首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affecting about 1 in 12 Americans annually, depression is a leading cause of the global disease burden. While a range of effective antidepressants are now available, failure and relapse rates remain substantial, with intolerable side effect burden the most commonly cited reason for discontinuation. Thus, understanding individual differences in susceptibility to antidepressant therapy side effects will be essential to optimize depression treatment. Here we perform genome-wide association studies (GWAS) to identify genetic variation influencing susceptibility to citalopram-induced side effects. The analysis sample consisted of 1762 depression patients, successfully genotyped for 421K single-nucleotide polymorphisms (SNPs), from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Outcomes included five indicators of citalopram side effects: general side effect burden, overall tolerability, sexual side effects, dizziness and vision/hearing side effects. Two SNPs met our genome-wide significance criterion (q<0.1), ensuring that, on average, only 10% of significant findings are false discoveries. In total, 12 additional SNPs demonstrated suggestive associations (q<0.5). The top finding was rs17135437, an intronic SNP within EMID2, mediating the effects of citalopram on vision/hearing side effects (P=3.27 × 10−8, q=0.026). The second genome-wide significant finding, representing a haplotype spanning ∼30 kb and eight genotyped SNPs in a gene desert on chromosome 13, was associated with general side effect burden (P=3.22 × 10−7, q=0.096). Suggestive findings were also found for SNPs at LAMA1, AOX2P, EGFLAM, FHIT and RTP2. Although our findings require replication and functional validation, this study demonstrates the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antidepressant medications.  相似文献   

2.
The superior frontal gyrus (SFG), an area of the brain frequently found to have reduced gray matter in patients with schizophrenia, is involved in self-awareness and emotion, which are impaired in schizophrenia. However, no genome-wide association studies of SFG volume have investigated in patients with schizophrenia. To identify single-nucleotide polymorphisms (SNPs) associated with SFG volumes, we demonstrated a genome-wide association study (GWAS) of gray matter volumes in the right or left SFG of 158 patients with schizophrenia and 378 healthy subjects. We attempted to bioinformatically ascertain the potential effects of the top hit polymorphism on the expression levels of genes at the genome-wide region. We found associations between five variants on 1p36.12 and the right SFG volume at a widely used benchmark for genome-wide significance (P<5.0 × 108). The strongest association was observed at rs4654899, an intronic SNP in the eukaryotic translation initiation factor 4 gamma, 3 (EIF4G3) gene on 1p36.12 (P=7.5 × 10−9). No SNP with genome-wide significance was found in the volume of the left SFG (P>5.0 × 10−8); however, the rs4654899 polymorphism was identified as the locus with the second strongest association with the volume of the left SFG (P=1.5 × 10−6). In silico analyses revealed a proxy SNP of rs4654899 had effect on gene expression of two genes, HP1BP3 lying 3′ to EIF4G3 (P=7.8 × 10−6) and CAPN14 at 2p (P=6.3 × 10−6), which are expressed in moderate-to-high levels throughout the adult human SFG. These results contribute to understand genetic architecture of a brain structure possibly linked to the pathophysiology of schizophrenia.  相似文献   

