首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder caused by deletions 22q13.3 or pathogenic variants in the SHANK3 gene. Lymphedema can be a clinical feature in 10–25% of individuals with PMS due to a deletion 22q13.3, but is not observed in those with a SHANK3 variant. This paper forms a part of the European consensus guideline for PMS and focuses on what is known regarding lymphedema in PMS in order to present clinical recommendations.The mechanism causing lymphedema in PMS is unknown. Lymphedema can be suggested by pitting oedema of the extremities or, in later stages, non-pitting swelling. It can occur already at a young age and be progressive if untreated, impacting daily functioning. Lymphedema can be treated using existing general multidisciplinary management guidelines, taking the functioning of the individual with PMS into account. Furthermore, well-known risk factors for the development of lymphedema as lack of physical activities and weight gain/obesity should be addressed. Diagnosis and treatment are best performed in a multidisciplinary centre of expertise.  相似文献   

2.
Phelan-McDermid syndrome (PMS) is a 22q13.3 deletion syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities like seizures. The epilepsy manifests itself in a variety of seizure semiologies. Further diagnostics using electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) are important in conjunction with the clinical picture of the seizures to decide whether anticonvulsant therapy is necessary. As part of the development of European consensus guidelines we focussed on the prevalence and semiology of epileptic seizures in PMS associated with a pathogenic variant in the SHANK3 gene or the 22q13 deletion involving SHANK3, in order to then be able to make recommendations regarding diagnosis and therapy.  相似文献   

3.
Chromosome 22q13.3 deletion (Phelan-McDermid) syndrome (PMS, OMIM 606232) is a rare genetic condition that impacts neurodevelopment. PMS most commonly results from heterozygous contiguous gene deletions that include the SHANK3 gene or likely pathogenic variants of SHANK3 (PMS-SHANK3 related). Rarely, chromosomal rearrangements that spare SHANK3 share the same general phenotype (PMS-SHANK3 unrelated). Very recent human and model system studies of genes that likely contribute to the PMS phenotype point to overlap in gene functions associated with neurodevelopment, synaptic formation, stress/inflammation and regulation of gene expression. In this review of recent findings, we describe the functional overlaps between SHANK3 and six partner genes of 22q13.3 (PLXNB2, BRD1, CELSR1, PHF21B, SULT4A1, and TCF20), which suggest a model that explains the commonality between PMS-SHANK3 related and PMS-SHANK3 unrelated classes of PMS. These genes are likely not the only contributors to neurodevelopmental impairments in the region, but they are the best documented to date. The review provides evidence for the overlapping and likely synergistic contributions of these genes to the PMS phenotype.  相似文献   

4.
This paper focuses on genetic counselling in Phelan-McDermid syndrome (PMS), a rare neurodevelopmental disorder caused by a deletion 22q13.3 or a pathogenic variant in SHANK3. It is one of a series of papers written by the European PMS consortium as a consensus guideline. We reviewed the available literature based on pre-set questions to formulate recommendations on counselling, diagnostic work-up and surveillance for tumours related to ring chromosome 22. All recommendations were approved by the consortium, which consists of professionals and patient representatives, using a voting procedure. PMS can only rarely be diagnosed based solely on clinical features and requires confirmation via genetic testing. In most cases, the family will be referred to a clinical geneticist for counselling after the genetic diagnosis has been made. Family members will be investigated and, if indicated, the chance of recurrence discussed with them. Most individuals with PMS have a de novo deletion or a pathogenic variant of SHANK3. The 22q13.3 deletion can be a simple deletion, a ring chromosome 22, or the result of a parental balanced chromosomal anomaly, influencing the risk of recurrence. Individuals with a ring chromosome 22 have an increased risk of NF2-related schwannomatosis (formerly neurofibromatosis type 2) and atypical teratoid rhabdoid tumours, which are associated with the tumour-suppressor genes NF2 and SMARCB1, respectively, and both genes are located on chromosome 22. The prevalence of PMS due to a ring chromosome 22 is estimated to be 10–20%. The risk of developing a tumour in an individual with a ring chromosome 22 can be calculated as 2–4%. However, those individuals who do develop tumours often have multiple. We recommend referring all individuals with PMS and their parents to a clinical geneticist or a comparably experienced medical specialist for genetic counselling, further genetic testing, follow-up and discussion of prenatal diagnostic testing in subsequent pregnancies. We also recommend karyotyping to diagnose or exclude a ring chromosome 22 in individuals with a deletion 22q13.3 detected by molecular tests. If a ring chromosome 22 is found, we recommend discussing personalised follow-up for NF2-related tumours and specifically cerebral imaging between the age of 14 and 16 years.  相似文献   

