共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paaladinesh Thavendiranathan Lili Zhang Amna Zafar Zsofia D. Drobni Syed S. Mahmood Marcella Cabral Magid Awadalla Anju Nohria Daniel A. Zlotoff Franck Thuny Lucie M. Heinzerling Ana Barac Ryan J. Sullivan Carol L. Chen Dipti Gupta Michael C. Kirchberger Sarah E. Hartmann Jonathan W. Weinsaft Tomas G. Neilan 《Journal of the American College of Cardiology》2021,77(12):1503-1516
BackgroundMyocarditis is a potentially fatal complication of immune checkpoint inhibitor (ICI) therapy. Data on the utility of cardiovascular magnetic resonance (CMR) T1 and T2 mapping in ICI myocarditis are limited.ObjectivesThis study sought to assess the value of CMR T1 and T2 mapping in patients with ICI myocarditis.MethodsIn this retrospective study from an international registry of patients with ICI myocarditis, clinical and CMR findings (including T1 and T2 maps) were collected. Abnormal T1 and T2 were defined as 2 SD above site (vendor/field strength specific) reference values and a z-score was calculated for each patient. Major adverse cardiovascular events (MACE) were a composite of cardiovascular death, cardiogenic shock, cardiac arrest, and complete heart block.ResultsOf 136 patients with ICI myocarditis with a CMR, 86 (63%) had T1 maps and 79 (58%) also had T2 maps. Among the 86 patients (66.3 ± 13.1 years of age), 36 (41.9%) had a left ventricular ejection fraction <55%. Across all patients, mean z-scores for T1 and T2 values were 2.9 ± 1.9 (p < 0.001) and 2.2 ± 2.1 (p < 0.001), respectively. On Siemens 1.5-T scanner (n = 67), native T1 (1,079.0 ± 55.5 ms vs. 1,000.3 ± 22.1 ms; p < 0.001) and T2 (56.2 ± 4.9 ms vs. 49.8 ± 2.2 ms; p < 0.001) values were elevated compared with reference values. Abnormal T1 and T2 values were seen in 78% and 43% of the patients, respectively. Applying the modified Lake Louise Criteria, 95% met the nonischemic myocardial injury criteria and 53% met the myocardial edema criteria. Native T1 values had excellent discriminatory value for subsequent MACE, with an area under the curve of 0.91 (95% confidence interval: 0.84 to 0.98). Native T1 values (for every 1-unit increase in z-score, hazard ratio: 1.44; 95% confidence interval: 1.12 to 1.84; p = 0.004) but not T2 values were independently associated with subsequent MACE.ConclusionsThe use of T1 mapping and application of the modified Lake Louise Criteria provides important diagnostic value, and T1 mapping provides prognostic value in patients with ICI myocarditis. 相似文献
3.
4.
5.
《JACC: Cardiovascular Imaging》2014,7(7):667-675
ObjectivesThis study evaluated the accuracy of T2, T1, and extracellular volume (ECV) quantification as novel quantitative tissue markers in comparison with standard “Lake-Louise” cardiac magnetic resonance (CMR) criteria to diagnose myocarditis.BackgroundNovel approaches using T2 and T1 mapping may overcome the limitations of signal intensity-based parameters, which would potentially result in a better diagnostic accuracy compared with standard CMR techniques in suspected myocarditis.MethodsCMR was performed in 104 patients with myocarditis and 21 control subjects at 1.5-T. Patients with myocarditis underwent CMR 2 weeks (interquartile range: 1 to 7 weeks) after presentation with new-onset heart failure (n = 66) or acute chest pain (n = 38). T2 and T1 mapping were implemented into a standard protocol including T2-weighted (T2w), early gadolinium enhancement (EGE) CMR, and late gadolinium enhancement (LGE) CMR. T2 quantification was performed using a free-breathing, navigator-gated multiecho sequence. T1 quantification was performed using the modified Look-Locker inversion recovery sequence before and after administration of 0.075 mmol/kg gadobenate dimeglumine. T2, T1, and ECV maps were generated using a plug-in for the OsiriX software (Pixmeo, Bernex, Switzerland) to calculate mean global myocardial T2, T1, and ECV values.ResultsThe diagnostic accuracies of conventional CMR were 70% (95% confidence interval [CI]: 61% to 77%) for T2w CMR, 59% (95% CI: 56% to 73%) for EGE, and 67% (95% CI: 59% to 75%) for LGE. The diagnostic accuracies of mapping techniques were 63% (95% CI: 53% to 73%) for myocardial T2, 69% (95% CI: 60% to 76%) for native myocardial T1, and 76% (95% CI: 68% to 82%) for global myocardial ECV. The diagnostic accuracy of CMR was significantly improved to 90% (95% CI: 84% to 95%) by a stepwise approach, using the presence of LGE and myocardial ECV ≥27% as diagnostic criteria, compared with 79% (95% CI: 71% to 85%; p = 0.0043) for the Lake-Louise criteria.ConclusionsIn patients with clinical evidence for subacute, severe myocarditis, ECV quantification with LGE imaging significantly improved the diagnostic accuracy of CMR compared with standard Lake-Louise criteria. 相似文献
6.