3.
Schizophrenia is a highly heritable, severe psychiatric disorder affecting approximately 1% of the world population. A substantial portion of heritability is still unexplained and the pathophysiology of schizophrenia remains to be elucidated. To identify more schizophrenia susceptibility loci, we performed a genome-wide association study (GWAS) on 498 patients with schizophrenia and 2025 controls from the Han Chinese population, and a follow-up study on 1027 cases and 1005 controls. In the follow-up study, we included 384 single nucleotide polymorphisms (SNPs) which were selected from the top hits in our GWAS (130 SNPs) and from previously implicated loci for schizophrenia based on the SZGene database, NHGRI GWAS Catalog, copy number variation studies, GWAS meta-analysis results from the international Psychiatric Genomics Consortium (PGC) and candidate genes from plausible biological pathways (254 SNPs).Within the chromosomal region Xq28, SNP rs2269372 in RENBP achieved genome-wide significance with a combined P value of 3.98×10−8 (OR of allele A = 1.31). SNPs with suggestive P values were identified within 2 genes that have been previously implicated in schizophrenia, MECP2 (rs2734647, P combined = 8.78×10−7, OR = 1.28; rs2239464, P combined = 6.71×10−6, OR = 1.26) and ARHGAP4 (rs2269368, P combined = 4.74×10−7, OR = 1.25). In addition, the patient sample in our follow-up study showed a significantly greater burden for pre-defined risk alleles based on the SNPs selected than the controls. This indicates the existence of schizophrenia susceptibility loci among the SNPs we selected. This also further supports multigenic inheritance in schizophrenia. Our findings identified a new schizophrenia susceptibility locus on Xq28, which harbor the genes RENBP, MECP2, and ARHGAP4.Key words: schizophrenia, genome-wide association study, Han Chinese, MECP2, ARHGAP4, RENBP  相似文献   

4.
Panic disorder (PD) is a moderately heritable anxiety disorder whose pathogenesis is not well understood. Due to the lack of power in previous association studies, genes that are truly associated with PD might not be detected. In this study, we conducted a genome-wide association study (GWAS) in two independent data sets using the Affymetrix Mapping 500K Array or Genome-Wide Human SNP Array 6.0. We obtained imputed genotypes for each GWAS and performed a meta-analysis of two GWAS data sets (718 cases and 1717 controls). For follow-up, 12 single-nucleotide polymorphisms (SNPs) were tested in 329 cases and 861 controls. Gene ontology enrichment and candidate gene analyses were conducted using the GWAS or meta-analysis results. We also applied the polygenic score analysis to our two GWAS samples to test the hypothesis of polygenic components contributing to PD. Although genome-wide significant SNPs were not detected in either of the GWAS nor the meta-analysis, suggestive associations were observed in several loci such as BDKRB2 (P=1.3 × 10−5, odds ratio=1.31). Among previous candidate genes, supportive evidence for association of NPY5R with PD was obtained (gene-wise corrected P=6.4 × 10−4). Polygenic scores calculated from weakly associated SNPs (P<0.3 and 0.4) in the discovery sample were significantly associated with PD status in the target sample in both directions (sample I to sample II and vice versa) (P<0.05). Our findings suggest that large sets of common variants of small effects collectively account for risk of PD.  相似文献   

5.
To follow-up loci discovered by the International Genomics of Alzheimer''s Disease Project, we attempted independent replication of 19 single nucleotide polymorphisms (SNPs) in a large Spanish sample (Fundació ACE data set; 1808 patients and 2564 controls). Our results corroborate association with four SNPs located in the genes INPP5D, MEF2C, ZCWPW1 and FERMT2, respectively. Of these, ZCWPW1 was the only SNP to withstand correction for multiple testing (P=0.000655). Furthermore, we identify TRIP4 (rs74615166) as a novel genome-wide significant locus for Alzheimer''s disease risk (odds ratio=1.31; confidence interval 95% (1.19–1.44); P=9.74 × 109).  相似文献   

6.
In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer''s disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer''s disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ∼2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69–180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P=3.05E–07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples.  相似文献   

