首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generally, rewards that are received sooner are often preferred over future rewards, and the time between the choice and the reception of the reward is an important factor that influences our decisions, a phenomenon called delay discounting (DD). In DD, the medial prefrontal cortex (MePFC) and striatal dopamine neurotransmission both play an important role. We used repetitive transcranial magnetic stimulation (rTMS) to transiently activate the MePFC to evaluate its behavioral effect on the DD paradigm, and subsequently to measure its effect on striatal dopamine. Twenty-four right-handed young healthy subjects (11 females; age: 22.1±2.9 years) underwent DD following 10 Hz-rTMS of the MePFC and vertex stimulation (control condition). Thereafter, 11 subjects (5 females; age: 22.2±2.87 years) completed the PET study at rest using [11C]-(+)-PHNO following 10 Hz-rTMS of the MePFC and vertex. Modulation of the MePFC excitability influenced the subjective level of DD for delayed rewards and interfered with synaptic dopamine level in the striatum. The present study yielded findings that might reconcile the role of these areas in inter-temporal decision making and dopamine modulation, suggesting that the subjective sense of time and value of reward are critically controlled by these important regions.  相似文献   

2.
To survive, all mammalian species must recognize and respond appropriately to threatening stimuli. In adults, the prelimbic medial prefrontal cortex (mPFC) appears to be involved in fear expression, whereas the infralimbic mPFC mediates fear extinction. In juvenile rats (PN26), the mPFC receives information on potential predators but does not act on it. To test whether the prefrontal cortex is capable of fear regulation in the young organism, we exposed juvenile rats to a threatening or nonthreatening stimulus and assessed fear and brain Fos activation of the mPFC subdivisions, amygdala and periaqueductal gray (PAG). In response to the threat, juveniles froze more, spent more time far from the threat, and had elevated numbers of Fos-positive cells in the prelimbic mPFC, the medial amygdala, and ventral PAG. To test the hypothesis that the mPFC has a dual role in modulating the amygdala and PAG in juveniles, we pharmacologically disinhibited each of the two subdivisions of the mPFC and assessed freezing and downstream activation to the threat. Juvenile rats infused with picrotoxin into the prelimbic mPFC and exposed to a threatening stimulus froze less, spent less time far from the threat, and increased Fos expression. Infusion of picrotoxin into the infralimbic mPFC also reduced fear responding to the threatening stimulus but had no effect on Fos expression. In sum, it appears that the mPFC can process threatening stimuli in juveniles at this age, even though it is normally not involved in the fear responses.  相似文献   

3.
The medial prefrontal cortex (MPFC) is a key brain area in depressive symptomatology; specifically, glutamate (Glu) has been reported to play a significant role in major depression (MD) in this area. MPFC Glu levels are sensitive to ovarian hormone fluctuations and pregnancy and the postpartum period are associated with the most substantial physiological alterations of female hormones. It is therefore logical to measure MPFC Glu levels in women with postpartum depression (PPD). Using in vivo magnetic resonance spectroscopy (MRS) at a field strength of 3 T, we acquired single-voxel spectra from the MPFC of 12 women with PPD and 12 healthy controls (HCs) matched for postpartum scan timing. Water-referenced MPFC Glu levels were measured using a MRS technique that allowed us to be specific for Glu with very little glutamine contamination. The concentrations of other water-quantified brain metabolites such as glycerophosphorylcholine plus phosphorylcholine, N-acetylaspartate (NAA), and creatine plus phosphocreatine were measured in the same MR spectra. MPFC Glu levels were higher in women with PPD (7.21±1.20) compared to matched HCs (6.04±1.21). There were no differences between groups for other brain metabolites measured. These findings suggest an association between Glu dysregulation in the MPFC and PPD. Whether the pathophysiology of PPD differs from the pathophysiology of MD remains to be determined. Further investigations are needed to determine the chronological associations between the occurrence of symptoms of PPD and the onset of changes in MPFC Glu levels.  相似文献   