5.
Phelan-McDermid Syndrome (PMS) is caused by deletions at chromosome 22q13.3 or pathogenic/likely pathogenic SHANK3 variants. The clinical presentation is extremely variable and includes global developmental delay/intellectual disability (ID), seizures, neonatal hypotonia, and sleep disturbances, among others. This study investigated the prevalence of sleep disturbances, and the genetic and metabolic features associated with them, in a cohort of 56 individuals with PMS. Sleep data were collected via standardized observer/caregiver questionnaires, while genetic data from array-CGH and sequencing of 9 candidate genes within the 22q13.3 region, and metabolic profiling utilized the Biolog Phenotype Mammalian MicroArray plates. Sleep disturbances were present in 64.3% of individuals with PMS, with the most common problem being waking during the night (39%). Sleep disturbances were more prevalent in individuals with a SHANK3 pathogenic variant (89%) compared to subjects with 22q13.3 deletions of any size (59.6%). Distinct metabolic profiles for individuals with PMS with and without sleep disturbances were also identified. These data are helpful information for recognizing and managing sleep disturbances in individuals with PMS, outlining the main candidate gene for this neurological manifestation, and highlighting potential biomarkers for early identification of at-risk subjects and molecular targets for novel treatment approaches.  相似文献   

6.
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder characterised by hypotonia, speech problems, intellectual disability and mental health issues like regression, autism and mood disorders. In the development, implementation and dissemination of a new clinical guideline for a rare genetic disorder like PMS, the parental experienced perspective is essential. As information from literature is scarce and often conflicting the European Phelan-McDermid syndrome guideline consortium created a multi-lingual survey for parents of individuals with PMS to collect their lived experiences with care needs, genotypes, somatic issues, mental health issues and parental stress. In total, we analysed 587 completed surveys from 35 countries worldwide. Based on parental reporting, PMS appeared to be caused by a deletion of chromosome 22q13.3 in 78% (379/486) of individuals and by a variant in the SHANK3 gene in 22% (107/486) of the individuals. Parents reported a wide variety of developmental, neurological, and other clinical issues in individuals with PMS. The most frequently experienced issues were related to speech and communication, learning disabilities/intellectual disability, and behaviour. While most reported issues were present across all age groups and genotypes, the prevalence of epilepsy, lymphoedema, and mental health issues do appear to vary with age. Developmental regression also appeared to begin earlier in this cohort than described in literature. Individuals with PMS due to a 22q13.3 deletion had a higher rate of kidney issues and lymphoedema compared to individuals with SHANK3 variants. Parental stress was high, with specific contributing factors being child and context related in accordance with the PMS phenotype. The survey results led to various validated recommendations in the European PMS guideline including an age specific surveillance scheme, specific genetic counselling, structured healthcare evaluations on sleep and communication and a focus on family well-being.  相似文献   

7.
Phelan-McDermid syndrome is a rare genetic condition caused by a deletion encompassing the 22q13.3 region or a pathogenic variant of the gene SHANK3. The clinical presentation is variable, but main characteristics include global developmental delay/intellectual disability (ID), marked speech impairment or delay, along with other features like hypotonia and somatic or psychiatric comorbidities. This publication delineates mental health, developmental and behavioural themes across the lifetime of individuals with PMS as informed by parents/caregivers, experts, and other key professionals involved in PMS care. We put forward several recommendations based on the available literature concerning mental health and behaviour in PMS. Additionally, this article aims to improve our awareness of the importance of considering developmental level of the individual with PMS when assessing mental health and behavioural issues. Understanding how the discrepancy between developmental level and chronological age may impact concerning behaviours offers insight into the meaning of those behaviours and informs care for individuals with PMS, enabling clinicians to address unmet (mental health) care needs and improve quality of life.  相似文献   

8.
Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.  相似文献   

9.
Altered sensory functioning is often observed in individuals with SHANK3 related Phelan-McDermid syndrome (PMS). Compared to typically developing individuals and individuals with an autism spectrum disorder, it has been suggested that there are distinctive features of sensory functioning in PMS. More hyporeactivity symptoms and less hyperreactivity and sensory seeking behaviour are seen, particularly in the auditory domain. Hypersensitivity to touch, possible overheating or turning red easily and reduced pain response are often seen.In this paper the current literature on sensory functioning in PMS is reviewed and recommendations for caregivers, based on consensus within the European PMS consortium, are given.  相似文献   

10.
The SHANK3 protein is a scaffold protein known to stabilize metabotropic glutamate receptor mGluR5 in the post-synaptic membrane of neurons. It is associated with genetic vulnerability in autism and schizophrenia. Here we report the case of an 18 year-old male patient who displayed psychiatric features of bipolar affective disorder associated with early setting of dementia. This mental status is related to sporadic occurrence of SHANK3 gene complex multiple deletions. A low beta amyloid protein rate (479 mg/L) found in cerebrospinal fluid suggests a possible link between SHANK3 deletion syndrome-associated regression and dementia of Alzheimers's type. In addition, we propose an overview of the phenotype related to SHANK3 deletion.  相似文献   