《JACC: Cardiovascular Imaging》2020,13(9):1902-1905
7.
8.
9.
10.
Sebastian J. Reinstadler Thomas Stiermaier Johanna Liebetrau Georg Fuernau Charlotte Eitel Suzanne de Waha Steffen Desch Jan-Christian Reil Janine Pöss Bernhard Metzler Christian Lücke Matthias Gutberlet Gerhard Schuler Holger Thiele Ingo Eitel 《JACC: Cardiovascular Imaging》2018,11(3):411-419
Objectives
This study assessed the prognostic significance of remote zone native T1 alterations for the prediction of clinical events in a population with ST-segment elevation myocardial infarction (STEMI) who were treated by primary percutaneous coronary intervention (PPCI) and compared it with conventional markers of infarct severity.Background
The exact role and incremental prognostic relevance of remote myocardium native T1 mapping alterations assessed by cardiac magnetic resonance (CMR) after STEMI remains unclear.Methods
We included 255 consecutive patients with STEMI who were reperfused within 12 h after symptom onset. CMR core laboratory analysis was performed to assess left ventricular (LV) function, standard infarct characteristics, and native T1 values of the remote, noninfarcted myocardium. The primary endpoint was a composite of death, reinfarction, and new congestive heart failure within 6 months (major adverse cardiac events [MACE]).Results
Patients with increased remote zone native T1 values (>1,129 ms) had significantly larger infarcts (p = 0.012), less myocardial salvage (p = 0.002), and more pronounced LV dysfunction (p = 0.011). In multivariable analysis, remote zone native T1 was independently associated with MACE after adjusting for clinical risk factors (p = 0.001) or other CMR variables (p = 0.007). In C-statistics, native T1 of remote myocardium provided incremental prognostic information beyond clinical risk factors, LV ejection fraction, and other markers of infarct severity (all p < 0.05). The addition of remote zone native T1 to a model of prognostic CMR parameters (ejection fraction, infarct size, and myocardial salvage index) led to net reclassification improvement of 0.82 (95% confidence interval: 0.46 to 1.17; p < 0.001) and to an integrated discrimination improvement of 0.07 (95% confidence interval: 0.02 to 0.13; p = 0.01).Conclusions
In STEMI patients treated by PPCI, evaluation of remote zone alterations by quantitative noncontrast T1 mapping provided independent and incremental prognostic information in addition to clinical risk factors and traditional CMR outcome markers. Remote zone alterations may thus represent a novel therapeutic target and a useful parameter for optimized risk stratification. (Effect of Conditioning on Myocardial Damage in STEMI [LIPSIA-COND]; NCT02158468) 相似文献11.
12.
13.
14.
15.
《JACC: Cardiovascular Imaging》2020,13(12):2546-2557
ObjectivesThe authors sought to compare the diagnostic accuracy of quantitative perfusion maps to visual assessment (VA) of first-pass perfusion images for the detection of multivessel coronary artery disease (MVCAD).BackgroundVA of first-pass stress perfusion cardiac magnetic resonance (CMR) may underestimate ischemia in MVCAD. Pixelwise perfusion mapping allows quantitative measurement of regional myocardial blood flow, which may improve ischemia detection in MVCAD.MethodsOne hundred fifty-one subjects recruited at 2 centers underwent stress perfusion CMR with myocardial perfusion mapping, and invasive coronary angiography with coronary physiology assessment. Ischemic burden was assessed by VA of first-pass images and by quantitative measurement of stress myocardial blood flow using perfusion maps.ResultsIn patients with MVCAD (2-vessel [2VD] or 3-vessel disease [3VD]; n = 95), perfusion mapping identified significantly more segments with perfusion defects (median segments per patient 12 [interquartile range (IQR): 9 to 16] by mapping vs. 8 [IQR: 5 to 9.5] by VA; p < 0.001). Ischemic burden (IB) measured using mapping was higher in MVCAD compared with IB measured using VA (3VD mapping 100 % (75% to 100%) vs. first-pass 56% (38% to 81%) ; 2VD mapping 63% (50% to 75%) vs. first-pass 41% (31% to 50%); both p < 0.001), but there was no difference in single-vessel disease (mapping 25% (13% to 44%) vs. 25% (13% to 31%). Perfusion mapping was superior to VA for the correct identification of extent of coronary disease (78% vs. 58%; p < 0.001) due to better identification of 3VD (87% vs. 40%) and 2VD (71% vs. 48%).ConclusionsVA of first-pass stress perfusion underestimates ischemic burden in MVCAD. Pixelwise quantitative perfusion mapping increases the accuracy of CMR in correctly identifying extent of coronary disease. This has important implications for assessment of ischemia and therapeutic decision-making. 相似文献
16.