4.
A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC.  相似文献   

5.
We hypothesize that cortical ATP and ADP accumulating in the extracellular space, eg during prolonged network activity, contribute to a decline in cognitive performance in particular via stimulation of the G protein-coupled P2Y1 receptor (P2Y1R) subtype. Here, we report first evidence on P2Y1R-mediated control of cognitive functioning in rats using bilateral microinfusions of the selective agonist MRS2365 into medial prefrontal cortex (mPFC). MRS2365 attenuated prepulse inhibition of the acoustic startle reflex while having no impact on startle amplitude. Stimulation of P2Y1Rs deteriorated performance accuracy in the delayed non-matching to position task in a delay dependent manner and increased the rate of magazine entries consistent with both working memory disturbances and impaired impulse control. Further, MRS2365 significantly impaired performance in the reversal learning task. These effects might be related to MRS2365-evoked increase of dopamine observed by microdialysis to be short-lasting in mPFC and long-lasting in the nucleus accumbens. P2Y1Rs were identified on pyramidal cells and parvalbumin-positive interneurons, but not on tyrosine hydroxylase-positive fibers, which argues for an indirect activation of dopaminergic afferents in the cortex by MRS2365. Collectively, these results suggest that activation of P2Y1Rs in the mPFC impairs inhibitory control and behavioral flexibility mediated by increased mesocorticolimbic activity and local disinhibition.  相似文献   

6.
Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior.  相似文献   

7.
Major depression is associated with both dysregulated glutamatergic neurotransmission and fewer astrocytes in limbic areas including the prefrontal cortex (PFC). These deficits may be functionally related. Notably, astrocytes regulate glutamate levels by removing glutamate from the synapse via the glutamate transporter (GLT-1). Previously, we demonstrated that central blockade of GLT-1 induces anhedonia and c-Fos expression in the PFC. Given the role of the PFC in regulating mood, we hypothesized that GLT-1 blockade in the PFC alone would be sufficient to induce anhedonia in rats. We microinjected the GLT-1 inhibitor, dihydrokainic acid (DHK), into the PFC and examined the effects on mood using intracranial self-stimulation (ICSS). At lower doses, intra-PFC DHK produced modest increases in ICSS thresholds, reflecting a depressive-like effect. At higher doses, intra-PFC DHK resulted in cessation of responding. We conducted further tests to clarify whether this total cessation of responding was related to an anhedonic state (tested by sucrose intake), a nonspecific result of motor impairment (measured by the tape test), or seizure activity (measured with electroencephalogram (EEG)). The highest dose of DHK increased latency to begin drinking without altering total sucrose intake. Furthermore, neither motor impairment nor evidence of seizure activity was observed in the tape test or EEG recordings. A decrease in reward value followed by complete cessation of ICSS responding suggests an anhedonic-like effect of intra-PFC DHK; a conclusion that was substantiated by an increased latency to begin sucrose drinking. Overall, these results suggest that blockade of astrocytic glutamate uptake in the PFC is sufficient to produce anhedonia, a core symptom of depression.  相似文献   

8.
Serotonin 2C receptor (5-HT2CR) agonists administered systemically attenuate both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior. To further elucidate the function of these receptors in addiction-like processes, this study examined the effects of microinfusing the 5-HT2CR agonist MK212 (0, 10, 30, 100 ng/side/0.2 μl) into the medial prefrontal cortex (mPFC) on cocaine self-administration and reinstatement of extinguished cocaine-seeking behavior. Male Sprague–Dawley rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. Once responding stabilized, rats received MK212 microinfusions before tests for maintenance of cocaine self-administration. Next, extinction training to reduce cocaine-seeking behavior, defined as responses performed without cocaine reinforcement available, occurred until low extinction baselines were achieved. Rats then received MK212 microinfusions before tests for reinstatement of extinguished cocaine-seeking behavior elicited by cocaine-priming injections (10 mg/kg, i.p.) or response-contingent presentations of the cocaine-associated cues; operant responses during cocaine-primed reinstatement tests produced no consequences. MK212 microinfusions into the prelimbic and infralimbic, but not anterior cingulate, regions of the mPFC dose-dependently attenuated both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior, but did not reliably affect cocaine self-administration. A subsequent experiment showed that the effects of MK212 (100 ng/side/0.2 μl) on reinstatement of extinguished cocaine-seeking behavior were blocked by co-administration of the 5-HT2CR antagonist SB242084 (200 ng/side/0.2 μl). MK212 administered alone into the mPFC as a drug prime produced no discernable effects on cocaine-seeking behavior. These findings suggest that stimulation of 5-HT2CRs in the mPFC attenuates the incentive motivational effects produced by sampling cocaine or exposure to drug-paired cues.  相似文献   