11.
22q13 deletion syndrome is a genetic disorder caused by the deletion or disruption of the segment of the long arm of chromosome 22. The characteristic clinical features of this syndrome include delayed expressive speech, autistic behavior and hypotonia, and clinically severe complications associated with autoimmunity are rarely reported. We herein report a girl with 22q13 deletion syndrome complicated with multiple inflammatory and autoimmune diseases during early childhood. We performed whole-exome sequencing to identify the genes responsible for her autoimmune diseases and identified the de novo variant p.R512W in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) gene. We suspected it to be the disease-causing variant at the conserved residue in PIK(3)C p110δ. Alternatively, haplo-insufficiency of SHANK3 or other genes by 22q13 deletion and the PIK3CD variant might have synergistically contributed to the onset of the distinctive clinical manifestations in this patient.  相似文献   

12.
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by rearrangements on chromosome 22q13.3 or sequence variants in SHANK3. Individuals with PMS caused by a 22q terminal deletion and a ring chromosome are at increased risk for Neurofibromatosis type 2 (NF2). However, the prevalence of NF2 in individuals with PMS and a r (22) is unknown.Individuals with PMS and a r (22) chromosome evaluated at the Greenwood Genetic Center (GGC) or by international collaborators, or identified through the PMS International Registry (PMSIR) were contacted and participated in a clinical questionnaire. Forty-four families completed the questionnaire and consented for the study. Of the individuals with a r (22), 7 (16%) carried a diagnosis of NF2. The average age of diagnosis of r (22) was 18 years old in individuals with NF2 and three years old in individuals without NF2 (p-value <0.001). Clinical findings were similar among all individuals in our sample with the exception of hearing loss, present in 57% of individuals with NF2 and 8% of individuals without NF2 (p-value <0.01).This is the largest clinical report of individuals with PMS and a r (22) chromosome. We show a diagnosis of NF2 in individuals with r (22) is not uncommon and may be under ascertained. Moreover, the presentation of NF2 in this cohort is variable and lifelong routine screening for features of NF2 in this population should be considered.  相似文献   

13.
Methods: The 22q13 deletion syndrome (MIM 606232) is characterised by moderate to profound mental retardation, delay/absence of expressive speech, hypotonia, normal to accelerated growth, and mild dysmorphic features. We have determined the deletion size and parent of origin in 56 patients with this syndrome.

Results: Similar to other terminal deletion syndromes, there was an overabundance of paternal deletions. The deletions vary widely in size, from 130 kb to over 9 Mb; however all 45 cases that could be specifically tested for the terminal region at the site of SHANK3 were deleted for this gene. The molecular structure of SHANK3 was further characterised. Comparison of clinical features to deletion size showed few correlations. Some measures of developmental assessment did correlate to deletion size; however, all patients showed some degree of mental retardation and severe delay or absence of expressive speech, regardless of deletion size.

Conclusion: Our analysis therefore supports haploinsufficiency of the gene SHANK3, which codes for a structural protein of the postsynaptic density, as a major causative factor in the neurological symptoms of 22q13 deletion syndrome.

  相似文献   

14.
15.
SHANK3 is located on chromosome 22q13.3 and encodes a scaffold protein that is found in excitatory synapses opposite the pre-synaptic active zone. SHANK3 is a binding partner of neuroligins, some of whose genes contain mutations in a small subset of individuals with autism. In individuals with autism spectrum disorders (ASDs), several studies have found SHANK3 to be disrupted by deletions ranging from hundreds of kilobases to megabases, suggesting that 1% of individuals with ASDs may have these chromosomal aberrations. To further analyse the involvement of SHANK3 in ASD, we screened the International Molecular Genetic Study of Autism Consortium (IMGSAC) multiplex family sample, 330 families, for SNP association and copy number variants (CNVs) in SHANK3. A collection of 76 IMGSAC Italian probands from singleton families was also examined by multiplex ligation-dependent probe amplification for CNVs. No CNVs or SNP associations were found within the sample set, although sequencing of the gene was not performed. Our data suggest that SHANK3 deletions may be limited to lower functioning individuals with autism.  相似文献   