7.
Background and PurposeMatrix metalloproteinases (MMPs) are expected to play an important role in extracellular matrix (ECM) remodeling in response to hemodynamic stress. We investigated the association between MMPs and intracranial aneurysms (IAs) via a genome-wide association study (GWAS) of IAs.MethodsA GWAS data set of 250 IAs and 294 controls was used to analyze the genetic link between MMPs and IAs via single-nucleotide polymorphisms (SNPs), MMP gene families, and in silico functional analyses of gene ontology (GO) enrichment and protein–protein interaction (PPI).ResultsForty-eight SNPs and 1 indel out of 342 markers of MMP genes were related to IAs. The rs2425024 SNP located on MMP24 was the most strongly associated with IAs (OR=0.43, CI=0.30–0.61, p=2.4×10-6), suggesting a protective effect. The 16938619 SNP of MMP26 significantly increased the risk of an IA (OR=3.12, 95% CI=1.76–5.50, p=8.85×10-5). Five MMP genes (MMP24, MMP13, MMP2, MMP17, and MMP1) increased the susceptibility to an IA. MMP24 was the gene most closely related to IAs (p=7.96×10-7). GO analysis showed that collagen catabolism was the most-enhanced biological process. Further, metalloendopeptidase activity and ECM were predominantly detected in the cellular component and molecular function, respectively. PPI provided evidence that MMP2, TIMP2 (tissue inhibitor of metalloproteinase 2), and TIMP3 genes constitute a network for predicting IA formation.ConclusionsThe present results provide comprehensive insight into the occurrence of IAs associated with MMPs.  相似文献   

8.
BackgroundDepression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).MethodsThe GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.ResultsTwo genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).ConclusionsOur findings provide novel clues for understanding of the complex genetic architecture of depression.  相似文献   

9.
Alzheimer''s disease (AD) is the leading cause of dementia among the elderly population; however, knowledge about genetic risk factors involved in disease progression is limited. We conducted a genome-wide association study (GWAS) using clinical decline as measured by changes in the Clinical Dementia Rating-sum of boxes as a quantitative trait to test for single-nucleotide polymorphisms (SNPs) that were associated with the rate of progression in 822 Caucasian subjects of amnestic mild cognitive impairment (MCI). There was no significant association with disease progress for any of the recently identified disease susceptibility variants in CLU, CR1, PICALM, BIN1, EPHA1, MS4A6A, MS4A4E or CD33 following multiple testing correction. We did, however, identify multiple novel loci that reached genome-wide significance at the 0.01 level. These top variants (rs7840202 at chr8 in UBR5: P=4.27 × 10−14; rs11637611 with a cluster of SNPs at chr15q23 close to the Tay–Sachs disease locus: P=1.07 × 10−15; and rs12752888 at chr1: P=3.08 × 10−11) were also associated with a significant decline in cognition as well as the conversion of subjects with MCI to a diagnosis of AD. Taken together, these variants define approximately 16.6% of the MCI sub-population with a faster rate of decline independent of the other known disease risk factors. In addition to providing new insights into protein pathways that may be involved with the progress to AD in MCI subjects, these variants if further validated may enable the identification of a more homogeneous population of subjects at an earlier stage of disease for testing novel hypotheses and/or therapies in the clinical setting.  相似文献   

10.
11.
Hostility is a multidimensional personality trait with changing expression over the life course. We performed a genome-wide association study (GWAS) of the components of hostility in a population-based sample of Finnish men and women for whom a total of 2.5 million single-nucleotide polymorphisms (SNPs) were available through direct or in silico genotyping. Hostility dimensions (anger, cynicism and paranoia) were assessed at four time points over a 15-year interval (age range 15–30 years at phase 1 and 30–45 years at phase 4) in 982–1780 participants depending on the hostility measure. Few promising areas from chromosome 14 at 99 cM (top SNPs rs3783337, rs7158754, rs3783332, rs2181102, rs7159195, rs11160570, rs941898, P values <3.9 × 10−8 with nearest gene Enah/Vasp-like (EVL)) were found suggestively to be related to paranoia and from chromosome 7 at 86 cM (top SNPs rs802047, rs802028, rs802030, rs802026, rs802036, rs802025, rs802024, rs802032, rs802049, rs802051, P values <6.9 × 10−7 with nearest gene CROT (carnitine O-octanoyltransferase)) to cynicism, respectively. Some shared suggestive genetic influence for both paranoia and cynicism was also found from chromosome 17 at 2.8 cM (SNPs rs12936442, rs894664, rs6502671, rs7216028) and chromosome 22 at 43 cM (SNPs rs7510759, rs7510924, rs7290560), with nearest genes RAP1 GTPase activating protein 2 (RAP1GAP2) and KIAA1644, respectively. These suggestive associations did not replicate across all measurement times, which warrants further study on these SNPs in other populations.  相似文献   

12.
13.