9.
Prenatal nicotine exposure (PNE) is linked to numerous psychiatric disorders including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex. Yet, it is unclear how neural activity in the medial prefrontal cortex (mPFC) is modulated during tasks that assess response inhibition or if these neural correlates, along with behavior, are affected by PNE. To address this issue, we recorded from single mPFC neurons in control and PNE rats as they performed a stop-signal task. We found that PNE rats were faster for all trial-types, made more premature responses, and were less likely to inhibit behavior on ‘STOP'' trials during which rats had to inhibit an already initiated response. Activity in mPFC was modulated by response direction and was positively correlated with accuracy and movement time in control but not PNE rats. Although the number of single neurons correlated with response direction was significantly reduced by PNE, neural activity observed on general STOP trials was largely unaffected. However, dramatic behavioral deficits on STOP trials immediately following non-conflicting (GO) trials in the PNE group appear to be mediated by the loss of conflict monitoring signals in mPFC. We conclude that prenatal nicotine exposure makes rats impulsive and disrupts firing of mPFC neurons that carry signals related to response direction and conflict monitoring.  相似文献   

10.
11.

Background:

Although a clear negative influence of chronic exposure to stressful experiences has been repeatedly demonstrated, the outcome of acute stress on key brain regions has only just started to be elucidated. Although it has been proposed that acute stress may produce enhancement of brain plasticity and that antidepressants may prevent such changes, we still lack ultrastructural evidence that acute stress-induced changes in neurotransmitter physiology are coupled with structural synaptic modifications.

Methods:

Rats were pretreated chronically (14 days) with desipramine (10mg/kg) and then subjected to acute foot-shock stress. By means of serial section electron microscopy, the structural remodeling of medial prefrontal cortex glutamate synapses was assessed soon after acute stressor cessation and stress hormone levels were measured.

Results:

Foot-shock stress induced a remarkable increase in the number of docked vesicles and small excitatory synapses, partially and strongly prevented by desipramine pretreatment, respectively. Acute stress-induced corticosterone elevation was not affected by drug treatment.

Conclusions:

Since desipramine pretreatment prevented the stress-induced structural plasticity but not the hormone level increase, we hypothesize that the preventing action of desipramine is located on pathways downstream of this process and/or other pathways. Moreover, because enhancement of glutamate system remodeling may contribute to overexcitation dysfunctions, this aspect could represent a crucial component in the pathophysiology of stress-related disorders.  相似文献   

12.
Overcoming specific fears and subsequent anxiety can be greatly enhanced by the presence of familiar social partners, but the neural circuitry that controls this phenomenon remains unclear. To overcome this, the social interaction (SI) habituation test was developed in this lab to systematically investigate the effects of social familiarity on anxiety-like behavior in rats. Here, we show that social familiarity selectively reduced anxiety-like behaviors induced by an ethological anxiogenic stimulus. The anxiolytic effect of social familiarity could be elicited over multiple training sessions and was specific to both the presence of the anxiogenic stimulus and the familiar social partner. In addition, socially familiar conspecifics served as a safety signal, as anxiety-like responses returned in the absence of the familiar partner. The expression of the social familiarity-induced anxiolysis (SFiA) appears dependent on the prefrontal cortex (PFC), an area associated with cortical regulation of fear and anxiety behaviors. Inhibition of the PFC, with bilateral injections of the GABAA agonist muscimol, selectively blocked the expression of SFiA while having no effect on SI with a novel partner. Finally, the effect of D-cycloserine, a cognitive enhancer that clinically enhances behavioral treatments for anxiety, was investigated with SFiA. D-cycloserine, when paired with familiarity training sessions, selectively enhanced the rate at which SFiA was acquired. Collectively, these outcomes suggest that the PFC has a pivotal role in SFiA, a complex behavior involving the integration of social cues of familiarity with contextual and emotional information to regulate anxiety-like behavior.  相似文献   