16.
Williams Beuren syndrome (WBS) is a multisystemic disorder caused by a hemizygous deletion of 1.5 Mb on chromosome 7q11.23 spanning 28 genes. A few patients with larger and smaller WBS deletion have been reported. They show clinical features that vary between isolated SVAS to the full spectrum of WBS phenotype, associated with epilepsy or autism spectrum behavior. Here we describe four patients with atypical WBS 7q11.23 deletions. Two carry ∼3.5 Mb larger deletion towards the telomere that includes Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxigenase activation protein gamma (YWHAG) genes. Other two carry a shorter deletion of ∼1.2 Mb at centromeric side that excludes the distal WBS genes BAZ1B and FZD9. Along with previously reported cases, genotype–phenotype correlation in the patients described here further suggests that haploinsufficiency of HIP1 and YWHAG might cause the severe neurological and neuropsychological deficits including epilepsy and autistic traits, and that the preservation of BAZ1B and FZD9 genes may be related to mild facial features and moderate neuropsychological deficits. This report highlights the importance to characterize additional patients with 7q11.23 atypical deletions comparing neuropsychological and clinical features between these individuals to shed light on the pathogenic role of genes within and flanking the WBS region.  相似文献   

17.
The 22q13.3 deletion causes a neurodevelopmental syndrome, also known as Phelan‐McDermid syndrome (MIM #606232), characterized by developmental delay and severe delay or absence of expressive speech. Two patients with hemizygous chromosome 22q13.3 telomeric deletion were referred to us when brain‐imaging studies revealed cerebellar vermis hypoplasia (CBVH). To determine whether developmental abnormalities of the cerebellum are a consistent feature of the 22q13.3 deletion syndrome, we examined brain‐imaging studies for 10 unrelated subjects with 22q13 terminal deletion. In seven cases where the availability of DNA and array technology allowed, we mapped deletion boundaries using comparative intensity analysis with single nucleotide polymorphism (SNP) microarrays. Approximate deletion boundaries for three additional cases were derived from clinical or published molecular data. We also examined brain‐imaging studies for a patient with an intragenic SHANK3 mutation. We report the first brain‐imaging data showing that some patients with 22q13 deletions have severe posterior CBVH, and one individual with a SHANK3 mutation has a normal cerebellum. This genotype–phenotype study suggests that the 22q13 deletion phenotype includes abnormal posterior fossa structures that are unlikely to be attributed to SHANK3 disruption. Other genes in the region, including PLXNB2 and MAPK8IP2, display brain expression patterns and mouse mutant phenotypes critical for proper cerebellar development. Future studies of these genes may elucidate their relationship to 22q13.3 deletion phenotypes. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Pathogenic variants in the BCAP31 gene have recently been associated with a severe congenital neurological phenotype, named DDCH after its key features: deafness, dystonia and central hypomyelination. BCAP31 is located at the Xq28 chromosomal region and only male individuals are currently known to be affected, the pathogenic variant being usually transmitted by healthy mothers.Here, we describe a three-year-old male child referred for severe developmental delay, failure to thrive, hearing loss and dyskinetic movements. After a conventional diagnostic workflow, including a normal array-CGH, a tentative diagnosis of dyskinetic cerebral palsy was retained. Clinical exome sequencing in the trio identified a small intragenic deletion in exon 8 of BCAP31, c.709_721del (p.Val237Trpfs*69), originated de novo and not previously reported. Based on the ACMG variant classification, this variant is predicted to be ‘likely pathogenic’. Given the consistent phenotypical overlap with the subjects already ascertained with DDCH, we considered this variant to be clinically relevant for this child and causative of his condition.  相似文献   

19.
The severe mental retardation and speech deficits associated with 22q13 terminal deletions have been attributed in large part to haploinsufficiency of SHANK3, which maps to all 22q13 terminal deletions, although more proximal genes are assumed to have minor effects. We report two children with interstitial deletions of 22q13 and two copies of SHANK3, but clinical features similar to the terminal 22q13 deletion syndrome, including mental retardation and severe speech delay. Both these interstitial deletions are completely contained within the largest terminal deletion, but do not overlap with the nine smallest terminal deletions. These interstitial deletions indicate that haploinsufficiency for 22q13 genes other than SHANK3 can have major effects on cognitive and language development. However, the relatively mild speech problems and normal cognitive abilities of a parent who transmitted her identical interstitial deletion to her more severely affected son suggests that the phenotype associated with this region may be more variable than terminal deletions and therefore contribute to the relative lack of correlation between clinical severity and size of terminal deletions. The phenotypic similarity between the interstitial deletions and non-overlapping small terminal 22q13 deletions emphasizes the general nonspecificity of the clinical picture of the 22q13 deletion syndrome and the importance of molecular analysis for diagnosis.  相似文献   

20.
《Genetics in medicine》2021,23(2):374-383
PurposeJARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22–p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype.MethodsChromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2.ResultsWe report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2.ConclusionWe report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene–disease validity for the purpose of diagnostic reporting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号