealed a mesenchymal tumor. Post-surgical histopathologic examination of the resected tumor was compatible with diagnosis of nodular fasciitis. Exome sequencing from peripheral blood identified a biallelic frameshift variant (c.901dupT) in RBL2. Notably, no malignancies were reported in previous cases with RBL2 variants. This case provides a possible association between RBL2 and orbital tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号