13.
The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions.  相似文献   

14.
Evidence indicates that the prefrontal cortex and its regulation by afferent inputs are disrupted in schizophrenia. Using a validated rat model of schizophrenia based on prenatal administration of the mitotoxin methyl azoxymethanol acetate (MAM), we examined the convergent projections from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA) in the medial prefrontal cortex (mPFC). In vivo extracellular recordings were done in anesthetized rats to assess how prior stimulation of the BLA or vHipp input to the mPFC affected mPFC responses to subsequent stimulation of these regions. The interstimulus interval (ISI) of the BLA and vHipp pulse stimulation was varied randomly between 0 and 130 ms, and the probability of evoked spike response in the mPFC measured. We found that BLA input increased vHipp-evoked spike probability at ISIs 40–130 ms, but decreased spike probability at ISIs 10–20 ms. This would be consistent with activation of inhibitory interneurons at shorter ISIs by BLA stimulation. In contrast, in MAM-treated rats BLA stimulation increased vHipp-evoked spike probability in mPFC at all ISIs tested. Given that interneurons are driven primarily by N-methyl-D-aspartate (NMDA) channel activation, the effects of the NMDA channel blocker, phencyclidine (PCP), were tested. PCP was found to completely attenuate the inhibitory effect of BLA input on vHipp-evoked responses in mPFC at shorter ISIs, causing the response in control rats treated with PCP to resemble that observed in the MAM rat. In contrast to the effects of BLA stimulation on vHipp-mPFC-evoked responses, there was no inhibitory period when examining the effects of vHipp stimulation on BLA-mPFC-evoked responses in control rats, but in MAM-treated rats there was a significant inhibition at short intervals. Thus, both affective input arising from the BLA and context-dependent input from the vHipp exert a modulatory effect on mPFC neural activity in response to these inputs. Whereas the BLA potentiated vHipp input to the mPFC at long intervals, there was a short-interval inhibitory period that appeared to be mediated by an NMDA-dependent drive of interneurons. This inhibitory modulation was absent in the model of schizophrenia and following PCP, which is consistent with an interneuron disruption in this disorder.  相似文献   

15.
To better understand why certain individuals are more vulnerable to cocaine abuse and addiction, we identify peptide markers associated with individual variation in sensitivity to the behavioral effects of cocaine. Previous studies in rats show that low, compared to high, cocaine responders are more sensitive to cocaine-induced behavioral plasticity (sensitization), exhibit enhanced conditioning to cocaine’s rewarding effects, and are more motivated to self administer cocaine. In the current study, we combine matrix-assisted laser desorption/ionization mass spectrometry with multivariate statistical methods to analyze tissue extracts from rat dorsal striatum, nucleus accumbens, and medial prefrontal cortex (mPFC) to examine trends in peptide changes that coincide with behavioral phenotype. Peptide profiles of these three regions from individual animals were characterized via mass spectrometry. Resulting mass peaks that were statistically different between these groups were identified using principal component analysis. The mass peaks were then identified in pooled samples via multistage liquid chromatography mass spectrometry. A total of 74 peptides from 28 proteins were sequenced from defined brain regions. Statistically significant changes in peak intensities for seven peptides were found in the mPFC of rats given a single injection of 10 mg/kg cocaine, with low cocaine responders showing ∼2-fold increase in peak intensities for the acetylated N terminus peptides of stathmin and Hint 1, as well as truncated ATP synthase. These results suggest that distinct peptide profiles in the mPFC are associated with individuals that exhibit reduced sensitivity to the behavioral effects of cocaine.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-010-9204-2) contains supplementary material, which is available to authorized users.Key words: addiction, biomarkers, MALDI-TOF, peptidomics, principle component analysis  相似文献   

16.
Methamphetamine (meth) addicts often exhibit enduring cognitive and neural deficits that likely contribute to persistent drug seeking and the high rates of relapse. These deficits may be related to changes in the prefrontal cortex (PFC) and its glutamatergic projections to the nucleus accumbens (NAc). Here, we performed in vivo microdialysis in the PFC and NAc in rats following either meth self-administration or yoked-saline control histories to assess baseline glutamate (GLU) levels, or reinstatement-evoked GLU and dopamine (DA) efflux in both regions simultaneously under cue-induced, meth-primed, or combined cues+meth reinstatement conditions. Our results show that meth self-administration (1) reduced basal GLU levels in both the dmPFC and NAc, (2) concurrently increased dmPFC and NAc GLU efflux during reinstatement, and (3) increased DA efflux in the dmPFC, but not in the NAc, under all reinstatement conditions when compared with yoked-saline controls. These data demonstrate for the first time that a history of psychostimulant self-administration alters GLU homeostasis not only in the NAc, but also in the dmPFC, its primary GLU projection source. Furthermore, combined cues+meth-primed reinstatement conditions produced the most pronounced increases in mPFC and NAc extracellular GLU, suggesting that the cue and meth prime conditions are additive in promoting reinstatement. Finally, increased efflux of DA in the dmPFC, but not in the NAc, across reinstatement conditions suggests that DA release in the dmPFC may be an important mediator of drug seeking initiated by multiple relapse triggers.  相似文献   