Introduction

African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power.

Methods

We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs.

Results

Two SNPs at novel loci, rs112404845 (P = 3.8 × 10?8), upstream of COBL, and rs16961023 (P = 4.6 × 10?8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability.

Discussion

An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS.  相似文献   

14.
Research suggests that clinical symptom dimensions may be more useful in delineating the genetics of bipolar disorder (BD) than standard diagnostic models. To date, no study has applied this concept to data from genome-wide association studies (GWAS). We performed a GWAS of factor dimensions in 927 clinically well-characterized BD patients of German ancestry. Rs9875793, which is located in an intergenic region of 3q26.1 and in the vicinity of the solute carrier family 2 (facilitated glucose transporter), member 2 gene (SLC2A2), was significantly associated with the factor analysis-derived dimension ‘negative mood delusions'' (n=927; P=4.65 × 10−8, odds ratio (OR)=2.66). This dimension was comprised of the symptoms delusions of poverty, delusions of guilt and nihilistic delusions. In case–control analyses, significant association with the G allele of rs9875793 was only observed in the subgroup of BD patients who displayed symptoms of ‘negative mood delusions'' (allelic χ2 model: PG=0.0001, OR=1.92; item present, n=89). Further support for the hypothesis that rs9875793 is associated with BD in patients displaying ‘negative mood delusions'' symptom, such as delusions of guilt, was obtained from an European American sample (GAIN/TGEN), which included 1247 BD patients and 1434 controls (PEA=0.028, OR=1.27).  相似文献   

15.
Emotion dysregulation has been implicated as a risk factor for many psychiatric conditions. Therefore, examining genetic risk associated with emotion dysregulation could help inform cross-disorder risk more generally. A genome-wide association study (GWAS) of emotion dysregulation using single nucleotide polymorphism (SNP) array technology was conducted in a highly traumatized, minority, urban sample (N = 2600, males = 774). Post-hoc analyses examined associations between SNPs identified in the GWAS and current depression, posttraumatic stress disorder (PTSD), and history of suicide attempt. Methylation quantitative trait loci were identified and gene set enrichment analyses were used to broadly determine biological processes involved with these SNPs. Among males, SNP rs6602398, located within the interleukin receptor 2A gene, IL2RA, was significantly associated with emotion dysregulation (p = 1.1 × 10−8). Logistic regression analyses revealed this SNP was significantly associated with depression (Exp(B) = 2.67, p < 0.001) and PTSD (Exp(B) = 2.07, p < 0.01). This SNP was associated with differential DNA methylation (p < 0.05) suggesting it may be functionally active. Finally, through gene set enrichment analyses, ten psychiatric disease pathways (adjusted p < 0.01) and the calcium signaling pathway (adjusted p = 0.008) were significantly associated with emotion dysregulation. We found initial evidence for an association between emotion dysregulation and genetic risk loci that have already been implicated in medical disorders that have high comorbidity with psychiatric disorders. Our results provide further evidence that emotion dysregulation can be understood as a potential psychiatric cross-disorder risk factor, and that sex differences across these phenotypes may be critical. Continued research into genetic and biological risk associated with emotion dysregulation is needed.  相似文献   

16.
A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood. Rs3783332 genotype was significantly associated with the expression across all subjects (F3,348=10.79, P=1.12 × 103), particularly in control subjects (F1,87=13.14, P=4.86 × 10−4). Similar results were found with rs715799 genotype. The carriers of the risk-associated minor allele at both loci showed significantly lower expression compared with subjects homozygous for the non-risk major allele and this was a consistent finding across all diagnostic groups. DEGS2 expression showed no association with diagnostic status after correcting for multiple testing (P>0.05). Our findings demonstrate that a SNP showing genome-wide association study significant association with cognition in schizophrenia is also associated with regulation of DEGS2 expression, implicating a molecular mechanism for the clinical association.  相似文献   

17.