17.
Canhong Xiang Yingmao Chen Mingzhe Shao Can Li Xin Huang Lei Gong Ang Li Weidong Duan Aiqun Zhang Jiahong Dong 《Medicine》2016,95(9)
To quantitatively evaluate the regional functional reserve in the cirrhotic liver and to seek related index that reflects diminished segmental liver function.A 3D system for quantitative evaluation of the liver was used to fuse technetium-99m galactosyl human serum albumin single-photon emission computed tomography and computed tomography images from 20 patients with cirrhotic liver and hepatocellular carcinoma. A set of parameters reflecting liver function including morphological liver volume, functional liver volume, functional liver density (FLD), and the drug absorption rate constant for hepatic cells (GSA-K) was calculated. Differences in FLD and GSA-K in intrahepatic segments were compared in patients with a tumor embolus (Group Y) and those without such an embolus (Group N) in the right portal vein. Differences in FLD and GSA-K in tumor-bearing (T+ group) and tumor-free (T− group) segments in patients with no tumor embolus (Group N) were also compared. Eleven living donor liver transplantation donor served as the control group.The FLD of the liver as a whole was significantly lower in patients with cirrhosis than in the control group (0.53 ± 0.13 vs 0.68 ± 0.10, P = 0.010). The FLD in segments of the right hemiliver was significantly lower than that in segments of the left hemiliver in Group Y (0.31 ± 0.21 vs 0.58 ± 0.12, P = 0.002) but not in Group N (0.60 ± 0.19 vs 0.55 ± 0.13, P = 0.294). FLD was 0.45 ± 0.17 in the T+ group and 0.60 ± 0.08 in the T− group (P = 0.008). Differences in GSA-K in intrahepatic segments were not significant. In the control group, differences in FLD and GSA-K in intrahepatic segments were not significant.The segmental liver functional reserve can be quantitatively calculated. FLD, but not GSA-K, is an index that reflects diminished regional liver function caused by portal flow obstruction or tumor compression. 相似文献
18.
Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging 总被引:11,自引:0,他引:11
Shah NJ Neeb H Zaitsev M Steinhoff S Kircheis G Amunts K Häussinger D Zilles K 《Hepatology (Baltimore, Md.)》2003,38(5):1219-1226
Changes are shown in the spin-lattice (T1) relaxation time caused by the putative deposition of manganese in various brain regions of hepatic encephalopathy (HE) patients using a novel and fast magnetic resonance imaging (MRI) method for quantitative relaxation time mapping. A new method, T1 mapping with partial inversion recovery (TAPIR), was used to obtain a series of T1-weighted images to produce T1 maps. Imaging of 15 control subjects and 11 patients was performed on a 1.5T MRI scanner. The measurement time per patient with this technique, including adjustments, was approximately 5 minutes. Regions of interest in the globus pallidus, the caudate nucleus, the posterior and anterior limbs of the internal capsule, the putamen, the frontal and occipital white matter, the white matter of the corona radiata, the occipital visual and frontal cortices, and the thalamus were interactively defined in the left hemisphere and analyzed with respect to their T1 values. T1 changes in the brains of HE patients can be determined quantitatively with TAPIR in short, clinically relevant measurement times. Significant correlations between the change in T1 and HE severity have been shown in the globus pallidus, the caudate nucleus, and the posterior limb of the internal capsule. No significant correlation of T1 with grade of HE was found in the putamen, frontal white matter, white matter of the corona radiata, white matter in the occipital lobe, the anterior limb of the internal capsule, visual cortex, thalamus, or frontal cortex. In conclusion, these measurements show that T1 mapping is feasible in short, clinically relevant acquisition times. 相似文献
19.
The surface roughness (Ra) and composite interfacial property of carbon fiber (CF) are considered to be mainly affected by the microstructure of the CF surface. However, quantitative characterization of the CF surface microstructure is always a difficulty. How the CF surface microstructure affects the interfacial property of CF composites is not entirely clear. A quantitative characterization technique based on images was established to calculate the cross-section perimeter and area of five types of CFs, as well as the number (N), width (W) and depth (D) of grooves on these CF surfaces. The CF composite interfacial shear strength (IFSS) was tested by the micro-droplet debonding test and modified by the realistic perimeter. The relationship between the groove structure parameter and the Ra, specific surface area and composite interfacial property was discussed in this article. The results indicated that the CF cross-section perimeter calculated by this technique showed strong consistency with the CF specific surface area and composite interfacial property. At last, the composite interface bonding mechanism based on defect capture was put forward. This mechanism can be a guiding principle for CF surface modification and help researchers better understand and establish interface bonding theories. 相似文献