17.
18.
Monoamines, including both dopamine and serotonin, synapse onto prefrontal cortical interneurons. Dopamine has been shown to activate these GABAergic interneurons, but there are no direct data on the effects of serotonin on GABA release in the prefrontal cortex. We, therefore, examined the effects of the 5-HT2a/c agonist 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI) on extracellular GABA levels in the prefrontal cortex of the rat. Local infusions of DOI dose-dependently increased cortical extracellular GABA levels. In addition, systemic DOI administration resulted in Fos protein expression in glutamic acid decarboxylase67-immunoreactive interneurons of the prefrontal cortex. These data indicate that serotonin, operating through a 5-HT2 receptor, acutely activates GABAergic interneurons in the prefrontal cortex. These data further suggest that there may be convergent regulation of interneurons by dopamine and serotonin in the prefrontal cortex.  相似文献   

19.
Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Here, seven-day old Sprague-Dawley rats were subjected to left brain HI. Dexmedetomidine was given intraperitoneally after the brain HI. Yohimbine or atipamezole, two α2 adrenergic receptor antagonists, were given 10 min before the dexmedetomidine injection. Neurological outcome was evaluated 7 or 28 days after the brain HI. Frontal cerebral cortex was harvested 6 h after the brain HI. Left brain HI reduced the left cerebral hemisphere weight assessed 7 days after the brain HI. This brain tissue loss was dose-dependently attenuated by dexmedetomidine. Dexmedetomidine applied within 1 h after the brain HI produced this effect. Dexmedetomidine attenuated the brain HI-induced brain tissue and cell loss as well as neurological and cognitive dysfunction assessed from 28 days after the brain HI. Dexmedetomidine postconditioning-induced neuroprotection was abolished by yohimbine or atipamezole. Brain HI increased tumor necrosis factor α and interleukin 1β in the brain tissues. This increase was attenuated by dexmedetomidine. Atipamezole inhibited this dexmedetomidine effect. Our results suggest that dexmedetomidine postconditioning reduces HI-induced brain injury in the neonatal rats. This effect may be mediated by α2 adrenergic receptor activation that inhibits inflammation in the ischemic brain tissues.  相似文献   

20.
Initiation of drug use during adolescence is a strong predictor of both the incidence and severity of addiction throughout the lifetime. Intriguingly, adolescence is a period of dynamic refinement in the organization of neuronal connectivity, in particular medial prefrontal cortex (mPFC) dopamine circuitry. The guidance cue receptor, DCC (deleted in colorectal cancer), is highly expressed by dopamine neurons and orchestrates their innervation to the mPFC during adolescence. Furthermore, we have shown that amphetamine in adolescence regulates DCC expression in dopamine neurons. Drugs in adolescence may therefore induce their enduring behavioral effects via DCC-mediated disruption in mPFC dopamine development. In this study, we investigated the impact of repeated exposure to amphetamine during adolescence on both the development of mPFC dopamine connectivity and on salience attribution to drug context in adulthood. We compare these effects to those induced by adult exposure to an identical amphetamine regimen. Finally, we determine whether DCC signaling within dopamine neurons is necessary for these events. Exposure to amphetamine in adolescence, but not in adulthood, leads to an increase in the span of dopamine innervation to the mPFC, but a reduction of presynaptic sites present on these axons. Amphetamine treatment in adolescence, but not in adulthood, also produces an increase in salience attribution to a previously drug-paired context in adulthood. Remarkably, DCC signaling within dopamine neurons is required for both of these effects. Drugs of abuse in adolescence may therefore induce their detrimental behavioral consequences by disrupting mesocortical dopamine development through alterations in the DCC signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号