Introduction

Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood.

Methods

We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset.

Results

Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)–based tests (P < 5 × 10?8) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10?6) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10?6).

Discussion

Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.  相似文献   

18.
Cognitive impairments are a core feature in patients with schizophrenia. These deficits could serve as effective tools for understanding the genetic architecture of schizophrenia. This study investigated whether genetic variants associated with cognitive impairments aggregate in functional gene networks related to the pathogenesis of schizophrenia. Here, genome-wide association studies (GWAS) of a range of cognitive phenotypes relevant to schizophrenia were performed in 411 healthy subjects. We attempted to replicate the GWAS data using 257 patients with schizophrenia and performed a meta-analysis of the GWAS findings and the replicated results. Because gene networks, rather than a single gene or genetic variant, may be strongly associated with the susceptibility to schizophrenia and cognitive impairments, gene-network analysis for genes in close proximity to the replicated variants was performed. We observed nominal associations between 3054 variants and cognitive phenotypes at a threshold of P < 1.0 × 10 4. Of the 3054 variants, the associations of 191 variants were replicated in the replication samples (P < .05). However, no variants achieved genome-wide significance in a meta-analysis (P > 5.0 × 10 8). Additionally, 115 of 191 replicated single nucleotide polymorphisms (SNPs) have genes located within 10 kb of the SNPs (60.2%). These variants were moderately associated with cognitive phenotypes that ranged from P = 2.50 × 10 5 to P = 9.40 × 10 8. The genes located within 10 kb from the replicated SNPs were significantly grouped in terms of glutamate receptor activity (false discovery rate (FDR) q = 4.49 × 10 17) and the immune system related to major histocompatibility complex class I (FDR q = 8.76 × 10 11) networks. Our findings demonstrate that genetic variants related to cognitive trait impairment in schizophrenia are involved in the N-methyl-d-aspartate glutamate network.Key words: schizophrenia, genome-wide association study, cognitive phenotypes, glutamate receptor activity, immune function, functional gene network  相似文献   

19.
The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n=32 389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β=0.040, s.e.=0.007, P=1.84 × 10−8). This variant is present in the 5′-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.  相似文献   

20.
This study aimed to (1) to identify candidate single-nucleotide polymorphisms (SNPs) and mechanisms of attention-deficit/hyperactivity disorder (ADHD) and (2) to generate SNP-to-gene-to-pathway hypotheses. An ADHD genome-wide association study (GWAS) dataset that included 428,074 SNPs in 924 trios (2,758 individuals) of European descent was used in this study. The Identify candidate Causal SNPs and Pathways (ICSNPathway) analysis was applied to the GWAS dataset. ICSNPathway analysis identified 11 candidate SNPs, 6 genes, and 6 pathways, which provided 6 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was that rs2532502 alters the role of CD27 in the context of the pathways of positive regulation of nucleocytoplasmic transport [nominal p < 0.001; false discovery rate (FDR) = 0.028]. The second strongest mechanism was the rs1820204, rs1052571, rs1052576 → CASP9 → mitochondrial pathway (nominal p < 0.001; FDR = 0.032). The third mechanism was the rs1801516 → ATM → CD25 pathway (nominal p < 0.001; FDR = 0.034). By applying the ICSNPathway analysis to the ADHD GWAS data, 11 candidate SNPs, 6 genes that included CD27, CASP9, ATM, CD12orf65, OXER1, and ACRY, and 6 pathways were identified that may contribute to ADHD susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号